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 Brain-machines capture brain signals in order to restore communication and 
movement to disabled people who suffer from brain palsy or motor disorders. 
In brain regions, the ensemble firing of populations of neurons represents 

spatio-temporal patterns that are transformed into outgoing spatio-temporal 
patterns which encode complex cognitive task. This transformation  
is dynamic, non-stationary (time-varying) and highly nonlinear. Hence, 
modeling such complex biological patterns requires specific model structures 
to uncover the underlying physiological mechanisms and their influences on 
system behavior. In this study, a recent multi-electrode technology allows  
the record of the simultaneous neuron activities in behaving animals. 
Intra-cortical data are processed according to these steps: spike detection and 
sorting, than desired action extraction from the rate of the obtained signal. 

We focus on the following important questions about (i) the possibility of 
linking the brain signal time events with some time-delayed mapping  
tools; (ii) the use of some suitable inputs than others for the decoder;  
(iii) a consideration of separated data or a special representation founded on 
multi-dimensional statistics. This paper concentrates mostly on the analysis 
of parallel spike train when certain critical hypotheses are ignored by the data 
for the working method. We have made efforts to define explicitly whether 
the underlying hypotheses are actually achieved. In this paper, we propose  

an algorithm to define the embedded memory order of NARX recurrent 
neural networks to the hand trajectory tracking process. We also demonstrate 
that this algorithm can improve performance on inference tasks. 
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1. INTRODUCTION 

In this work, we aim to design a new hand trajectory decoder from brain signals in order to control  

a motor neuroprosthesis or at least know a desired motor action. Brain computer interface described in this 

paper is known in literature as a system to restore the lost motor functions because of a disease or an injury 

by activating paralyzed muscles. A number of previous studies have proved that desired actions can be 

extracted from motor cortex and, in turn, can be used as a reliable enough command signal to control  
a computer interface to realize actions with a robotic member for instance [1, 2]. Many technical 

ameliorations in microelectronics have been brought to help patients e.g. for epilepsy suppression [3], spinal 

cord injuries [4, 5], cochlear implant [6]. Research groups; in several papers; have previously confirmed that 

monkeys and human are able to learn how to control a robot limb or move a wheelchair [7, 8], or more 

simply, maintaining a communication with the external environment, easily by stimulating neuron groups 

that participate in normal arm movement [9, 10]. Technical stability, limited power source, flexibility in 
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critical system parameters, restricted space to host the system and real time control are essential for these 

prosthesis to become clinically viable. Therefore neuroprosthetic strategies are developing toward 

closed-loop command systems consisting 3 functional blocks: neural signal recording, processing and 

neuro-muscular stimulation as depicted in Figure 1. 

To obtain and comprehend the signal processed in the biological network of neurons; spikes should 

be assigned to specific neural sources. This classification procedure is termed spike sorting. A proper sorting 

of spikes with respect to their origin ameliorate considerably the decoding operation. Then, before 
representing the position of the animal in terms of firing patterns, sorting spikes must be accomplished and 

the spike’s rate of each neuron is calculated [11, 12]. Nevertheless, signal instabilities could arise from 

physical factors like the implants movement, reaction of the tissue or material degradation. Whatever  

the causes, signal changes can be significant, reaching 60% of the waveforms as reported by Dickey et al. [13].  

In prior studies, we had used a multi-scale seriation approach for clustering spike trains [14]. 

The decoding function that links neural activity to behavior may be relatively unstable as well as 

degrading decoding performance. In [15], authors present right and left hand movements decoding by  

a probabilistic neural network using EEG signal and wavelet transform based on for classification and feature 

extraction. Perge et al. evaluated in [16, 17] the nature and extent of instability in spiking populations 

recorded in the context of an ongoing pilot clinical trial of people with tetraplegia: they found that systematic 

rate changes occur commonly and they can cause estimation errors in the decoded kinematic parameters 

leading to degraded performance that presents itself as a directional bias. Adaptive filters attempting to 
mitigate these instabilities exist but their efficacy has not been established yet [18]. 

Decoding brain activity has been extensively studied in the literature giving birth to various 

methods, see e.g. [9, 19]. A state space representation is adequate for this problem. In [20], Wu et al. 

modeled for example with a kalman filter (KF) the hand coordinates (acceleration, velocity and position on 

the two axes) with a probabilistic association between these motions and the brain signal. Kostov et al. [21] 

improved the possibility of real time control with a presence of a partial spinal cord injury by using an 

adaptive logic network. In [22], Gage et al. realized a control of cortical tasks by training a rat using 

a co-adaptive KF. These methods can estimate hidden states even in the absence of an accurate model of  

the system. In [23], Brockwell applied particle filter in order to get an estimation of the hidden states from 

cortical signals using the algorithm of Monte Carlo algorithm, with no hypothesis on the observations 

distribution. In summary, state space method offer a coherent outline for modeling stochastic dynamical systems. 
Note that despite the man-made neuroprosthesis will control a complex-living system, it shall not necessarily 

obey biological control principals: estimation procedures can be used to translate the brain signal into desired 

motor actions that can be used as a suitable command of a robot arm or other prosthetic interface. The final 

goal is an undeniably control, but it undoubtedly provides natural control suitable for clinically viable systems. 

 

 

 
 

Figure 1. Plan of controlled prostheses: Intra-cortical electrode arrays are used to record neural signals 
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Estimation of times of action potentials choosing optimally the width of the analysis window TW 

and assigned to neural units. A decoder is used to translate the neural activity into control signals of  

the prosthetic system. In this article, we aim to design a rat’s hand trajectory decoder from its brain signals by 

analyzing neuronal spiking activity of motor cortical recorded from two freely moving rats in the first two 

months after electrode implantation as exposed in section 2.1. The experiments are realized at the National 

TsinHua University (NTHU) in Taiwan. In section 3 is described several kinds of specific spatio-temporal 

models and the manner of their detection. We explore in addition the statistical approaches to evaluate  

the probability to optimize the pattern detection. Section 6 gives summarizing statistics on the motor cortex 

responses recorded simultaneously with movement to make proof of the mapping linking these models to 
special behavioral task using time delay neural network. 
 

