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 This article presents a system focused on the detection of three types of 

abnormal walk patterns caused by neurological diseases, specifically 
Parkinsonian gait, Hemiplegic gait, and Spastic Diplegic gait. A Kinect 
sensor is used to extract the Skeleton from a person during its walk, to then 
calculate four types of bases that generate different sequences from the 25 
points of articulations that the Skeleton gives. For each type of calculated 
base, a recurrent neural network (RNN) is trained, specifically a Long short-
term memory (LSTM). In addition, there is a graphical user interface that 
allows the acquisition, training, and testing of trained networks. Of the four 

trained networks, 98.1% accuracy is obtained with the database that was 
calculated with the distance of each point provided by the Skeleton to 
the Hip-Center point. 
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1. INTRODUCTION  
The design of systems based on artificial intelligence techniques with a focus on medicine has 

gained importance in various research. In [1], it was sought to automate the detection of multiple sclerosis, 

implementing deep learning techniques, specifically the convolutional neuronal networks (CNN),  

where a correlation of 0.97 is obtained with respect to the manual annotations of the white matter, 

 concluding that the use of CNN to automate processes of detection of white matter is close to that of experts,  

being a clear starting point for the implementation of this type of systems.  

CNN is a Deep learning technique [2], that has been demonstrated its high performance in pattern 

recognition [3], with an emphasis on image classification [4]. This technique has been to have some 

evolutions in complementaries architectures like the DAG-CNN [5] and the R-CNN [6]. In [7], CNNs are 

used for segmentation of magnetic resonance images, in order to classify images of brains according to 

the age of the person, where 82% to 91% of the precision of the classifications is obtained. 

In [8], it is emphasized that with current methods, the diagnosis of Parkinson's disease tends to be 
subjective, for this reason a Kinect sensor [9] is used as a support for the diagnosis of Parkinson's, seeking to 

capture by means of this, the movement of patients, the movement of patients, extracting characteristics such 

as amplitude and frequency of movement, which are important for physicians to make a correct diagnosis of 

this disease. In [10], it is mentioned that currently for the detection and identification of neurodegenerative 

diseases, physicians tend to analyze the progress of patients, in this case, they focus on the detection of 

Parkinson's disease, Huntington and amyotrophic lateral sclerosis, implementing a type of RNN called 

LSTM, achieving a 95.67% accuracy in the identification of the gaits. 

Several studies have already focused on the analysis of alterations in the gait, behavior or postures 

of people. In [11], a type of shoes were designed that are made up of various sensors such as load cells, 

accelerometers, and gyroscopes that help to identify the gait of the person, vectors of machine supports 
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(SVM) are implemented for the classification between types of normal gait, foot inwards, foot outwards, 

among others, obtaining between 89.6% and 93.38% accuracy in the classification of gait abnormalities, 

presenting as a disadvantage that the methods used tend to be intrusive for the user. In [12], different types of 

RNN are evaluated, such as the LSTM, the vanilla RNN, and the Gated Recurrent Unit GRU,  

to detect abnormal behaviors in elderly people with dementia, it is concluded that the LSTM has a better 

behavior achieving up to 96.7% accuracy in the identification of abnormalities. In [13], using CNN and  

the movement of the Skeleton of a person turn it into an image to detect the actions that are being carried out,  

such as movements in the body and actions in sports, the proposed method is tested with different databases, 
obtaining percentages of accuracy between 86.97% and 95.45%. 

For the recognition of human actions, it becomes recurrent in current works, the implementation of 

deep learning algorithms whether through CNN or LSTM, demonstrating how robust and precise these 

techniques can be. As an example of the above in [14], genetic algorithms (GA) and CNN are used to 

recognize among 50 human actions of the UCF50 database [15], the GAs are used to initialize the CNN 

weights, achieving a 99.98% accuracy in the classification. In [16] and [17], the LSTM is used for  

the recognition of actions in people, where the first one focuses on identifying the action that a person is 

performing (walking, sitting, standing, jogging, among others), achieving 92.1% accuracy in  

the identification of actions. While in the second one, the use of LSTM is highlighted for the analysis of 

actions in a spatio-temporal way, the method is tested in different databases, obtaining a 95% accuracy in  

the classification of the UT-Kinect database [18]. 

