
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 10, No. 6, December 2020, pp. 6558~6573

ISSN: 2088-8708, DOI: 10.11591/ijece.v10i6.pp6558-6573  6558

Journal homepage: http://ijece.iaescore.com/index.php/IJECE

Courses timetabling based on hill climbing algorithm

Abdoul Rjoub
Computer Engineering Department, Jordan University of Science and Technology, Jordan

Article Info ABSTRACT

Article history:

Received Sep 14, 2019

Revised Feb 29, 2020

Accepted Jun 5, 2020

 In addition to its monotonous nature and excessive time requirements,

the manual school timetable scheduling often leads to more than one class

being assigned to the same instructor, or more than one instructor being

assigned to the same classroom during the same slot time, or even leads to

exercise in intentional partialities in favor of a particular group of instructors.

In this paper, an automated school timetable scheduling is presented to help

overcome the traditional conflicts inherent in the manual scheduling

approach. In this approach, hill climbing algorithms have been modified to

transact hard and soft constraints. Soft constraints are not easy to be satisfied

typically, but hard constraints are obligated. The implementation of this

technique has been successfully experimented in different schools with

various kinds of side constraints. Results show that the initial solution can be

improved by 72% towards the optimal solution within the first 5 seconds and

by 50% from the second iteration while the optimal solution will be achieved

after 15 iterations ensuring that more than 50% of scientific courses will take

place in the early slots time while more than 50% of non-scientific courses

will take place during the later time's slots.

Keywords:

Course schedule

Hard and soft constraints

Hill climbing algorithms

Manual school timetable

Time slot

Copyright © 2020 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Abdoul Rjoub,

Computer Engineering Department,

Jordan University of Science and Technology,

University Campus, Irbid 22110, P. O. Box. 3030, Jordan.

Email: abdoul@just.edu.jo

1. INTRODUCTION

In recent times, scheduling of timetabling [1, 2] has gained considerable importance and has

witnessed rapid growth due to its significant role in the success of school [3, 4], university [5, 6] and

examination timetable placements [7]. Given the different challenges facing each of these sectors, designing

an appropriate algorithm for each will contribute to solving its challenges separately. In this paper, the issue

of school timetable scheduling is addressed.

Usually, a school timetable is built at the beginning of each semester to organize the academic

program of study by considering huge amounts of information to be filled in such as courses, classes,

instructors, the number of lectures for each course through the week and finally, the maximum number of

hours that are assigned to each instructor. These parameters should be taken in consideration when someone

plans to build a timetable for any academic institution. Unfortunately, ensuring compatibility of these inputs

is time consuming especially when done manually. In addition, the manual method requires human labor,

the instructors’ help sometimes, which means more arrangement efforts, more rehearsals in terms of writing

and reviewing the required parameters and resulting partiality, which, in turn, may lead to problems in

the work environment [8]. These challenges affect the teaching process and instructors’ scientific efficiency

and productivity. Hence, this is the main motivation behind the proposed technique to overcome the manual

timetable scheduling and have it replaced by an automated one.

Countless efforts have been made in this area. Based on local search techniques [9], the process

begins with some initial state that is created randomly or read from a file without satisfying any hard

mailto:abdoul@just.edu.jo

Int J Elec & Comp Eng ISSN: 2088-8708 

Courses timetabling based on hill climbing algorithm (Abdoul Rjoub)

6559

constraints [10]. Therefore, there is a need to satisfy such constraints to create a correct state and then attempt

to achieve the soft constraints [11]. Hence, this would require more operations to convert the incorrect

random state into an acceptably more correct state that, in turn, requires additional time. In this new

approach, the hard constraints are already satisfied during the initial state as fulfillment of the soft constraints

commences while, in the process, maintaining the hard constraints from any violations.

In [12, 13] a class-oriented representation of Timetable is used, which implicitly avoids classroom

contentions, the instructor-oriented representation of timetable is used which implicitly avoids instructors

time table contentions. In this paper, both Class-oriented and Instructor-oriented representations of

a timetable, which avoid class clashes and instructor clashes are used in parallel.

Across the literature, various algorithmic classes have been proposed to address the scheduling

problem at academic institutions. These algorithms include: Algorithms falling under the genetic algorithms

class which are often used to tackle huge amounts of data, and simulated annealing algorithms which lend

themselves fairly well to problems with large search spaces. Neither of these classes of algorithms will be

leveraged in the current work. In the former class of algorithms large memory sizes are required [14, 15],

while in the latter category certain disadvantages are commonly encountered. These deal with the fact that

the optimal solution usually depends on the initial state where the speed of convergence is rather too slow

than many other algorithms [16, 17]. Furthermore, in this work no consideration will be given to Tabu’s

search algorithm which is classified under the local search family and would require a large number of

iterations for its convergence [18].

In this paper, a novel technique is proposed; this technique is made-up of two stages: In the first,

an initial solution is created in a way that would avoid any clashes leveraging Class-oriented and

Instructor-oriented representations with various other functions to make sure that no time slots are selected in

ways that would end up in clashes. In the second stage, the hill-climbing algorithm, with some modifications,

per the procedure outlined in section 3, is used, leveraging the number of advantages it entails including its

low power requirements, its rather fast convergence and its reasonable requirements of low memory

sizes [19].

The rest of this paper is organized as follows: section 2 details the common problem of school

timetabling. Section 3 illustrates the modified Hill Climbing Algorithm. Section 4 elaborates the mechanics

of the proposed technique, as section 5 explains the main results and offers pertinent analyses. Finally,

section 6 provides the conclusions.