 

2. EXPERIMENTATION AND DATA ACQUISITION 

2.1.  Animal training and behavioral tasks 
In The study, approved by the Use Committee at the National Chiao Tung University and 

Institutional Animal Care, was conducted according to the standards established in the Guide for the Care 

and Use of Laboratory Animals. Four male Wistar rats weighing 250-300 g (BioLASCO Taiwan Corp., Ltd.) 

were housed individually on a 12 h light/dark sequence, with access to food and water ad libitum. Data was 

recorded from the motor cortex of awake animal performing a simple reward task. In this task, male rats 

(BioLACO Taiwan Co., Ltd) were trained to press a lever to initiate a trial in return for a water reward as 

shown in Figure 2(a). The animals were water restricted 8-hours/day during training and recording session 

but food were always provided to the animal ad lib every day. 
 

2.2. Chronic animal preparation and neural ensemble 

Pentobarbital was used to anesthetise the animals (50 mg/kg i.p.). They were then positioned on  

a regular stereotaxic apparatus (Model 9000, David Kopf, USA). Electrode array was implanted after  

a careful dura retraction. The couples of 8 micro-wire electrode arrays (no.15140/13848, diameter of 50m; 

California Fine Wire Co., USA) are implanted in the primary motor cortex (M1) at the level of the layer V. 
The area related to forelimb movement is located anterior 2-4 mm and lateral 2-4 mm to Bregma. After 

implantation, the exposed brain required a week of recovery time in where it should be sealed with dental 

acrylic. The animal moved freely in the box to move in the box of the behavior task (30 cm_30 cm_ 60 cm) 

during the recording sessions, as depicted in Figure 2(a), to receive 1 ml of rewarded water, the rat should 

only press the lever with its right forelimb. Neural signals are logged using a Multi-Channel Acquisition 

Processor (MAP, Plexon Inc., USA). The recorded signals were exposed from the main stage to an amplifier, 

over a band-pass filter (spike pre-amp filter: 450-5 kHz; gain: 15,000- 20,000), and sampled at 40 kHz per 

channel as given in Figure 2(b).  
 

 

 
 

Figure 2. (a) Experiment of neural activity recording, (b) Neural recording data and spike sorting:  

(a) Real brain signal recorded from M1 area, (b) Spikes detection from the brain signal, (c) Spikes clustering, 

(d) Results of spikes sorting, (f) Histograms of firing activity near a time of behavioral task 
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In the same time, the animal’s activities was recorded by the video tracking system (CinePlex, Plex 

Inc., USA) and inspected to ensure that it was consistent for all trials included in a given analysis [24]. 

During a daily research session, the neural activity was frequently recorded in many sequences of short 

periods of two to six minutes during which the rat accomplished one behavioral task, interlaced by rest 

periods when no recording of activity was realized. Finally, we obtained dataset composed of 48 channels  

(or neurons) described by successions of ’1’ separated by long silences of ’0’. An additional illustration was 

used based on a smooth by a Gaussian window applied on the rate of spikes. 
 

 

3. DECODER CALIBRATION AND CLOSED LOOP CONTROLLER 

A statistical model is developed to estimate the decoding process. In Figure 3 is shown a generic 

block plan of the neural controller which operates as a sample data feedback system whose behavior depends 

of an ensemble of allowed inputs and an optimization criterion. It generates the controls. The trajectories are  

the responses to the control signals. 

The captured neural signals using micro-electrodes are exhibited to a circuit of signal processing 

like as amplification, band-pass filtering, and then transmitted to the level of spike localization, in which we 

define the times of spikes arising for each channel. The previous stage results spikes trains which is exposed 

to the spikes sorting stage composed of two principal parts : (i) one detects spikes (waveforms) from 

background noise [25] and (ii) classifies each detected spike to generate multiple single-unit spike trains [26]. 
The related movement information (kinematic parameters) is reconstructed using the simultaneous rates of 

the obtained trains of spikes. Usually, this procedure is named neuronal spike decoding [9] and it is performed by 

the decoding filter stage in Figure 1. The performance of this decoding filter is of great importance since it 

permits the quantitative information that is encoded in the spike trains to be estimated. In [27], Bialek 

reported the possibility of the trajectory reconstruction using a linear finite impulse response (FIR) filter 

applied on spikes train. 

In this paper we are concerned with dynamic nonlinear discrete-time model with time-invariant 

parameters [28]. The parameters 𝑤 are considered as random variables adjusted iteratively until the responses of  

the adaptive model linked better with the measured outputs in the sense specified by the minimization criterion.  

The signals are mostly described as parameters. The observables, or output variables, are the time-histories of 
the dynamic system. The statistics of the non-measured signals, e.g. the noise, are supposed to be known but 

one needs to estimate them based on the observation data. 

 

 

 
 

Figure 3. Block diagram representation of a nonlinear feedback control system. Decoding of position from 

ensemble rat neural spiking activity 

 

 

4. RECURRENT NEURAL NETWORK 

4.1.  The NARX models 

Despite that linear filters such as wiener filters [29] deliver a simple analytic solution with low 

complexity training and online feasibility, the reconstructed trajectories may be suboptimal since the output 
is limited to mappings in the input space and mapping of control features to motor behavior may include 

nonlinear translations. Therefore, herein, we study modeling hand movements using artificial neural 

networks. The NARX (Nonlinear AutoRegressive with eXogenous inputs) model is an essential type of 

nonlinear discrete time systems for time-series forecasting [30, 31]. The recurrent NARX can be represented: 
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𝑦(𝑡) = 𝑓(𝑢(𝑡 − ∆), … , 𝑢(𝑡 − 𝑛∆); 𝑦(𝑡 − ∆), 𝑦(𝑡 − 2∆), … ) (1) 

 

where the regressor is represented by  𝑢(𝑡) = (𝑢(𝑡 − ∆), … 𝑢(𝑡 − 𝑛∆))
𝑇

∈ ℝ𝑞×𝑛 and 𝑦(𝑡) represents  

the output of the system at time 𝑡 ; ∆, 2∆, … , 𝑛∆ are the time lags of the system variables and 𝑓(. ) 

an unknown nonlinear function. The general prediction (1) computes the next value of time series 𝑦(𝑡) 

(output) from the past observation 𝑢 and the past output 𝑦. Note that 𝑢 is multidimensional and sized by  

the number 𝑞 of neural channels. Regarding this way, the prediction becomes a function estimation problem, and 

so the aim the technique is focused to the approximation of the function 𝑓, like a multi-layer perceptron (MLP). 

The obtained system is a compact embedded memory model called a NARX network as sketched in Figure 4: 

a first tapped delay line of inputs with a delayed connections from the output to the input. 