The World Health Organization (WHO), conducted a study of neurological disorders and  
the challenges they presented to public health, where a forecast was made which mentioned that by 2030, 

12.22% of deaths would be attributed to neurological disorders [19]. These studies demonstrate the need to 

focus research on the identification and detection of neurological diseases. For this reason, this article 

exposes an investigation oriented in the detection and identification of three types of abnormal patterns  

in gait that are caused by some neurological disease: Parkinsonian gait, Hemiplegic gait, and Spastic  

Diplegic gait. 

The aim is to detect gait abnormalities by implementing LSTM. In [20], besides explaining  

the general operation of the LSTM, it is mentioned that they are a special type of RNN, that do not present 

the problem of long-term dependence that the classic RNNs do, which are explained in depth in [21],  

thus avoiding the problems that arise in the gradients of the deeper gradient of the network. This type of 

network was presented in [22], where it is emphasized that the implementation of LSTM leads to more 
precise results and faster training, compared to recurrent learning and retro-propagation over time. 

The paper is divided into 7 parts. In the first part, the general outline of the process is presented.  

The second focuses on the acquisition of the database and the calculation of input characteristics for section 

three, which focuses on the architecture of the LSTM and its training. In the fourth part, some of the cases of 

correct and incorrect classification of the network are shown. The fifth part presents a graphic user interface 

designed to facilitate and automate the process of identifying the type of gear. Then the classification times of 

one of the trained networks are presented. Finally, conclusions are given on the results obtained in each of  

the stages. 

 

 

2. RESEARCH METHOD  

2.1. Process scheme 

Figure 1 shows the general process of the proposed method to detect the type of gait abnormality 

that a person may have. The initial step is to perform the acquisition of the person's gait, for this it is decided 

to use a Kinect V2, taking into account that it is a non-intrusive system and therefore it will not affect or 

cause variations in the patients’ walk during the tests. In addition, it has already been implemented in similar 

research as evidenced in the state of the art. The user must walk in front of the sensor, taking into account 

that his whole body must be seen so that the Skeleton can be extracted correctly. Once it is detected that there 

is no one in the field of vision of the sensor, a simulation of the person's walk is generated, using 

the extracted Skeleton, it should be noted that each frame of the video has a resolution of 512x424 pixels.  

From the coordinates of each point of the Skeleton in each of the tables of the video, the sequences that will 

be entered into the LSTM are calculated. Finally, the network classifies the gait entered into 4 categories 

(normal gait, Spastic Diplegic gait, Hemiplegic gait, and Parkinsonian gait). 
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Figure 1. Process scheme 

 
 

2.2. Database 

The stage of the database begins with the analysis of the data that the Kinect sensor provides from 

the person. Then it is necessary to understand the main characteristics of each of the gaits to be classified. 

Subsequently, four different types of databases are generated, with each of these a network will be trained. 

Finally, the number of training sequences and tests for the network is established. 

 

2.2.1.  Kinect data of the Skeleton 

In Figure 2, each of the joints that can identify a person, the Skeleton function of Kinect, being 25 in 

total. What the Skeleton provides are the coordinates of each of these points in each captured frame.  

With these coordinates, each of the joints can be linked to visualize the skeleton of the person in his 
trajectory. Only 5 frames per second are captured, being enough to obtain different positions of the body 

during the march. 

 

 

 
 

Figure 2. Joints to form the skeleton [4] 

 
 

2.2.2.  Gait patterns acquired 

This project is the first approach to evaluate the potential of LSTM to detect different abnormalities 

in gait patterns, for the acquisition of the database were used people who did not suffer any abnormality. 

Therefore, to generate the database, it is necessary to understand the main features of each one of the gait 

patterns, in order to imitate them correctly during the acquisition of the data. In [23, 24], each of the gait 
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abnormalities caused by some type of neurological problem is explained in detail. In general, the Spastic 

Diplegic gait, characterized by paralysis of the upper or lower extremities, is usually caused by cerebral 

palsy, the patient tends to walk with the upper part of the legs narrowly and shuffle when walking.  

In the Hemiplegic gait, unlike the previous one, the paralysis only occurs in one part of the body, the arm is 

flexed and rotated internally, the leg of the same affected area is in extension and when walking,  

semicircles are made with that leg. Finally, the Parkinsonian gait is characterized because the patient is with 

knees bent, the head bent and advances with small steps. 