2. PROBLEM STATEMENT: DESCRIPTION AND REQUIREMENTS

The problem of school timetable scheduling has traditionally been defined by a process that would

ensure integrity and consistency as we combine instructor, classroom and course times together into

commonly feasible time slots, satisfying a certain group of constraints that would make the structure of

the targeted school time table sound and correct. The basic factors of the school timetable-scheduling

problem contain from three layers, these three layers are featured in the same diagram. Layer 1 contains

the most essential components in the process, viz., Instructors, Classes and Courses. Layer 2 features the most

important hard constraints (Classroom clashes, Instructor clashes, lecture and day teaching loads) that make

the overall structure of the timetable logically correct. Layer 3 contains a group of soft constraints

(Instructors’ preferences, Daily working loads (hours), desired Last Lecture and Preferences of the Classes)

where these constraints are meant to enhance the School Timetable quality [20, 21].

2.1. Layer 1: instructors, classes, courses

The Instructors: I (j); j= 1, 2, 3, … , ḽ; are an essential element in any school timetable-scheduling

mechanism, where each one of the instructors has a parameter called Specialty, which is an important

characteristic that can take values for Primary Level Instructor, Diploma and Bachelor's degrees or even

those that are above. These values help the programming process to determine the class level an instructor

can teach. More specifically, an instructor with a Primary Level Instructor specialty can only teach primary

level classes, while that with a Diploma specialty can teach both primary and intermediate level classes and

the instructor whose specialty is at the Bachelor's degree or above can teach all class levels. The Classes:

C (j); j= 1, 2, 3, … , Ҫ; the classes constitute the second most important element in school timetable

scheduling, with each class possess in a parameter called the Class-Level. This parameter can take on values

of primary, intermediate or secondary, with the values indicating the specialty of the instructor that allows

him to teach a particular class, and finally, the Courses: K (j); j= 1, 2, 3, … , Ḳ; which are the last element in

the school timetable scheduling process, where each course has a parameter called Course type.

This parameter has two values: scientific courses such as Physics, Mathematics and Chemistry,

and non-scientific ones such as Arts, Sports, History and Computer skills. This parameter is usually weighed

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6558 - 6573

6560

in more heavily in assigning scientific courses to early time slots, and those that are non-scientific courses to

later time slots; something that would contribute more positively towards students’ learning appetites. All of

these elements are scheduled to take place within certain time slots during school day, TS (j) = 1, 2, 3, … ,Ṣ.

The solution space of such a problem thus becomes:

𝑆𝑃𝐴𝐶𝐸 = 𝐼 × 𝐶 × 𝐾 × 𝑇𝑆 (1)

Assuming that the instructor teaches just one or two courses, a classroom takes some but not all

courses, and it is often known which instructor teaches what course and at which classroom. In addition,

lectures take place during a limited time frame (e.g. day), which inherently limits the actual timeslots.

As a results, SPACE is reduced to V, where V  SPACE, which represents only those lectures the time

scheduling of which makes sense, such that

 𝑽𝒊,𝒄,𝒌,𝒔 = {
𝟏; 𝑖𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 𝑖 𝑡𝑒𝑎𝑐ℎ𝑒𝑠 𝑐𝑜𝑢𝑟𝑠𝑒 𝑘 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠 𝑐 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑠
𝟎; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

where 𝒗𝒊,𝒄,𝒌,𝒔 represents an element of 𝑉𝑖,𝑐,𝑘,𝑠.

2.2. Layer 2: hard constraints

The second layer refers to the hard constraints, which encompasses those constraints that make

the structure of the timetable sound and correct which has to be satisfied in all cases and at all times.

These constraints include:

a. Classroom clash (conflict)

Classroom clash refers to a situation whereby we would allocate more than one instructor to

the same classroom timetable in the same time slot. This problem occurs because the administrator cannot

see the timetable for all classrooms at the same time. Consequently, the application of the proposed solution

avoids this problem by using a Class-oriented representation of the timetable, which allows seeing the entire

timetable for all classrooms all at the same time. Class clashes can be represented as:

∑ (𝑣𝑐1,𝑘1,𝑠1 + v 𝑐1,𝑘2,𝑠1) = 1; ∀ 𝑣 ∈ V𝑖 ∈ 𝐼 (3)

which means that for any classroom c1, no two courses (k1, k2) are assigned to it at the same time slots1

regardless of the instructor who gets assigned to that particular course. Instructors clash (conflict): This is

quite the opposite of the classroom clash problem such that one cannot allocate more than one classroom in

the same time slot for a given instructor’s timetable. Such a problem usually occurs since the administrator

cannot see the timetables for all instructors all at the same time. Here, again, the proposed solution avoids

this problem using Instructor-oriented representation of a timetable such that it allows displaying

the timetables for all instructors all at the same time. Instructor clash can be represented in the form:

∑ (𝑣𝑐1,𝑖1,𝑠1 + v
𝑐2,𝑖1,𝑠1

) = 1; ∀ 𝑣 ∈ 𝑉𝑘∈𝐾 (4)

This means that for any given instructor ik, no two classrooms (ci, cj) are assigned to him/her in

the same time slot sk regardless of which courses he/she is assigned to. Finally, the Lectures (weekly) load: In

every School policy, each course has a preset number of lectures per week per each classroom.