A Time Delay Neural Networks (TDNN) is a NARX with zero output-memory order [32] given by 

the form: 
 

𝑦(𝑡) = 𝑓(𝑢(𝑡 − ∆), … , 𝑢(𝑡 − 𝑛∆)) (2) 

 

This formulation is simplified but with a significant restriction of the NARX from its 

representational abilities like a dynamic network. Simulated results given by Lee et al. [33] show that NARX 

networks are often much better than conventional recurrent neural networks at discovering long time 
dependences. An explanation why output delays can help long-term dependences can be found by 

considering how gradients are calculated using gradient-descent learning algorithms: for gradient based 

training algorithms, the information about the gradient contribution 𝑚 steps in the past vanishes for large 𝑚, 

i.e. mathematically lim
m→∞

𝜕𝑦(𝑡)

𝜕𝑦(𝑡−𝑚)
= 0 ∀𝑡  where 𝑦 is the state variable (and output neuron) and 𝑡 the time index. 

 

 

 
 

Figure 4. Architecture of the NARX network: Only the 𝑖𝑡ℎ  regressor 𝑢𝑖(𝑡) = (𝑢𝑖(𝑡 − 1), … , 𝑢𝑖(𝑡 − 𝑛𝑖))
𝑇
 is 

shown (among the q possible neural channels). The inputs are fully connected to the hidden layer of  

the MLP. Note that the transfer functions 𝐺(𝑧) =  𝑧−1 reduces the structure to a tap-delay-line 

 

 

4.2. Learning algorithms 

The number of inputs scales the number of parameters of the model and thus creates problems with 

model generalization. Moreover, the size of the training data required for good approximation increases with 

the number of parameters. To overcome the problem of model order, a dynamic back-propagation algorithm 
is required to compute the gradients, which defer the memory structure to the hidden, recurrent layer instead 

of time-embedding but is more computationally intensive than static back-propagation and takes more time.  

In addition, training is more likely to be trapped in local minima [30]. Simple back-propagation algorithm is 

inappropriate since the parameter convergence need long iterations and a learning rate to adjust. Hence we 

propose to use the conjugate gradient algorithm (CGA) to accelerate the weight update. The weight vector of 

a feed-forward neural network is a point in the real Euclidean space ℝ𝑁defined by 

 

𝑤 = (… , 𝑤𝑖,𝑗
(𝑙)

, 𝑤𝑖+1,𝑗
(𝑙)

, … , 𝑤𝑛𝑙,𝑗
(𝑙)

, … )
𝑇

 (3) 
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where 𝑤𝑖,𝑗
(𝑙)

 is the weight from unit 𝑖 in the layer 𝑙 to unit 𝑗 is layer 𝑙 + 1, 𝑛𝑙is the number of units in layer 𝑙.  

We assume a global error function 𝐸(𝑤) depending of the weight and biases attached to the network and 

chosen here as the standard least square function. 

 

𝐸(𝑤) =  ∑(𝑦(𝑡) − 𝑓(𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛); 𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … ; 𝑤))
2

𝑇

𝑡=1

 (4) 

 
𝐸(𝑤) is evaluated with one pass forward and the gradient 𝐸′(𝑤) with one pass backward: 

 

𝐸′ = (… , ∑
𝜕𝐸(𝑡)

𝜕𝑤𝑖,𝑗

(𝑙)

𝑇

𝑡=1

, ∑
𝜕𝐸(𝑡)

𝜕𝑤𝑖+1,𝑗

(𝑙)

𝑇

𝑡=1

 , … , ∑
𝜕𝐸(𝑡)

𝜕𝑤𝑛𝑙,𝑗

(𝑙) , …

𝑇

𝑡=1

)

𝑇

 (5) 

 

Back propagation update rule is given by 

 

𝑤(𝑘+1) = 𝑤(𝑘) − 𝛼𝑘𝐸′(𝑤(𝑘)) (6) 

 

At a time instance 𝑘, where −𝐸′(𝑤(𝑘)) is the gradient vector and 𝛼𝑘is the learning rate that should be chosen 

carefully to make the algorithm is based on the linear approximation 𝐸(𝑤 + ℎ) ≈ 𝐸(ℎ) + 𝐸′(𝑤)𝑇ℎ,  

the algorithm show poor convergence. Hence, a Conjugate Gradient Algorithm (CGA) is generally a better 

choice and results in a faster convergence to reach the minimum of a 𝐸(𝑤). The optimization strategy 

consists to choose a search direction 𝑝𝑘 and then to decide how far to go in the specified direction, i.e. to 

determine the step size 𝛼𝑘.CGA chooses the search direction and the step size by using second-order 

approximation. 

 

𝐸(𝑤 + ℎ) ≈ 𝐸(𝑤) + 𝐸′(𝑤)𝑇ℎ +
1

2
ℎ𝑇𝐸′′(𝑤)ℎ (7) 

 
where ℎ is the line search direction [34]. From the current search direction, the next search direction is 

determined so that it is conjugate to previous search directions. The critical points of 𝐸(𝑤) are the solutions 

of the linear system (8). 

 

𝐸𝑞
′ (ℎ) = 𝐸′′(𝑤)𝑇ℎ + 𝐸′(𝑤)𝑇 = 0 (8) 

 

If 𝐸𝑞
′  (ℎ) denote the quadratic approximation to 𝐸 in the neighborhood of a point 𝑤 so that 𝐸(𝑤 + ℎ) = 𝐸𝑞 (ℎ). 

Let the vector basis 𝑝1, … , 𝑝𝑁 be a conjugate system of ℝ𝑁, the step from a starting point ℎ1 to a critical point 

ℎ∗can be expressed as a linear combination of 𝑝1, … , 𝑝𝑁 

 

ℎ∗ − ℎ1 = ∑ 𝛼𝑖𝑝𝑖

𝑁

𝑖=1

𝛼𝑖 ∈  ℝ (9) 

 

Multiplying (9) with 𝑝𝑗
𝑇𝐸′′ (𝑤) and substituting𝐸′ (𝑤) for −𝐸′′(𝑤)𝑇ℎ∗ from (8) gives: 

 

𝑝𝑗
𝑇(−𝐸′(𝑤) − 𝐸′′(𝑤)ℎ1) = 𝛼𝑗𝑝𝑗

𝑇𝐸′′(𝑤)𝑝𝑗  (10) 

 

⇒ 𝛼𝑗 =   
𝑝𝑗

𝑇(−𝐸′(𝑤) − 𝐸′′(𝑤)ℎ1)

𝑝𝑗
𝑇𝐸′′(𝑤)𝑝𝑗

=
−𝑝𝑗

𝑇𝐸′(ℎ1)

𝑝𝑗
𝑇𝐸′′(𝑤)𝑝𝑗

 (11) 