In total, 220 videos are acquired for the database that meet the characteristics of each gait pattern to 
be evaluated, 55 videos per each type of gait, each representing one-quarter of the total database. Figure 3 

shows an example of each of the four marches to be classified in the network, it should be noted that for 

reasons of correct visualization, only the most representative Skeleton frames are shown during  

the trajectory. 

 

 

 
 

Figure 3. Gait patterns 

 

 

2.2.3.  Calculation of databases 

The base information used corresponds to the pixel coordinates of the X and Y axes of each of the 

25 points in each frame captured by video. What is sought is to generate databases where their values are 

representative in the walk of a person, for this reason, 4 different bases are proposed. With each of these 

bases the network will be trained, and different networks will be compared to verify which method provides 

greater precision in the classification of walking patterns. 
In Figure 4, the graph of the first database is presented, this corresponds to the X coordinate in 

pixels of each of the points in each frame of the image where the skeleton was detected. The person starts 

walking from right to left, this can be evidenced by observing the decrease in the value of the X coordinate as 

each picture acquired advances. The second base corresponds to the Y coordinate in pixels in each frame 

captured where the skeleton was detected as shown in Figure 5. This shows how the Y position of each of the 

points does not tend to vary significantly in each captured frame. 

 

 

  
 

Figure 4. Features of the coordinate X database 

 

Figure 5. Features of the coordinate Y database 
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The third base is calculated with the distance from each of the 25 points of the skeleton to the pixel 

one of the image, where 𝑋𝑎 and 𝑌𝑎 refer to the current coordinates of the 25 points (1). 

 

𝐷𝑃 = √(𝑋𝑎 − 1)2 + (𝑌𝑎 − 1)2 (1) 

 
In Figure 6, the sequence generated by the previous calculation is shown. It can be analyzed from 

the generated graph, how the distances to pixel 1 of the image with respect to each of the 25 points decreases 

with each captured frame where the skeleton was detected, this is because the gait is made from right to left. 

 

 

 
 

Figure 6. Characteristics of the database from distance to pixel one (DP) 

 

 

The last database focuses on having a point of reference in the body of the person,  

specifically the Hip Center presented in Figure 2, and is calculated with the distance that exists from each 

point of the body to this, where 𝑋ℎ𝑐  and 𝑌ℎ𝑐  refer to the current Hip Center coordinate (2). 

 

𝐷𝐶𝐵 = √(𝑋𝑎 − 𝑋ℎ𝑐)
2 + (𝑌𝑎 − 𝑌ℎ𝑐)

2 (2) 

 

In Figure 7, the sequence generated by the previous calculation is shown, showing the distance from 

each point of the body to the Hip Center in each of the captured frames. For this example, a parkinsonian gait 

is presented. 

 

 

 
 

Figure 7. Characteristics database of the distance to the Hip-center (DCB) 

 

 

2.2.4.  Training and test data 

As input to the network, the sequences of each video are entered according to the database with 

which it will be trained, highlighting that there will be 25 characteristics in each of the databases.  

It is established that of the 220 videos captured, 168 are used for network training, corresponding to 76.36% 

of the total base and the remaining 52 corresponding to 23.63% are for test. In Figure 8, an example of 

the input sequences for training and testing the network with the DCB database is shown. Where each of 

the bars represents a sequence of some of the types of gear calculated in the base DCB. In this way, the X, Y, 

and DP databases have their input sequences to train and test each of the networks. 
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Figure 8. Inputs for training and testing the network 

 

 

2.3. Architecture and training 

In Figure 9, the architecture implemented for the network is shown. This architecture is chosen 

based on an iterative process where parameters such as the number of hidden units, depth of the network and 

number of Fully Connected layers were varied, looking for the results after training to have a greater 

percentage of accuracy. Initially, the network receives as input sequences with 25 features, as explained in 

the stage of creation of the databases, these features will depend on the database with which it is trained or 

put to the test (base X, Y, DP or DCB). The second layer corresponds to the LSTM, establishing 70 hidden 
units, finding that with this value a better performance in the training is obtained. Then follows a Fully 

Connected layer, where the number of filters is 4 corresponding to the number of categories for which 

the network was trained. Finally, there is the Softmax Function, which is responsible for establishing in each 

of the output categories the probabilistic value that the input has of belonging to a specific category,  

where the sum of these values will be 1, in [25] the operation of the softmax is explained in more detail.  