This constraint readily implies that we cannot possibly increase or decrease the number of lectures for

a course in any given classroom. Therefore, the required number of lectures for course k1taught at classroom

c1 during the week regardless the time slot distribution or the particular instructor of the course is given by:

𝐶𝐾𝐿 ≡ ∑ ∑ ∑ 𝑣𝑐1,𝑘1 ; ∀ 𝑣 ∈ 𝑉𝑖∈𝐼𝑠∈𝑇𝑆𝑑∈𝐷 (5)

where D (j) = 1, … , 5; which represents the weekly school days. Similarly, the number of lectures has to be

taught by instructor i1 during the week regardless of courses get taught, the time slots or the classrooms is

given by:

𝐼𝐿 ≥ ∑ ∑ ∑ ∑ 𝑣𝑖1 ; ∀ 𝑣 ∈ 𝑉𝑠∈𝑇𝑆𝑘∈𝐾𝑐∈𝐶𝑑∈𝐷 (6)

Int J Elec & Comp Eng ISSN: 2088-8708 

Courses timetabling based on hill climbing algorithm (Abdoul Rjoub)

6561

b. Day load

The number of lectures per course for each classroom must be divided into five working days.

For example, if a given class room caters for five Math course lectures, then each day can have no more than

one lecture for the same course. Consequently, three cases will arise assuming that there are 5 school days

(working days) in a given week:

Case 1: Class c has less than five lectures of course k during the week

∑ ∑ ∑ 𝑣𝑘1,𝑐1 < 5; ∀ 𝑣 ∈ 𝑉, ∀ 𝑠 ∈ 𝑇𝑆, ∀ 𝑖 ∈ 𝐼𝑖∈𝐼𝑠∈𝑇𝑆
5
𝑑=1 (7)

Then,

𝑟𝑘1,𝑑 = {0, 1}; ∀ 𝑑 ∈ 𝐷 (8)

where,

𝑅𝑑,𝑘,𝑐 ≡ {
1; 𝑖𝑓 𝑐𝑙𝑎𝑠𝑠 𝑐 ℎ𝑎𝑠 𝑎 𝑙𝑒𝑐𝑡𝑢𝑟𝑒 𝑜𝑓 𝑐𝑜𝑢𝑟𝑠𝑒 𝑘 𝑜𝑛 𝑑𝑎𝑦 𝑑
0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9)

Case 2: Class c has exactly five lectures of course k during the week

∑ ∑ ∑ 𝑣𝑘1,𝑐1 = 5; ∀ 𝑣 ∈ 𝑉, ∀ 𝑠 ∈ 𝑇𝑆, ∀ 𝑖 ∈ 𝐼 𝑖∈𝐼𝑠∈𝑇𝑆
5
𝑑=1 (10)

Then,

𝑟𝑘1,𝑑 = 1 ; ∀ 𝑑 ∈ 𝐷 (11)

Case 3: Class c has more than five lectures of course k during the week

∑ ∑ ∑ 𝑣𝑘1,𝑐1 > 5;𝑖∈𝐼𝑠∈𝑇𝑆
5
𝑑=1 ∀ 𝑣 ∈ 𝑉, ∀ 𝑠 ∈ 𝑇𝑆, ∀ 𝑖 ∈ 𝐼 (12)

Then,

 1 ≤ 𝑟𝑘1,𝑑 ≤ 2 ; ∀ 𝑑 ∈ 𝐷 (13)

such that

∑ 𝑟𝑘1,𝑑
5
𝑑=1 = ∑ ∑ ∑ 𝑣𝑘1,𝑐1𝑖∈𝐼 𝑠∈𝑇𝑆

5
𝑑=1 (14)

The final and definite constraint is that no free lectures are allowed to be assigned to any classroom

before the last lecture in that particular classroom on a given day.

 𝑉𝑐1 ≠ 0; ∀ 𝑠 < 𝐶𝑙𝑎𝑠𝑠 𝑙𝑎𝑠𝑡 𝑙𝑒𝑐𝑡𝑢𝑟𝑒, ∀ 𝑖 ∈ 𝐼, ∀ 𝑘 ∈ 𝐾 (15)

2.3. Layer 3: soft constraints

Soft constraints refer to the parameters that are somewhat less important than their hard counterparts

are. Here, although these would show up in the computer program, it would not be very necessary to account

for all of them. Definitely, the more contained it is, the better the schedule. As mentioned earlier, layer 3 is

made up of two constraints: Classroom preferences: Preferences of classrooms implicitly refer to the three

constraints associated with classrooms: Scientific Courses: Scientific courses such as Physics, Mathematics,

Chemistry and Biology are to be considered during the early time slots. Non-Scientific Courses:

Non-Scientific courses such as Arts, Sports, History and Computer skills are to be considered for the latter

time slots. The Instructor preferences which is an essential part of the teaching process addresses

the instructors’ convenience and comfort levels during the semester, such that the teaching effort is reflected

more positively on the overall educational process. Hence, several instructor-centric facets are considered.

These include an instructor’s preference on whether he/she would rather start their daily teaching in the first

lecture slot of each day or not. Also, an instructor’s preference to call it an early quits, on any particular day

of choice, and finally whether the instructor still happens to be a student of the institution himself/herself

with certain convenience-driven needs that need to be accommodated by the timetable organizers.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6558 - 6573

6562

3. EFFICIENT HILL CLIMBING ALGORITHM

The Hill Climbing Algorithm (HCA) is a mathematical technique that belongs to the category of

local search algorithms [20-22]. It is a repetitive algorithm that starts with an initial population chosen from

the problem solutions space. It then goes through a process that improves these solutions by incrementally

changing one of the elements in order to create new solutions. In the process, solutions that have higher cost

values are adopted in an effort to generate a new population and the process is repeated until no further

improvements can be achieved [23].