 

The intermediate points ℎ𝑘+1 = ℎ𝑘 + 𝛼𝑘𝑝𝑘 given the iterative determination of ℎ∗are in fact minima for 𝐸(ℎ) 

restricted to the plane 𝑃𝑘  described by ℎ = ℎ1 + 𝛼1𝑝1 + ⋯ + 𝛼𝑘𝑝𝑘. The conjugate weight vector 𝑝1, … , 𝑝𝑁 
are determined recursively:  

 

𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘𝑝𝑘  (12) 
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where  

 

𝑟𝑘+1 = −𝐸′(ℎ𝑘+1),   𝛽𝑘 =
|𝑟𝑘+1|2 − 𝑟𝑘+1𝑟𝑘

𝑝𝑘
𝑇𝑟𝑘

 (13) 

 

and  ℎ𝑘+1 = 𝑘𝑘 + 𝛼𝑘𝑝𝑘, 𝛼𝑘 = 𝜇𝑘/𝛿𝑘 , 𝜇𝑘 = 𝑝𝑘
𝑇𝐸𝑞

′  (ℎ𝑘) and 𝛿𝑘 = 𝑝𝑘
𝑇𝐸′′(𝑤)𝑝𝑘. For each iteration the above 

described algorithm is applied to the quadratic approximation 𝐸𝑞 of the global error function. In most cases, 

preconditioning is necessary to ensure fast convergence of the conjugate gradient method that takes  

the following form in algorithm 1. 

 
Algorithm1 Scaled CGA 

Require: choose initial weight vector 𝑤1 (can be 0); 

Ensure:𝑟(1) = 𝑝1 − 𝐸′(𝑤(1)); 

1: 𝑘 ← 1 
2: repeat 

3: Calculate second-order information: 

𝑠𝑘 = 𝐸′′(𝑤𝑘)𝑝𝑘 

𝛿𝑘 =  𝑝𝑘
𝑇𝑠𝑘 

4: Calculate step size: 

𝜇𝑘 = 𝑝𝑘
𝑇𝑟𝑘 

𝛼𝑘 =
𝜇𝑘

𝛿𝑘

 

5: Update weight vector: 

𝑤𝑘+1 = 𝑤𝑘 + 𝛼𝑘𝑝𝑘 

𝑟𝑘+1 = −𝐸′(𝑤𝑘+1) 
6: If 𝑘 mod 𝑁 = 0 then restart algorithm: 𝑝𝑘+1 = 𝑟𝑘+1 

Else create new conjugate direction: 

𝛽𝑘 =
|𝑟𝑘+1|2 − 𝑟𝑘+1𝑟𝑘

𝜇𝑘

 

𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘𝑝𝑘 

7: until the steepest descent direction 𝑟𝑘 ≈ 0; then set 𝑘 = 𝑘 + 1 and go to 2 
 Else terminate. 

8: return 𝑤𝑘+1 

 

The conjugate gradient algorithm works very well on well-conditioned matrices; however, in reality, 

most matrices are ill-conditioned, reducing the efficiency of the algorithm. Môller showed that algorithm 1 

might restart when 𝑟𝑘+1 ≈ 𝑟𝑘  or 𝑝𝑘 ≈ 𝑟𝑘+1. Hence he proposed in [35] different versions of the conjugate 

gradient methods in regulating indefiniteness of 𝐸′′(𝑤𝑘) with Lagrange multiplier 𝜆𝑘. This is done by setting 

 

𝑠𝑘 =
𝐸′(𝑤𝑘 + 𝜎𝑘𝑝𝑘) − 𝐸′(𝑤𝑘)

𝜎𝑘

 (14) 

 

and for each iteration adjusting 𝜆𝑘 looking at the sign of 𝛿𝑘. This results in the following algorithm 2 

 
Algorithm1Preconditioned CGA 

Require: choose initial weight vector 𝑤1 (can be 0) and scalars  

𝜎 = 0, 𝜆 > 0 and 𝜆 ̅ = 0; 

Ensure:   𝒓(𝟏) = 𝒑𝟏 − 𝑬′(𝒘(𝟏)); 

1: 𝑘 ← 1 and 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑡𝑟𝑢𝑒 
2: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑡𝑟𝑢𝑒 then  
3:   repeat 

4: Calculate second-order information: 

 𝜎𝑘 =
𝜎

|𝑝𝑘|
𝑠𝑘 =

𝐸′(𝑤𝑘+𝜎𝑘𝑝𝑘)−𝐸′(𝑤𝑘)

𝜎𝑘
𝛿𝑘 =  𝑝𝑘

𝑇𝑠𝑘 

5: Scale 𝑠𝑘 :  

𝑠𝑘 = 𝑠𝑘 + (𝜆 − �̅�𝑘 )𝑝𝑘𝛿𝑘 = 𝛿𝑘 + (𝜆 − �̅�𝑘 )|𝑝𝑘|2  

6: if 𝛿𝑘 ≤ 0then 
make the Hessian matrix positive definite: 

 𝑠𝑘 = 𝑠𝑘 + (𝜆𝑘 − 2
𝛿𝑘

|𝑝|2
) 𝑝𝑘𝜆̅

𝑘 = 2 (𝜆𝑘 − 2
𝛿𝑘

|𝑝|2
) 𝛿𝑘 = −𝛿𝑘 + 𝜆𝑘|𝑝|2𝜆𝑘 = �̅�𝑘 

end if  

7: Calculate step size:  

𝜇𝑘 = 𝑝𝑘
𝑇𝑟𝑘𝛼𝑘 =

𝜇𝑘

𝛿𝑘

 

8: Calculate the comparison parameter:  

∆𝑘=
2𝛿𝑘(𝐸(𝑤𝑘) − 𝐸′(𝑤𝑘 + 𝛼𝑘𝑝𝑘))

𝜇𝑘
2  
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9: if∆𝑘≥ 0then 
 a successful reduction in error can be made:  

𝑤𝑘+1 = 𝑤𝑘 + 𝛼𝑘𝑝𝑘𝑟𝑘+1 = −𝐸′(𝑤𝑘+1) 
10: if 𝑘 mod 𝑁 = 0 then restart algorithm: 𝑝𝑘+1 = 𝑟𝑘+1 

11: else create new conjugate direction:  

𝛽𝑘 =
|𝑟𝑘+1|2 − 𝑟𝑘+1𝑟𝑘

𝜇𝑘

𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘𝑝𝑘 

    end if 

12: if ∆𝑘≥ 0,75 then 

reduce the scale parameter: 𝜆𝑘 = 𝜆𝑘 /2  
13: else  

 a reduction in error is not possible : 𝜆𝑘
̅̅ ̅ = 𝜆𝑘 

 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑓𝑎𝑙𝑠𝑒 
 end if 

14:  if ∆𝑘≤ 0,25 then increase the scale parameter: 𝜆𝑘 = 4𝜆𝑘 

 end if 

 end if 

15: until the steepest descent direction 𝑟𝑘 ≈ 0; then set 𝑘 = 𝑘 + 1 and go to 2 else terminate. 