The category that has the highest value at the exit will be the category in which the network classified 

the input sequence. 

 

 

 
 

Figure 9. Architecture implemented 

 

 

For the training of the 4 networks, the same conditions are set. It was observed in the network 

training graph that with 150 epochs it is enough to obtain adequate percentages of accuracy in the recognition 

of the type of gait and without overtraining. An initial learning factor (LR) of 0.0001 is set from epoch 1 to 

90. In order for the weights to vary less aggressively and to be established in the system minimums, the LR is 

reduced by a factor of 10, leaving 0.00001 from 90 to 150. Finally, the size of the batch is set to 1,  

using a small value in this parameter will allow a greater generalization in the training of the network,  

as indicated in [26]. 
 

 

3. RESEARCH METHOD 

Table 1 shows a comparison between the 4 networks trained for each of the databases. For each one, 

the classification accuracy of the sequences in each category is observed, where the Y Database had  

the lowest accuracy and the DCB database the highest, with a 98.1% accuracy. The network trained with 

the DCB database obtained 100% accuracy in the classification of the Spastic Diplegic, Hemiplegic and 

Parkinsonian gait sequences. In the normal gait presented a 92.3% accuracy, incorrectly classifying only one 
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sequence, confusing it with a gait type Spastic Diplegic. Figure 10 shows the confusion matrix of the network 

that obtained the highest precision during training and tests. In the green diagonal are the sequences that were 

correctly classified, where the last value, corresponding to the lower right box, shows the accuracy obtained 

by the network, of 98.1%. The rows correspond to the classes that the network predicted and the columns to 

the real class. 
 
 

Table 1. Results of the networks trained with each database. 
 X Y DP DCB 

Normal 100% 100% 100% 92.3% 

Spastic Diplegic 38.5% 0% 0% 100% 

Hemiplegic 76.9% 100% 38.5% 100% 

Parkinsonian 69.2% 0% 100% 100% 

Total 71.2% 50% 59.6% 98.1% 

 
 

 
Figure 10. Confusion matrix with DCB database 

 

 

2.2.1.  Correct and incorrect classifications  

For this stage, only the trained network with the DCB database is analyzed, that is the one that 
obtained the best performance and therefore it is important to know in more detail what could be the possible 

causes of the 1.9% error in this network. Figure 11 shows the sequence of a case of each type of gait that was 

correctly classified by the network. First, the Hemiplegic Gait is presented, this has as a general feature 

variation in the distance of the points of the leg that suffers the paralysis with respect to the Hip Center.  

The normal gait, in general, does not tend to present drastic changes in the distance of each of the points to 

the center of the body. The Spastic Diplegic Gait is similar to the Hemiplegic gait, with the difference that in 

this the variations are presented in the features that correspond to both legs. Finally, in the Parkinsonian Gait,  

as the position of the body that tends to be bent, the features are closer together and given the tremors in  

the body alterations are shown in some of the characteristics. 

In general, the sequences of the gait patterns are clearly differentiated from the DCB base,  

which allowed the network to learn the patterns of the features. A particular case was classified in 
the incorrect category, Figure 12 shows a normal walking pattern, which was classified in the spastic diplegic 

category. If the features of the sequence are analyzed, it can be observed that the beginning of the gait, 

compared to normal walking, had a behavior that is not characteristic of this pattern. 

Seeing only the sequence of distance from each part of the body to the Hip-Center does not provide 

enough information about the cause of the anomaly in the pattern. For this reason in Figure 13a, the Skeleton 

of the person is shown and in Figure 13b, the path of the Skeleton. It is observed that indeed at the beginning 

of the trajectory the position of the legs is narrow, where this characteristic of a Spastic Diplegic type is 

typical. This abnormality in normal gait may be due to a user's initial poor position or noise problems in the 

person's Skeleton, causing the network to incorrectly classify the sequence. 
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Figure 11. Sequences correctly classified 
 

 

 
 

Figure 12. Wrong classification of the network 
 

 

 
 

Figure 13. Skeleton incorrect classification 
 

 

2.2.  Graphic user interface 

A graphic user interface is designed, in order to facilitate, organize and concatenate the processes 

presented in the paper. The first part of the interface is responsible for the acquisition stage of the database 