Under the proposed technique, the Hill Climbing algorithm is modified to be used as an optimization

algorithm, where the optimization process continues as long as the calculated heuristic value 𝛿, i.e.,

cost value, of the last optimized solution is less than zero; other than that the process is stopped if this value

does not change for eight consecutive executions, as this would indicate that no further improvement can be

achieved, and the solution is finally reached [24]. The heuristic value is a linear function of soft constraints;

such that it measures to what degree the current solution satisfies these constraints. It checks if the two

constraints of class preferences are satisfied for all classes in the school, such that:

𝑆𝑡𝐶𝑡𝑐 = {

0; 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠′𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠
𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑐

−1; 𝑖𝑓 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑚 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑠𝑓𝑖𝑒𝑑 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑐
−2; 𝑖𝑓 𝑏𝑜𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒𝑚 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑐

 (16)

where 𝑆𝑡𝐶𝑡𝑐 represents a measure of the class preference constraints for class c.

In addition, it checks if the constraints of the instructor's personal preferences, daily work hours and

last lecture preferences are satisfied for all instructors, such that:

𝑆𝑡𝐶𝑡𝑖 =

{

0; 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 𝑑𝑒𝑠𝑖𝑟𝑒𝑠, 𝑑𝑎𝑖𝑙𝑦 𝑤𝑜𝑟𝑘 ℎ𝑜𝑢𝑟𝑠 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡 𝑙𝑒𝑐𝑡𝑢𝑟𝑒

𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑓𝑜𝑟 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 𝑖
−1; 𝑖𝑓 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑚 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑠𝑓𝑖𝑒𝑑 𝑓𝑜𝑟 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 𝑖

−2; 𝑖𝑓 𝑡𝑤𝑜 𝑜𝑓 𝑡ℎ𝑒𝑚 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑓𝑜𝑟 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 𝑖
−3; 𝑖𝑓 𝑎𝑙𝑙 𝑓 𝑡ℎ𝑒𝑚 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑓𝑜𝑟 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 𝑖

 (17)

where 𝑆𝑡𝐶𝑡𝑖 represents the measurement of the instructor's preferences, daily work hours and last lecture

preferences for instructor i. As a result, the heuristic parameter𝛿 is given as:

𝛿 = ∑ 𝑆𝑡𝐶𝑡𝑐Ҫ
𝑐=1 + ∑ 𝑆𝑡𝐶𝑡𝑖

ḽ
𝑖=1 (18)

The initial and optimal value for𝛿 is 0. It is decreased by 1 each time any of the constraints is found

to be violated for any classroom or instructor. Hard constraints are not considered as MHCA does not provide

a solution unless all the hard constraints are satisfied.

The input vector that is required to run this technique is: 〈𝐶𝑜𝑢𝑟𝑠𝑒 𝐷𝑒𝑡𝑎𝑖𝑙𝑠, 𝐶𝑙𝑎𝑠𝑠 𝐷𝑒𝑡𝑎𝑖𝑙𝑠,

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 𝐷𝑒𝑡𝑎𝑖𝑙𝑠 〉 as follows:

- Course details: such as course title, course type (Scientific or Non-Scientific).

- Class details: such as class name, class division, class level (Primary, Intermediate or Secondary) and

the list of all courses that are taught in a given classroom.

- Instructor details: such as his/her ID number, name, number of lectures he/she can teach, instructor

specialty (Primary level, Diploma or Bachelor's degree or above) and a list of all classrooms and

the courses that are taught by this instructor.

4. THE PROPOSED TIMETABLE SCHEDULING TECHNIQUE

Once all required data will have been identified and accounted for, the creation process will

commence in three separate phases. The first phase is the data organization phase (DOP) which organizes all

the data that was accounted for earlier. The second phase is the initial state phase (ISP) which creates an

initial solution for the timetable and the third phase is the satisfied soft constraints phase (SSCP) which

improves the initial solution using MHCA to satisfy all of the soft constraints as it possibly can in order to

achieve the "best" final solution [25].

Int J Elec & Comp Eng ISSN: 2088-8708 

Courses timetabling based on hill climbing algorithm (Abdoul Rjoub)

6563

4.1. The data organization phase (DOP)

When the system begins to build a school timetable, it commences by organizing the required data

as a first task. In this phase (DOP), the system starts the creation of the timetable by loading the required data

and setting up the data structures. Such required data in the school object splits into four types of objects:

- Instructor Object: contain variables such as Instructor-ID, Instructor-Total-Number-Of-Lectures and

Class-Course-List that refers to the classes and courses which this instructor teaches and the Instructor-

Number-Of-Last-Lecture.

- Class Object: contains variables such as Class-ID, Class-Total-Number-Of-Lectures, Class-Course-List

that refers to each course with its instructors, Class-Last-Lecture that refers to the index of last lecture in

the class timetable and Class-Number-Of-Last-Lecture that refers to the total number of last lectures.

- Course Object: contains variables such as Course-ID and Course-Type.

- Class-Course Object: contains some variables that link Class-ID, Course-ID, Number-Of-Lectures and

Instructor-ID with the Instructor Object, Class object and Course object.

Once the required data is loaded and split into the said objects, the algorithm commences the school

timetable generation. The ICTNL Function illustrates how many times each specific course is gone through

for a specific instructor and how many times each specific course is gone through for a specific classroom.