8:  return 𝑤𝑘+1 

end if 

 

MLPs trained by a back-propagation algorithm were sometimes employed for the BMI  

(see e.g. Wessberg et al. [36] or Wang [37]), however, some difficulties were appeared in the training 

process. Like the number of parameters, which refers to the question of the amount of connections or weights 

contained the network furthermore the optimally selected the inputs. In the linear case, several approaches 

have been proposed in the orders determination (see [38] for review): penalizing the parameter increase  
(see [39] and [40] for review), delay-damage algorithm [33], (subset) feature selection [38] or extraction [41], etc. 

These answers are part of a more general question: How time is embodied in temporal patterns? 

 

 

5. HOW TIME EMBODIED IN TEMPORAL PATTERNS? 

5.1. Time feature selection in neural channels 

Model dimension reduction can improve the precision of its predictive inference because, in high 

dimensions, prediction or inference may be computationally costly. Moreover, the reduction of features can 

offer simple visions onto the function of the system. Temporal processing of neural data is a challenge 

because the information is embedded in (i) the temporal order which refer to the ordering among  

the components of a sequence and by (ii) the time duration, i.e. the time that separates two time stamps [29]. 

Generally, selections of time lag for the prediction setting and of the best variables selection are 
done manually by experts. Selection methods of input variable can be classified into two classes: methods of 

filtering and wrapper methods (see Guyon and Elisseeff [42] for a review). Filter methods use statistical 

measures to classify the variables, according to their influence and relevance on the target variable. 

On the other hand, wrapping methods use the learning model as the basis for selection. Notice that the latter 

may often achieve more accurate prediction results because variables selection will take into account  

the approximation model. Correlation method, partial correlation method, Mallows coefficient and PLS 

based method are often used tor time-lag selection. Shakil et al. propose a linear time-lag model optimized by 

a genetic algorithm for delay selection [43]. Performing the selection of the time-lags for each variable before 

variable selection improves the final prediction performance.  

For a better knowledge about the variables that affect the target variable 𝑦, the best choice is by 
means of filter methods because they use only the information content of data rather than methods based on 

correlation coefficient. But for systems involving nonlinear interactions among variables, linear filter 

methods fail. The linear correlation value which can measure nonlinear interaction among candidates of input 

variables and the target output is a better choice [41]. But the main difficulty lies in the estimation of  

the mutual information in multidimensional space which is computationally expensive in addition [44]. 

Building a predictor from a selection of the most relevant variables is usually suboptimal; conversely a subset 

of useful variables may exclude many redundant, but relevant, variables. This contrasts with the problem of 

ranking all potentially relevant variables. 

 

5.2. Basic elements in the decoding algorithm 
Neuronal assemblies contribute to neural decoding. Accordingly, synchronized firing spikes are 

considered a property of neuronal signals that can be detected and depends on stimulus and behavioral 
context. There is a need for analysis tools that allow us to reliably detect correlated spiking activity between 

multiple neurons that is not explained by the firing rates of the neurons alone. 
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First, the algorithm performs channel per channel coarse preliminary spike detection to estimate  

the spike morphology. The raw signal 𝑠(𝑡) is raised to the power: 𝑠𝑟 (𝑡) = |𝑠(𝑡)|𝑟 , with 𝑟 = 2 but higher 

values may improve the performance in increasing the influence of large-amplitude events. Then we apply  

a Blackman low-pass filter to 𝑠𝑟  (𝑡) with a cut-off frequency in the range of 100-250Hz to decrease the effect 

of noise at high frequencies and to reduce the number of signal maxima that will be considered as candidate 

spikes. We then take the 𝑟th root of the filtered signal to get the final output signal for this stage  

𝑥(𝑡) = [ℎ(𝑡) ∗ 𝑠𝑟(𝑡)]
1

𝑟, where ℎ(𝑡)is the FIR impulse response of the low-pass filter and (*) the convolution 

operator. After the transformation, 𝑥(𝑡) presents a sharp increase for an occurrence of spike and a soft 

maxima increase when no spike appears (e.g. noise). We denote the sequence of spike arrival times i.e. 𝑥(𝑡) 

maxima as 𝑡0 ≤ 𝑡1 ≤ 𝑡2, … , 𝑡𝑘 ≤ 𝑡𝑘+1, … , ≤ 𝑡𝑘 ≤ 𝑇 and the amplitude of the maxima as {𝑥1, … , 𝑥𝑘} where 

𝑥𝑖 = 𝑥(𝑡𝑖) and K is the number of maxima in 𝑥(𝑡). 
After time discretization, simultaneously recorded spiking activities are represented as simultaneous 

sequences of ones and zeros; “1” is used to indicate the presence of a spike and “0” for the nonappearance of 

spike as shown in Figure 5. There are at most 2𝑞 different coincidence patterns with 𝑞 simultaneously 

observed neurons (in fact much lower since zeros dominate). The function of the probability density of these 

maxima has two different prominent styles: a mode for ECoG background noise close to zero and a mode 

distant from zero due to the spike activity, which can be easily separated with a threshold calculated by  

a simple neyman-pearson test, see [45] for a reminder on signal detection. After selecting the threshold,  

the set 𝑇 = {𝜏1, … , 𝜏𝑘′} represents the times of detected spikes (𝐾′ < 𝐾). The latter are used to estimate  

the 𝑞 templates 𝛤𝑖 , 𝑖 = 1, … , 𝑞 by a simple mean; we estimate these time range span templates𝛤𝑖 between 

0,45ms and 0,55ms before and after the peak of the template. 