Figure 14. The first step in the acquisition of the Skeleton to calculate the databases is to select from the list 

what type of gait the person has. After clicking on "Acquire", the Kinect will be activated and once  

the person's Skeleton is detected for the first time, the button that says "Walk" will change to green indicating 

the user can start walking Figure 14(a). Once the person leaves the scene, in figure 14(b), the simulation of  

the gait of the user's Skeleton will be displayed, after which the 4 databases are calculated, plotted and  

stored Figure 14(c). 
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Figure 14. Acquisition of data in the graphic user interface 

 
 

Once the database is acquired, the next step is to train the network. In Figure 15, the section of  

the interface responsible for this stage is shown. First, it must be selected in the list of Figure 15(a), with 

what type of database it is wanted to train the network, then, various parameters must be set: name of 

the network, percentage of the database that will be for training, number of categories, number of features, 

hidden units, size of the batch and the number of training epochs. Once a value is selected for each of these 

parameters, in Figure 15(b), it must be clicked on the train button. Once the training is finished, click on 

the test button. In Figure 15(c), an example of one of the sequences of the base to be trained, the size of 

the training and test sequences be shown. In addition, if the user wishes to see in more detail the tests of 

the trained network and observe the percentages of accuracy of the network in each category, they can do so 

by clicking on the "Confusion Matrix" button. 
 

 

 
 

Figure 15. Train and Test in the graphic user interface 

 

 

The last part of the interface is shown in Figure 16. This section focuses on testing the trained 

networks and showing the categories in which the input sequences are classified. The first step is shown in 

Figure 16a, the type of database is selected in the list, and then the name of the network trained with that 

database is chosen. The tests can be done in two ways, the first by clicking on the "Acquire" button, 

the Kinect will be activated and, as in Figure 14(a), will indicate the user when to start walking. Once 

the person is not detected, the simulation of the user's gait with the Skeleton will be generated in 

Figure 16(b), then in Figure 16(c) the category in which the input sequence was classified is displayed in 
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green. The other option to perform the tests is by clicking on the "open base data" button of Figure 16(a), 

this will show a panel in this same section, the user must click on the pattern, then click on the "Open base" 

button, and a text will indicate how many videos it has available to test. Select a value between 1 and 

the indicated value of available data, if desired, can click on the radio button "Show Skeleton", to see, in 

Figure 16(b), the gait of the selected case. By clicking on the "run" button, the network will classify 

the selected pattern in one of the four categories of Figure 16(c). In the case of "Acquire", once the network 

classifies the sequence, the user can feed the databases of each walking pattern, by clicking on one of 

the buttons in the section of Figure 16(c). 
 

 

 
 

Figure 16. Diagnosis in the graphic user interface 

 

 

2.3.  Graphic user interface 

An important step in systems that implement deep learning algorithms is to know the time it takes 

the network to classify the sequences. In this way, it can be known if it is viable for applications in real-time 

and that, instead of causing delays in the processes, they are optimized. Table 2 shows the times it takes  

for the trained network with the DCB database to classify a single sequence. It should be noted that the tests 
were performed on a computer with an NVIDIA 1050 Ti GPU, 16 GB of RAM and an eighth-generation i7 

processor. 

 

 

Table 2. Processing times 
Type of Gait Time (s) 

Normal 0.0209 

Spastic Diplegic 0.0213 

Hemiplegic 0.0210 

Parkinsonian 0.0228 

Average time: 0.0215 

 

 

4. CONCLUSION  

Based on the results of the networks trained with each of the 4 bases, having a reference point in 

the body of the person during the walk allows the LSTM to discriminate the features of each type of gait 

pattern more accurately, in this case obtaining a 98.1% accuracy in the tests of the network. Identifying that  

the proposed system for the detection of abnormalities gait can be a useful support tool for doctors who need 

to make a diagnosis of this type. The proposed method and graphic user interface, apart from the Kinect 

sensor and a computer, do not require intrusive devices that may affect the person's gait pattern. Allowing it 

to be a tool that can serve as a support to physicians in the diagnosis of neurological diseases related to 
the gait patterns worked. The processing times show that, once the sequence to be classified is entered, 

the times will not vary significantly depending on the type of gait. In addition, having an average time of 

0.0215s in the classification will not significantly affect the patient's diagnostic processes. 
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To improve the accuracy of the network, it is necessary to test other methods to generate databases 

from the coordinates of the 25 points of the Skeleton, either changing the reference point in the body, 

combining the features of current databases or testing other mathematical methods. Another important point 

is to increase the database to train new networks or retrain existing ones. An interesting starting point for 

future developments, given the results obtained, is to include additional gait patterns to train the network, 

such as Myopathic Gait, Ataxic Gait or Sensory Gait. This would allow the system to address most of  

the current abnormalities that may occur in the walk of people 

 

 

ACKNOWLEDGEMENTS  
The authors are grateful to the Nueva Granada Military University for the support given in  

the development of this work. 