A loop selects the next object from Class-Courses list, and then finds the instructor object that has the same

Instructor-ID. This is performed in order to add the number of lectures for the Class-Courses object to

the total number of lectures of the instructor object and then the same procedure is repeated for the class

object. It is quite evident that the complexity of this function is 𝘖(𝐶𝐾𝑂(ḽ + Ҫ)). Where CKO is the number

of class-course objects, which can be described as:

𝐶𝐾𝑂 = ∑ ∑ ∑ 𝑣𝑐,𝑘 ; ∀ 𝑣 ∈ 𝑉, ∀ 𝑘 ∈ 𝐾, ∀ 𝑐 ∈ 𝐶 𝑖∈𝐼𝑠∈𝑇𝑆𝑑∈𝐷 (19)

 = ∑ ∑ 𝐶𝐾𝐿 ; ∀ 𝑐∈𝐶𝑘∈𝐾 𝑘 ∈ 𝐾, ∀𝑐 ∈ 𝐶

The total number of lectures for any instructor i is:

𝑇𝐿𝑖 = ∑ ∑ ∑ ∑ 𝑣𝑖 ; ∀ 𝑣 ∈ 𝑉, ∀ 𝑑 ∈ 𝐷, ∀ 𝑐 ∈ 𝐶, ∀ 𝑘 ∈ 𝐾𝑠∈𝑇𝑆 𝑘∈𝐾𝑐∈𝐶𝑑∈𝐷 , ∀ 𝑠 ∈ 𝑇𝑆 (20)

Similarly, the total number of lectures for any class c is:

𝑇𝐿𝑐 = ∑ ∑ ∑ ∑ 𝑣𝑐; ∀ 𝑣 ∈ 𝑉, ∀ 𝑑 ∈ 𝐷, ∀ 𝑘 ∈ 𝐾, ∀ 𝑖 ∈ 𝐼, ∀ 𝑠 ∈ 𝑇𝑆𝑠∈𝑇𝑆𝑖∈𝐼𝑘∈𝐾𝑑∈𝐷 (21)

From (10), the total number of lectures in the school is the summation of the total number of lectures of all

classrooms, as given by:

Ω = ∑ 𝑇𝐿𝑐 ; ∀ 𝑐 ∈ 𝐶𝑐∈𝐶 (22)

As a result, the probability to schedule the lectures of the next instructor (f+1) is:

𝑃𝑓+1 = (
1

ḽ −𝑓
) (

Ω −𝑧 − ∑ 𝑇𝐿𝑓
𝑓
1

Ω
) (23)

where z is the number of lectures reserved for instructor (f+1) in the process.

Once the total number of lectures is calculated, an ILL function will find the index for last lecture

for each classroom, i.e., the time slot of the last lecture within the week, in order to initialize instructor’s

timetables and class timetables as well as that for the school as a whole. A new parameter is assigned (𝑂(Ҫ))
to distributes the class lectures 𝑇𝐿𝑐 over the five weekly days even handedly to find the maximum time slots

for one working day. Then, where there remain lectures unaccounted for, the ILL increases the maximum

number of time slots by one, and distributes these lectures over there maining instructors starting from

the first day of the week, such that:

𝐼𝐿𝐿𝑐 = {

𝑇𝐿𝑐

5
; 𝑖𝑓 𝑚𝑜𝑑 (

𝑇𝐿𝑐

5
) = 0

𝑇𝐿𝑐

5
+ 1; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (24)

where 𝐼𝐿𝐿𝑐 is the maximum number of time slots of class c for any working day. For the entire school,

the index for the last lecture 𝐼𝐿𝐿𝑠 is given by:

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6558 - 6573

6564

𝐼𝐿𝐿𝑠 = 𝑀𝑎𝑥(𝐼𝐿𝐿𝑐); ∀ 𝑐 ∈ 𝐶 (25)

The NLLI Function in general counts how many weekly lectures are scheduled to take place in time

slot 𝐼𝐿𝐿𝑠for the whole school, and then it distributes these lectures amongst instructors even-handedly.

This happens commensurate with the fairness criterion that warrants that the lecture distribution process is

bias free devoid of any favoritism practices, per the soft constraints in section 2. As a result of this function,

each instructor gets his/her own share of the Number of Last Lectures (NLL). First, the number of all lectures

that take place 𝐼𝐿𝐿𝑠time slot across the school is given by:

𝑁𝐿𝐿𝑠 = ∑ ∑ 𝐼𝐿𝐿𝑐 ; ∀ 𝑐 ∈ ҪҪ
𝑐=1

5
𝑑=1 (26)

Then for all instructors, if instructor i teaches a class such that 𝐼𝐿𝐿𝑐 = 𝐼𝐿𝐿𝑠, then the number of

instructors who teach lectures in that classroom within that time slot is given by:

𝑁𝑜𝐼 = 𝑁𝑜𝐼 + 1 (27)

where there still exists cases of more lectures than there are instructors, then the remaining non-distributed

lectures are distributed randomly across instructors, such that the random probability to select any one of

them is:

𝑅𝑃𝑖 =
1

𝑁𝑜𝐼
 (28)

4.2. The initial state phase (ISP)

Initially, and as explained in [16, 17], the first step is to create a random initial solution and then

perform additional operations on it with the objective of satisfying the hard constraints thereby arriving at

the correct initial solution [18]. In fact, this has been a rather time-consuming method. In the proposed

technique, the initial solution which is created in the initial state phase (ISP), keeps all hard constraints

devoid from any violations so as to maintain integrity and correctness of the timetable structure throughout.

The ISP process can be split into three main parts in a way that would underscore its rather important

functions:

4.2.1. Common break array (CBA)

When an instructor is picked and a specific classroom is identified, a two-dimensional array called

the common-break-array (CBA) is generated. First, the instructor timetable and the classroom timetable

contain three types of time slots as shown in Figure 1(a) and 1(b): time slots reserved for the classroom

(TSRC), time slots reserved by the instructor (TSRI) and also the remaining non-reserved time slots (NRTS).

When the instructor timetable is overlapped with a classroom timetable, the common break array (CBA) will

be generated as shown again in Figure 1(c). Now, the generated CBA has two types of Time Slots:

a Non- Reserved time slot that is represented by Y/Yes and a reserved time slot (by either an instructor or

a classroom) that is represented by an N/No as illustrated by (29).