 

 

 
 

Figure 5. The spiking activity of 𝑞 instantaneously recorded neuron is encoded as a binary  

representation of 𝑞 parallel spike trains within a data stretch of 𝑇 bins 

 
 

The normalized cross-correlation, used for finding matches of the reference template 𝛤 is obtained 

by sliding the template window of size 𝐽: 

 

𝑚(𝑡) =
Γ𝑇𝑥

𝜎(Γ𝑇Γ)1/2
 (15) 

 

𝑚(𝑡) is scaled by the variances of the template and the observed signal, wit  𝑥 = (𝑥 (𝑡 −
𝑇𝑊

2
) , . . . , 𝑥 (𝑡 +

𝑇𝑊

2
− 1))

𝑇

, 𝛤 = (𝛤(1), … , 𝛤(𝐽))
𝑇
. The width of the analyses window 𝑇𝑊 (expressed in number of bins) is 

chosen to optimally identify excess synchrony as significant. Typically, the sample size is 𝑇𝑊 ≤ 𝐽. 
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 𝑞 Parallel binary processes, lasting for 𝑇 time steps. Each row consists of a sequence of 1s and 0s 

representing a realization of a single process 𝑎𝑖. The 1s mark the occurrences of spike events and  

the vector 𝑎(𝑡)expresses the joint activity across the process. Correlation is captured sliding a window 

analysis through a binary data representation of the events. 

 The observed number of patterns is governed by a binomial distribution of 𝑘 neurons firing jointly. 

It is useful to think of Γ as a (known) signal originating from a source: the measurement vector is 

𝑥 = 𝜇Γ + 𝜎𝑛 and the question is whether 𝜇 = 0 or 𝜇 > 0. 𝑛 is seen as a noise vector scaled by a constant 𝜎 

and added to the signal. The detection problem is phrased as 𝐻0: 𝜇 = 0 versus 𝐻1: 𝜇 > 0 in the model 

𝑥 ∼ 𝒩(𝜇Γ, 𝜎2𝐼). The distribution of the statistic 𝑚(𝑡) is normal 𝑥 ∼ 𝒩 (
𝜇

𝜎
(Γ𝑇Γ)1/2, 𝐼). This means that we 

can set a threshold 𝑚0 for testing 𝐻0 vs 𝐻1: 

 

𝜙(𝑥) = {
1, 𝑚 > 𝑚0  𝑢𝑛𝑑𝑒𝑟 𝐻1

0, 𝑚 ≤ 𝑚0  𝑢𝑛𝑑𝑒𝑟 𝐻0
 (16) 

 

The threshold 𝑚0to be determined is computed so that the false alarm probability PFA is minimized and  

the detection probability PD is maximized. The detection probability is determined by the formula 

 

𝑃𝐷 = ∫ (2𝜋)−1/2 exp (− [𝑥 −
𝜇

𝜎
(Γ𝑇Γ)

1
2]

2

/2) 𝑑𝑥
∞

𝑚0

 (17) 

 

= 1 − 𝜙 (𝑚0 −
𝜇

𝜎
(Γ𝑇Γ)1/2) (18) 

 

and the false alarm probability by 𝑃𝐹𝐴 =  1 − 𝜙(𝑚0). Fixing in our experiment 𝑃𝐹𝐴 = 10%, 

we obtain 𝑚0 =  1.28.  

Data are organized and aligned with the corresponding behavioral event or stimulus into “trials”. 

Figure 6 gives the detection probability PD with times for a set of selected channels: the plots suggest that  

the patterns of variation are very similar and the series are positively correlated at lag 0, suggesting synchrony. 

 

 

 

 

Figure 6. Detection probability PD through times when fixing the false alarm probability to 10% 
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Finally, we calculate the performance of these signals detection technique by computing sensitivity 

and specificity of the channels for a range of descriptors. Table 1 presents the ten “best” neural channels for 

which six descriptors have been computed: the template variance and mean resp. 𝜇𝑖  and 𝜎𝑖, the variation 

coefficient 𝑐𝑣𝑖 =
𝜎𝑖

𝜇𝑖
, the early firing time before the behavior event is detected ∆𝑡𝑖, the maximum rate of 

missing events 𝑀𝐸𝑖and the maximal amplitude of the template 𝑀𝐴𝑖. The ideal channel is a channel with  

a detection time ∆𝑡𝑖as large as possible, a small variability 𝑐𝑣𝑖and a low missing detection rate 𝑀𝐸𝑖. 

This electrode selection strategy, originally suggested in [41], was based on our motivating rationale 
that channels eliminated before the main processing would further simplify the decoding of motor cortical 

recordings. Our experiment retain, in the following, 4 channels at maximum. 

 

 

Table 1. Channel ranking obtained from a range of descriptors computed on individual channels.  

The two last channels are randomly chosen from the non-selected group of channels:  

there are no time detection because of the non-regularity of templates 
𝑖th ch 𝜎𝑖 𝜇𝑖 𝑐𝑣𝑖 ∆𝑡𝑖 𝑀𝐸𝑖 𝑀𝐴𝑖 

21 0.2090 0.8530 0.2450 0.500 0.1930 6.6144 

25 0.2575 0.8792 0.2928 0.360 0.4044 7.8553 

43 0.2395 0.8108 0.2954 0.280 0.3116 4.1574 

2 0.2753 0.9088 0.3029 0.468 0.3911 5.8860 

42 0.2849 0.8688 0.3279 0.250 0.4095 7.9383 

29 0.2800 0.7923 0.3534 0.365 0.4985 4.1551 

1 0.3524 0.9324 0.3779 0.299 0.5307 5.8253 

22 0.3202 0.8095 0.3955 0.430 0.4298 6.4084 

14 0.3391 0.7997 0.4241 0.350 0.4638 2.6330 

5 2.0931 0.4095 3.3851 -- 5.6899 0.2919 

13 2.3192 0.4407 1.6367 -- 5.5854 0.2598 

 

 
5.3. Metaneuron and nonparametric optimal detector of joint-spike event 

The instantaneous observations of spike actions from 𝑞 channels can be described by parallel  

binary sequences 𝑎𝑘(𝑡) ∈ {0, 1} and the 𝑞 sequences as a vector-valued function 𝑎(𝑡) formed by  

the 𝑎𝑘(𝑡): 𝑎(𝑡) = (𝑎1(𝑡), … , 𝑎𝑞(𝑡))
𝑇

. Algorithm 3 summarizes the main features of the previous processing. 

 
Algorithm3 Joint-Spike Detection  

1: Align trials, decide on width of analysis window. 

2: Decide on allowed coincidence width 

3: Perform a sliding window analysis 

4: for each window do 

5: Detect and count coincidences 

6: Calculate expected number of coincidences 

7: Test significance of detected coincidences 

8: end for 

9: Explore behavioral relevance of coincidence epochs. 