 

 

REFERENCES  
[1] S. Valverde, et al., “Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional 

neural network approach,” NeuroImage, Vol. 155, pp.159-168, 2017. doi: 10.1016/j.neuroimage.2017.04.034. 
[2] J. Schmidhuber, “Deep learning in neural networks: An overview”, Neural Networks, Volume 61, January 2015, 

pp. 85–117. 
[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks”, 

In Advances in neural information processing systems, 2012, pp. 1097-1105. 
[4] Russakovsky, O., Deng, J., Su, H., et al. “ImageNet Large Scale Visual Recognition Challenge.” International 

Journal of Computer Vision (IJCV). Vol 115, Issue 3, 2015, pp. 211–252. 
[5] Shahram Taheri, Önsen Toygar, On the use of DAG-CNN architecture for age estimation with multi-stage features 

fusion, Neurocomputing, Volume 329, 2019, Pages 300-310, ISSN 0925-2312, 
https://doi.org/10.1016/j.neucom.2018.10.071. 

[6] César Giovany Pachón Suescún, Javier Orlando Pinzón Arenas, Robinson Jiménez Moreno. Detection of Scratches 
on Cars by Means of CNN and R-CNN. International Journal on Advanced Science, Engineering and Information 

Technology (IJASEIT), ISSN : 2088-5334. Vol. 9 (2019) No. 3pages: 745-752. DOI:10.18517/ijaseit.9.3.6470 
[7] P. Moeskops, M. A. Viergever, A. M. Mendrik, L. S. de Vries, M. J. N. L. Benders and I. Išgum, "Automatic 

Segmentation of MR Brain Images With a Convolutional Neural Network," in IEEE Transactions on Medical 
Imaging, vol. 35, no. 5, pp. 1252-1261, May 2016. 

[8] R. Torres, et al., “Diagnosis of the corporal movement in Parkinson’s Disease using Kinect Sensors,” In World 
Congress on Medical Physics and Biomedical Engineering, 2015, pp. 1445-1448. doi: 10.1007/978-3-319-19387-
8_352. 

[9] Microsoft, “Kinect for Windows”, [online], Available at: https://developer.microsoft.com/en-us/windows/kinect. 

Consult date: Aug 27, 2019. 
[10] A. Zhao, L. Qi, J. Dong, and H. Yu., “Dual channel LSTM based multi-feature extraction in gait for diagnosis of 

Neurodegenerative diseases,” Knowledge-Based Systems, Vol. 145, pp.91-97. 2018. doi: 
10.1016/j.knosys.2018.01.004. 

[11] Meng Chen, Bufu Huang and Yangsheng Xu, "Intelligent shoes for abnormal gait detection," 2008 IEEE 
International Conference on Robotics and Automation, Pasadena, CA, 2008, pp. 2019-2024. 

[12] D. Arifoglu, and A. Bouchachia., “Activity Recognition and Abnormal Behaviour Detection with Recurrent Neural 
Networks,” Procedia Computer Science, Vol. 110, pp.86-93, 2017. doi: 10.1016/j.procs.2017.06.121. 

[13] Y. Hou, Z. Li, P. Wang, and W. Li., “Skeleton optical spectra based action recognition using convolutional neural 
networks,” IEEE Transactions on Circuits and Systems for Video Technology, 2016, pp. 807-811.  
doi: 10.1109/TCSVT.2016.2628339.  

[14] E.P. Ijjina, and K.M. Chalavadi., “Human action recognition using genetic algorithms and convolutional neural 
networks,” Pattern recognition, Vol. 59, pp.199-212, 2016. doi: 10.1016/j.patcog.2016.01.012. 