𝐶𝐵𝐴𝑑,𝑠
𝑐 = 𝑇𝐵𝐿𝑑,𝑠

𝑖  𝑇𝐵𝐿𝑑,𝑠
𝑐 (29)

where, 𝑇𝐵𝐿𝑑,𝑠
𝑖 is instructor i’s timetable and 𝑇𝐵𝐿𝑑,𝑠

𝑐 is classroom c’s occupancy timetable as given in (30)

and (31), respectively.

4.2.2. Time slot selection (STS) function

The STS is an important function that offers several advantages in the proposed technique, amongst

which that of minimizing the search space, per equation 30, by avoiding time slots with a label of (N) in

the CBA; as a consequence, the execution time is further reduced. Furthermore, the STS function avoids

simultaneous classroom and instructor conflicts (clashes) as it only searches for the set of time slots that still

exhibit the label (Y) in the CBA, say YCBA, which means that these time slots are still Non-Reserved, as is

given by (31).

Ω𝑖(𝐶𝐵𝐴𝑑,𝑠
𝑐) = |𝑇𝐵𝐿𝑑,𝑠

𝑖 | × |𝑇𝐵𝐿𝑑,𝑠
𝑐 | (30)

𝑌𝐶𝐵𝐴𝑑,,𝑠,
𝑐 ∶ 𝐷, → 𝑇𝑆 ,, 𝑑, → 𝑠 , (31)

Int J Elec & Comp Eng ISSN: 2088-8708 

Courses timetabling based on hill climbing algorithm (Abdoul Rjoub)

6565

𝑌𝐶𝐵𝐴𝑑,,𝑠,
𝑐  𝐶𝐵𝐴𝑑,𝑠

𝑐

where 𝐷,(𝑑,) = 1,… , ɖ is days that have 𝑇𝑆 ,(𝑠 ,) = 1,… , 𝓈 non reserved time slots.

Figure 1. Common-break-array (CBA) implementation

Once the CBA is generated per section 4.2.1, the (STS) adopts one random Non-Reserved Time Slot

from the CBA in order to check if a particular timeslot is appropriate (valid) for the class/course. When this

occurs, the course will be assigned to this time slot. As a result, this time slot will be mapped to

the classroom and instructor timetables and updated in the CBA with an (N); otherwise this time slot will be

updated by the CBA with a (U/Under demand). This procedure will be repeated until all time slots start

exhibiting either (N or U). Figure 2 illustrates an example that schedules a Phy Course at three lectures per

week. S0: Designate the CBA array that is created per section 4.2.1. S1: Divide the CBA into five nodes to

represent the working days per week. S2: Remove all time slots with the label N (Reserved Time Slots).

S3: In order to schedule the first lecture of the Phy course, the STS function designates TS3 for Thursday,

TS3 will be implicitly updated with label (N) and then removed from search space. Note that this day

becomes empty, and, consequently, the STS function neglects any further consideration of it and the search

space is restricted only to four days. In S4: The STS continues to schedule the second lecture of the Phy

course. It designates as TS4 for Sunday; TS4 is then updated implicitly with label (N) and then will, again,

be removed from search space. S5: The STS designates TS2 for Tuesday in order to schedule the last lecture

of the Phy course. TS2 is finally implicitly updated with a label of (N) which will consequently be removed

from search space. S6: Displays the end result of the CBA process. In fact, such subset of CBA would only

be available if the corresponding subsets of the instructor and classroom timetables are both available,

such that

 𝑌𝐶𝐵𝐴𝑑,,𝑠,
𝑐 = 𝑌𝑇𝐵𝐿𝑑,,𝑠,

𝑖  𝑌𝑇𝐵𝐿𝑑,,𝑠
𝑐 ,

 (32)

where

𝑌𝑇𝐵𝐿𝑑,,𝑠,
𝑖  𝑇𝐵𝐿𝑑,𝑠

𝑖 represents all available non-reserved time slots for instructor i’s timetable which is filled

by a(–)denotation.

𝑌𝑇𝐵𝐿𝑑,,𝑠
𝑐  𝑇𝐵𝐿𝑑,𝑠

𝑐 represents all available non-reserved time slots in class c’s timetable which is filled with

a(–)denotation.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6558 - 6573

6566

Figure 2. Select time slot (STS) function

So, instead of searching ∑ 𝓈𝑑
5
𝑑=1 , it is needed to search ∑ 𝓈᾽𝑑

ɖ
𝑑=1 , where 𝓈𝑑 is the total number of

taught time slots during day d, and 𝓈᾽𝑑 is the number of available non-reserved time slots for day d.

The relative percent improvement can be measured as

Relative Percent𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (ε) =
|∑ 𝓈𝑑 − ∑ 𝓈᾽𝑑

ɖ
𝑑=1

5
𝑑=1 |

∑ 𝓈𝑑
5
𝑑=1

× 100% (33)

The worst case will manifest itself during the initial state where all timeslots for both the instructor

and the classroom timetables would show as non-reserved status. On the other extreme, the best case will

appear when both timetables reflect the same timeslot, in which case the relative percent improvement would

approach 100%. As a result, the relative percent improvement achieved is:

|∑ 𝓈𝑑 − ∑ 𝓈᾽𝑑
ɖ
𝑑=1

5
𝑑=1 |

∑ 𝓈𝑑
5
𝑑=1

× 100% < 100% (34)

Now reverting to the Phy course which has three lectures per week, the STS function, in this case,

will be repeated three times in the process of updating the three tables (Instructor Timetable, Class Timetable

and CBA). In this example, the STS function commits TS4 for Sunday, TS2 for Tuesday and TS3 for

Thursday, with a final result as shown in Figure 3, noting that the red slots are used to denote the time slots

that have been changed.