 

The input to the detector is formed by the vector 𝑎(𝑡). The simplest decision rule takes the following form: 

 

∑ 𝑎𝑖 ≶ 𝜃

𝑞

𝑖=1

 (19) 

 

The decision (19) counts the number of 1𝑠 in a sliding window. Suppose that the 𝑎𝑖 ’s are independent but not 

necessarily iid [46]. The detection problem may be written as testing 𝐻0versus 𝐻1. When 𝐻0 is true, 𝑃(𝑎|𝐻1) 

has a zero median whilst if 𝐻1 is true, 𝑃(𝑧|𝐻1) has a positive median. So the test can be stated in terms of 𝑎𝑖 as 

 

𝑃(𝑎𝑖|𝐻0) = {

1

2
𝑎𝑖 = 0

1

2
𝑎𝑖 = 1

𝑃(𝑎𝑖|𝐻1) = {
1 − 𝑓𝑎𝑖 = 0

𝑓𝑎𝑖 = 1
 (20) 

 

The likelihood ratio can now be formed and compared to a threshold  𝜆: 
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Λ(𝑎) =
𝑃(𝑎|𝐻1)

𝑃(𝑎|𝐻0)
=

𝑓∑ 𝑎𝑖
𝑞
𝑖=1 (1 − 𝑓)𝑞−∑ 𝑎𝑖

𝑞
𝑖=1

(
1
2

)
𝑞

𝑑1

≶
𝑑2

𝜃 (21) 

 

Let 𝑞+ = ∑ 𝑎𝑖
𝑞
𝑖=1 , the number of 1𝑠, then Λ(𝑎) becomes 

 

Λ(𝑎) =
𝑓𝑞+

(1 − 𝑓)𝑞−𝑞+

(
1
2

)
𝑞 = [2(1 − 𝑓)]𝑞 (

𝑓

1 − 𝑓
)

𝑞+

 (22) 

 

Taking the natural logarithms of both sides and after reduction we obtain 

 

𝑞+

𝑑1

≶
𝑑2

𝜃 − 𝑓 ln
(

𝑓
1−𝑓

)
[2(1 − 𝑓)] = 𝜃′ (23) 

 

The test in (23) compares the number of 1𝑠 with the threshold 𝜃′. The threshold is fixed by setting the false 

alarm probability 𝑃(𝑑2|𝐻0) (as in section 5.2) to be less than or equal to 𝛼 = 10%. Since 𝑞+is the sum of 𝑞 

Bernoulli random variables, 𝑞+ obeys binomial distribution 𝑞+ ∼ ℬ (𝑞,
1

2
). [47]. If 𝐻0 is true 

 

𝑃(𝑞+ = 𝑘|𝐻0) = 𝐶𝑞
𝑘 (

1

2
)

𝑘

(1 −
1

2
)

𝑞−𝑘

= 𝐶𝑞
𝑘 (

1

2
)

𝑞

 (24) 

 

where the binomial coefficient is 𝐶𝑞
𝑘 =

𝑞!

𝑘!(𝑞−𝑘)!
. The false alarm probability is therefore 

 

𝑃(𝑞2|𝐻0) = 𝑃(𝑞+ > 𝜃′|𝐻0) = ∑ 𝐶𝑞
𝑘 (

1

2
)

𝑞
𝑞

𝑘=𝜃′+1

 (25) 

 

We can find the smallest value of 𝜃′ such that 𝑃(𝑑2|𝐻0) ≤ 𝛼 or 

 

∑ 𝐶𝑞
𝑘 (

1

2
)

𝑞
𝑞

𝑘=𝜃′+1

≤ 𝛼 (26) 

 

Once 𝜃′ is fixed, one can easily derived the probability of detection (POD) from the binomial 

distribution ℬ(𝑞, 𝑓), and this yields 

 

𝑃(𝑞+ = 𝑘|𝐻1) = 𝐶𝑞
𝑘𝑓𝑘(1 − 𝑓)𝑞−𝑘 (27) 

 

Therefore the POD is 

 

𝑃(𝑑2|𝐻1) = 𝑃(𝑞+ ≥ 𝜃′|𝐻1) = ∑ 𝐶𝑞
𝑘𝑓𝑘(1 − 𝑓)𝑞−𝑘

𝑞

𝑘=𝜃′+1

 (18) 

 

Finally the non-parametric decision rule is easy to implement and requires that we sum the components of  

the vector a𝑘(𝑡). As an illustration, let us consider a case with 𝑞 = 10 channels and 𝛼 = 25%. The threshold 

𝜃′ for this test is obtained from (26) by finding the value of 𝜃′ for which 

 

∑ 𝐶10
𝑘 (

1

2
)

1010

𝑘=𝜃′+1

≤ 0.25 (29) 

 

The desired binomial coefficients are: 
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𝐶10
10 = 1   𝐶10

9 = 10  𝐶10
8 = 45   𝐶10

7 = 120   𝐶10
6 = 210 

 

Hence, if we let 𝜃′ = 6 , we have ∑ 1 + 10 + 45 + 12010
𝑘=7 = 176 ≤ 256. Therefore, the test for this 

problem is given by 𝑞+ = ∑ 𝑎𝑖 ≶ 610
𝑘=1 . For 𝜃′ = 6, the actual value of the false alarm probability is  

𝑃𝐹𝐴 = ∑ 𝐶10
𝑘 2−10 = 176/1024 = 0.1710

𝑘=7 . Suppose that we obtain the following set of observations  

a = (0111110010)𝑇. For this set of observations, 𝑞+ = 6 and we decide 𝑑1. 

 

 

6. PERFORMANCE ASSESSMENT 

6.1. Experiment assessment with one neuron 
First, we start our simulation with a single input as in a similar work presented in [48], where  

the best channel is selected with the correlation method (channel 21) which was the unique input to 

the TDNN but with a try error time regression. In this time, the best selected channel is given using 

the variation coefficient 𝑐𝑣 and the time shifting is defined by the template matching. Table 2 gives the time 

training and its log, and the estimation error with the corresponding neurons in the hidden layer. A single 

input channel with different neurons of the hidden layer, respectively (2; 4; 7; 9; 12; 15; 20; 25), is used 

the training time and the estimation error are given in Table 2 below with respect to the number of neurons. 
 

 

Table 2. Results simulation with one input 
Neurons  log(time) time(sec) error(mm) 

2 4.8114 122.8988 8793 

4 5.0279 152.6142 2779.2 

7 5.4143 224.6053 28.4411 

9 5.6386 281.0812 0.7123 

12 5.9613 388.1077 0.7656 

15 6.2793 533.4191 0.2185 

20 6.7274 834.9931 0.4679 

25 7.0821 1190.5 0.6063 

 

 

6.2. Experiment with multiple neurons 
For multiple neurons (channels), we use the first two and three selected neurons with respect to  

their order. 