[15] K.K Reddy, and M. Shah., “UCF50 action recognition dataset,” date accessed, Vol. 29, no. 7, 2015. 
[16] Y. Chen, K. Zhong, J. Zhang, Q. Sun, and X. Zhao., “Lstm networks for mobile human activity recognition,” 

In International Conference on Artificial Intelligence: Technologies and Applications. ICAITA. 2016, pp. 50-13.  

doi: 10.2991/icaita-16.2016.13. 
[17] J. Liu, A. Shahroudy, D. Xu, and G. Wang., “Spatio-temporal lstm with trust gates for 3d human action 

recognition,” In European Conference on Computer Vision, Springer, Cham, 2016, pp. 816-833. doi: 10.1007/978-
3-319-46487-9_50. 

[18] L. Xia, C. Chen and J. K. Aggarwal, "View invariant human action recognition using histograms of 3D joints," 
2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, 
RI, 2012, pp. 20-27. 

[19] World Health Organization., “Neurological disorders: public health challenges,” World Health Organization, 2016. 
[20] C. Olah., “Understanding lstm networks”, [online], Available at: https://colah.github.io/posts/2015-08-

Understanding-LSTMs. Consult date: Aug 27, 2019. 
[21] A. Karpathy, J. Johnson, and L. Fei-Fei., “Visualizing and understanding recurrent networks,” 2015, arXiv preprint 

arXiv:1506.02078. 

https://doi.org/10.1016/j.neucom.2018.10.071


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 2, April 2020 :  1495 - 1506 

1506 

[22] S. Hochreiter, and J. Schmidhuber., “Long short-term memory,” Neural computation, vol. 9, no. 8, pp.1735-1780, 
1997. doi: 10.1162/neco.1997.9.8.1735 

[23] M.R. Lim, R.C. Huang, A. Wu, F.P. Girardi, and F.P. Cammisa Jr., “Evaluation of the elderly patient with an 

abnormal gait,” JAAOS-Journal of the American Academy of Orthopaedic Surgeons, vol. 15, no. 2, pp.107-117. 
2007. doi: 10.5435/00124635-200702000-00005. 

[24] Stanford Medicine, “Gait Abnormalities”, [online], Available at: 
https://stanfordmedicine25.stanford.edu/the25/gait.html. Consult Date: Aug 27, 2019. 

[25] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin., “A neural probabilistic language model,” Journal of machine 
learning research, pp.1137-1155, 2003. 

[26] D. Masters, C. Luschi., “Revisiting Small Batch Training for Deep Neural Networks,” 2018, arXiv preprint 
arXiv:1804.07612. 

 

 

BIOGRAPHIES OF AUTHORS  

 

 

César Giovany Pachón Suescún was born in Bogotá, Colombia, in 1996. He received his 
degree in Mechatronics Engineering from the Pilot University of Colombia in 2018. Currently,  
he is studying his Master’s degree in Mechatronics Engineering and working as Research 
Assistant at the Nueva Granada Military University with an emphasis on Robotics and Machine 
Learning. E-mail: u3900259@unimilitar.edu.co 

  

 

Javier Orlando Pinzón Arenas was born in Socorro-Santander, Colombia, in 1990.  
He received his degree in Mechatronics Engineering (Cum Laude) in 2013, Specialization in 
Engineering Project Management in 2016, and M.Sc. in Mechatronics Engineering in 2019,  
at the Nueva Granada Military University-UMNG. He has experience in the areas of automation, 
electronic control and machine learning. Currently, he is studying a Ph.D.  
in Applied Sciences and working as Graduate Assistant at the UMNG with emphasis on 
Robotics and Machine Learning. E-mail: u3900231@unimilitar.edu.co 

  

 

Robinson Jiménez Moreno was born in Bogotá, Colombia, in 1978. He received the Engineer 
degree in Electronics at the Francisco José de Caldas District University-UD-in 2002. M.Sc. in 

Industrial Automation from the Universidad Nacional de Colombia-2012 and Ph.D.  
in Engineering at the Francisco José de Caldas District University-2018. He is currently working 
as a Professor in the Mechatronics Engineering Program at the Nueva Granada Military 
University-UMNG. He has experience in the areas of Instrumentation and Electronic Control, 
acting mainly in Robotics, control, pattern recognition, and image processing.  
E-mail: robinson.jimenez@unimilitar.edu.co 

 

 