Int J Elec & Comp Eng ISSN: 2088-8708 

Courses timetabling based on hill climbing algorithm (Abdoul Rjoub)

6567

Figure 3. Final result after setting 3 lectures of phy course

4.2.3. Swap time slots function for two instructors (STSI)

When the STS function fails to select appropriate time slots from CBA, then it would be essential to

execute the STSI function. This function deals with potentially emerging cases of two instructors showing at

the same time and strives to swap around the time slots between them. As another example, Figure 4 outlines

the process of scheduling a Math course with five lectures per week for instructor (Mr. Jack) and classroom

(C6). The first four lectures for this Math course are already scheduled through the CBA process using

the STS function (those colored as green), where the last lecture is shown to have failed, where it would

require the help of the STSI function. The following steps serve to outline this process.

In S1, the process begins by loading Mr. Jack’s and C6 timetables. S2 selects a Non-Reserved time

slot from Mr. Jack timetable and fetches the corresponding course from the C6 timetable, in which case

the Time Slot would be TS4 as colored in red where the corresponding course is Art). This is fulfilled by:

〈𝑑∗, 𝑠∗〉 = 𝑌𝑇𝐵𝐿𝑑,𝑠
𝑖1  𝑇𝐵𝐿𝑑,𝑠

𝑐 (35)

where i1 represents the instructor to be scheduled, which represents Mr. Jack in this case. The process then

fetches the instructor who teaches this course as shown in S3, who happens to be Mr. Liu). After loading Mr.

Liu’s timetable, the algorithm picks one Non-Reserved time slot from Mr. Liu’s and the C6 timetables that

overlaps in same time slot; here, the time slot happens to be Ts2 where it is colored in blue. This is summed

up by:

〈𝑑𝑠, 𝑠𝑠〉 = 𝑌𝑇𝐵𝐿𝑑,𝑠
𝑖2  𝑌𝑇𝐵𝐿𝑑,𝑠

𝑐 (36)

where i2 represents the instructor whose lecture will be swapped, which represents that for Mr. Liu, in this

case. In S4, now swap the contents of TS4 and TS2 for both Mr. Liu’s and the C6 Timetables so that TS4

becomes Non-Reserved, where the Art course will be set for TS2. Finally, in S5, set the Math course into

the timeslot TS4 for both Mr. Jack and C6 timetables. At the end of this process, the last lecture for the Math

course will be scheduled, such that:

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6558 - 6573

6568

𝑇𝐵𝐿𝑑∗,𝑠∗
𝑐 = 〈𝑖1, 𝑘𝑖1〉 (37)

𝑇𝐵𝐿𝑑𝑠,𝑠𝑠
𝑐 = 〈𝑖2, 𝑘𝑖2〉 (38)

As a result, the timetable for Mr. Jack is now updated to yield:

𝑇𝐵𝐿𝑑∗,𝑠∗
𝑖1 = 〈𝑐, 𝑘𝑖1〉 (39)

And the timetable for Mr. Liu is updated to become:

𝑇𝐵𝐿𝑑𝑠,𝑠𝑠
𝑖2 = 〈𝑐, 𝑘𝑖2〉 (40)

𝑇𝐵𝐿𝑑∗,𝑠∗
𝑖2 = 〈−〉 (41)

Figure 4. Swap time slots between two instructors (STSI) function

Going along the same procedure for all instructors, Figure 5 finally reflects the timetable for

classroom C6 exhibiting all instructors for a whole week, while Figure 6 finally reflects the timetable for Mr.

Smith alone. Towards the end of the ISP process, the number of instances for various operations is calculated

Int J Elec & Comp Eng ISSN: 2088-8708 

Courses timetabling based on hill climbing algorithm (Abdoul Rjoub)

6569

such that the number of lectures to be scheduled, the number of iterations to contrive initial solutions and

the number of set and swap actions in the various time slots in order to create all initial solutions would

ultimately culminate in the total number of instances needed to generate the entire school initial state.

Figure 5. Initial solution for class C6

Figure 6. Initial solution for Mr. Smith instructor

4.3. Satisfied soft constraints phase (SSCP)

Even though the initial solution, as unveiled in section 4.2, satisfies all hard constraints,

per the discussions of section 2, there would remain need to satisfy the soft constraints in order to increase

algorithm efficiency. To do that there is imminent need to resort to the MHCA process. The SSCP phase is

split into three parts: The L4 phase which distributes the total number of last lectures amongst instructors.

The L5-L9 phase which is used to improve the instructor’s timetable by accounting for the Instructor’s

preferences and the number of Daily work hours constraints as discussed in the soft constraints in section

2.The third phases panning L10-L13 is leveraged to improve the classroom timetable by considering

the preferences in the classroom constraints as discussed in the soft constraints section of section 2.

4.3.1. The set scientific courses (SSC) function

The SSC function is an important function that deals with scientific courses and moves them to

the first three time slots (early hours). Figure 7 illustrates an example of on improving Classroom C7

timetable using the SSC function:

- S0: The SSC function starts improvement by getting the C7 timetable.

- S1: SSC selects one day from the C7 timetable, say d^. In this example the day selected is Thursday.

- S2: SSC Separates all Courses in two main categories (S: Math and Bio) and colors them in pink while

those (NS: Sport, English, History, Arabic and Art) are colored in blue, such that:

 𝑇𝐵𝐿
𝑑^,𝑠
𝑐 = 𝑇𝐵𝐿

𝑑^,𝑠𝑒
𝑐 + 𝑇𝐵𝐿

𝑑^,𝑠𝑙
𝑐 (42)

where se represents the early time slots, and sl represents the late ones.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6558 - 6573

6570

Further, the process separates the Time Slots in two segments: (TS1-TS3 and TS4- TS7), such that:

 𝑇𝐵𝐿
𝑑^,𝑠
𝑐 = 𝑇𝐵𝐿

𝑑^,𝑠
𝑐 () + 𝑇𝐵𝐿

𝑑^,𝑠
𝑐 () (43)

where  represents the scientific courses, and represents non-scientific courses.