 

6.2.1. Two inputs 

For the double neurons, we started our simulation using the time delay neural network with  

(2; 4; 7; 9; 12; 15; 20; 25; 30) neurons. The best selected neurons are the two channels 21 and 25 keeping 

their order. In Table 3 is given the training time of the TDNN. 

 
 

Table 3. Results simulation with two inputs 
Neurons log(time) time(103𝑠) error(mm) 

2 4.8519 0.1280 0.0697 

4 4.9234 0.1375 0.3333 

7 6.3729 0.5858 0.0979 

9 6.6495 0.7724 0.2668 

12 7.0341 1.1347 0.2020 

15 7.6010 2.0002 0.2133 

20 8.1951 3.6232 0.2535 

25 8.6910 5.9490 0.2927 

30 9.0956 8.9161 0.0989 

 
 

6.2.2. Three inputs 

For this case, we have three selected inputs which are the past two selected for the case of double 

input with the channel 43 in the third rank. The TDNN was trained on half data and tested on the rest;  

in Table 4 are given results. We obtained 48 channels ECoG after spikes detection and sorting, the obtained 

signal is represented by suits of ’1’ pulses disjointed by long silences of ’0’. Various methods of data 

illustration were suggested to perform the information hidden in distances between spikes. A brief 

description of these methods is summarized in [49]. 
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Table 4. Results simulation using three inputs 
Neurons log(time) time(103𝑠) error(mm) 

2 4.8519 0.0129 0.2713 

4 5.4893 0.0242 0.0847 

7 6.8829 0.0975 0.4108 

9 7.4274 0.1681 0.0814 

12 7.9518 0.2841 0.4487 

15 8.4373 0.4616 0.1535 

20 9.1152 0.9092 0.3883 

25 9.6679 1.5803 0.1362 

30 10.1438 2.5432 0.1375 

 

 

In this work, we compute the spike rate using a sliding window of the same frequency of the used 

camera get out, simultaneously, the hand coordinates with the brain signal. We calculated and used 

correlation coefficients to choose channels which will be used as features of the brain machine interface 

decoder and also to remove the redundant and non-correlated input variables with the output. 

Best cross-correlation values give the delay of the explanatory variables that will be used as network inputs. 

In Figure 4 is shown the TDNN model. The input layer comprises, in this experiment, 10 delayed 

cortical signals from the 3 most substantial neurons (among 46 neurons having been recorded), between 2-7 

hidden neurons with hyperbolic tangent cell function. In section 4.2, is described how we trained the TDNN 
using the 2 algorithms. The output variables (hand position) are centered and reduced to follow a Gaussian 

law 𝒩(0;  1). The layer weights are initialized randomly in [−1; +1]. We set the learning rate 𝜂 = 0.05 in 

both algorithms. 

The training was terminated when the cross validation error continuously increased for more than 10 

steps. The network specifications are listed in Table 5. While the choice for the right architecture is mainly 

intuitive and implies arbitrary decisions, an attempt to apply ANN directly fails due to the dimensionality of 

the inputs. Therefore the dimension of the inputs has been reduced drastically by feature selection. 

 

 

Table 5. Average AIC 
Architectures #parameters CGA Pre-conditioned CGA 

x y x Y 

27-2-2 62 3.691 4.723 2.700 3.720 

27-3-2 92 3.394 0.426 1.406 3.435 

27-4-2 122 2.732 2.822 2.762 2.799 

27-5-2 152 5.066 5.148 3.089 5.132 

27-6-2 182 5.105 6.162 8.117 6.133 

27-7-2 212 6.531 9.570 11.541 9.550 

 

 

The change in the number of units in the TDNN affects the decoding performance as shown in  

Table 5, the mean AIC across the 50 data sets is used to quantify the performance of each model for the two 

decoding algorithms. For clarity here, we have 7 peaks which represent 10% of data. In Figure 7(a),  

by the red line is described the model output. It can be seen that the hand coordinates on a plan is tracked and 

the trajectory is well reconstructed along the experiences. When movements is sufficiently complex 

(presence of peaks), the algorithm show the ability to catch well these peaks as shown a zoom onto the fit  

in Figure 7(b-g). 

The Akaike information criterion (𝐴𝐼𝐶) is used for the measurement of performances. As mean for 

model selection the AIC is used. The AIC is calculated 𝐴𝐼𝐶 = 2𝑝 − 2 ln(𝐿), where 𝑝 represents the number 

of model’s parameters, and 𝐿 denotes the maximized value of the likelihood model’s function. AIC deals 

with the compromise between the quality of the model’s fit and its complexity. The best model is 

characterized with a lowest AIC value. 

When using in decoding a reasonable number of units (more than three), the preconditioned CGA 

shows its superiority to the classic CGA. Figure 7: illustrates the result obtained from the MLP 27-5-2, where 

the trial-error technique is used for the MLP training. The performance of the MLP 27-5-2 was much worse 

than that of the CGA. The performance differences between the CGA and preconditioned CGA were larger 

above 5 units. 
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Figure 7. TDNN for hand position tracking: (a) Desired output (in blue) and model output (in red), (b-g) all 

peaks detection and formulation and details 

 
 

7. CONCLUSION 

Determining a dynamical neural network with the appropriate architecture is not easy yet critical 

task. Nonlinear architectures are not the only ones that can affect the performance, but also the memory 

architecture of dynamic models can also have an important impact on its dynamical behavior. Using  

the NARX network in Brain Computer Interfaces produces too many free parameters: even if the method 

realizes faster with the conjugate gradient algorithm. A NARX network with 20 neurons in the hidden layer 

and 10 times delayed of 46 inputs of ECoG brain signal yields more than 1,160 free parameters with only 

10,000 samples for training and cross-validation. We proposed in this paper an algorithm to define  

the embedded memory order of NARX recurrent neural networks. We also show that this algorithm can 

demonstrate improved performance on inference tasks. Furthermore, optimizing the memory architecture and 

the nonlinear function through input selection often results in sparsely connected architectures but with long 
time windows which are able to model the global features of the underlying system quite efficiently. 

Simulation results from experimental brain signals showed improved performance in the hand trajectory 

decoding process. A perspective issue is the possibility of using in addition a Kalman pre-filter to detect 

pulses and group them, therefore simplify the activation measurement. 
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