Figure 7. Set scientific courses (SSC) function

Then, SSC selects one S-Course from the second segment of the Time Slots (in this example is Bio

in TS5), 〈𝑑^, 𝑠 〉, and select one NS-Course from the first segment of Time Slots (Sport in TS1), 〈𝑑^, 𝑠 〉.
- S3: SSC fetches the corresponding instructor’s timetable for each course; Mr. Pascal who teaches sports

and Mr. David who teaches Bio. After that, it checks on whether TS5 is a Non-Reserved time slot in Mr.

Pascal’s timetable, and same for TS1 in Mr. David’s timetable. When this happens; The SSC function

goes right to S4 action. Otherwise, it starts out with the S2 action.

Int J Elec & Comp Eng ISSN: 2088-8708 

Courses timetabling based on hill climbing algorithm (Abdoul Rjoub)

6571

- S4: SSC swaps the courses between the TS1 and TS5 timeslots, so that the Bio course now takes place

in TS1 while the Sport course in TS5, such that:

𝑇𝐵𝐿
𝑑^,𝑠𝜑
𝑖𝜑 = 𝑇𝐵𝐿

𝑑^,𝑠𝜑
𝑐 , 𝑖𝑓𝑓 𝑇𝐵𝐿

𝑑^,𝑠𝜑
𝑖𝜑  𝑇𝐵𝐿

𝑑^,𝑠𝜑
𝑐 = 𝑌 (44)

𝑇𝐵𝐿

𝑑^,𝑠


𝑖


 = 𝑇𝐵𝐿

𝑑^,𝑠


𝑐 , 𝑖𝑓𝑓 𝑇𝐵𝐿

𝑑^,𝑠


𝑖


 𝑇𝐵𝐿

𝑑^,𝑠


𝑐 = 𝑌 (45)

- S5: SSC updates classroom’s C7 timetable.

By the end of the SSCP phase, the final solution for the entire School Timetable will be as

generated. Moreover, the number of instances for each type of soft constraints are calculated such as:

the number of scientific courses lectures to be considered in the early time slots, the number of non-scientific

course lectures to be considered in the late time slots, the number of time slots to satisfy Instructor

preferences, the number of time slot swaps required to satisfy the daily work hours constraint and the number

of last lectures to be distributed amongst instructors.

5. RESULTS AND DISCUSSION

The work which was developed to contrive the algorithm underlying the proposed technique was

based on Visual Studio and basically C#. It ran on personal computer of Intel Core i5, 4GB RAM, 0.5TB

HDD using Windows 10. It was designed so that it would accept a variable number of instructors,

classrooms, and courses. Various real examples were experimented with using this code taking into

consideration primary and secondary schools in Jordan and mainly in the district of Irbid. The achieved

results show that when primary schools were experimented with, different simulation parameters would be

achieved than in the case of secondary schools. At primary school level, it was possible to perform a massive

number of trials, where each run would cost 9 seconds of CPU time on average and actually

consumedaround407.19 KB of the memory. Performance of this technique was measured with respect to

four performance metrics:

a. The ratio of scientific lectures in the early time slots and the non-scientific lectures in the late time slots

In order to satisfy the constraint of scientific courses falling in early time slots, the proposed

technique was tested for four schools with 10 runs for each school. Table 3 illustrates the distribution of

course time slots. Here, it is evident that the smallest ratio of scientific courses in the early time slots was

registered in School 1, with the largest value recorded in School 3. The smallest ratio of non-scientific

courses in the late time slots was registered in School 1, with the largest ratio recorded in School 2.

These results signify that two primary factors actually have a pronounced bearing on this ratio:

- The ratio of scientific courses to non-scientific courses across the entire school.

- The ratio of early time slots in the school to the late time slots, as the early time slots are considered to

be just the first three time slots, while the late might constitute the time slots that follow, depending,

of course, on the overall number of time slots around the school.

Simulation results show that more than 75% of scientific courses were scheduled to convene during

the early time slots and more than 25% of non-scientific courses were scheduled to take place during the late

time slots. The simulations show also that the distribution of courses as a function of the time slots follows

a normal distribution, where the x-axis represents the number of lectures as shown where the curves are

centered on their averages. Some of these curves manifest overlapping characteristics in ways that would be

attributed to aforementioned factors that govern the distribution; such behavior appears more clearly in

the case of School 2, where the curve for the early scientific courses and that for the early non-scientific

courses overlap fairly completely.

Results show the normal distribution of early scientific and late non-scientifc courses over the four

schools that were subject of the study. As shown, 65.44% of scientific courses in all schools were distributed

duringearly time slots, while 58.21% of non-scientific courses in all schools were distributed during thelate

time slots.

b. The improvement in satisfying more soft constraints under each optimization, iteration as measured by

a reduction in the heuristic value.

By going through one more iteration, in this case from 1 to 2, the heuristic value is shown to

increase dramatically, where it is shown to increase by 50%. Now by jumping from iteration 2 to 4,

the heuristic value increases by 17%. Incrementing the number of iterations, yet more, from 4 to 8,

the simulation shows that the heuristic value remains fairly quite the same, which means that during these

iterations, no changes are bound to take place. On the 9th iteration, the heuristic value is increased by 12%

which readily implies that significant and less pronounced changes are taking place, where the heuristic

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6558 - 6573

6572

value remains the same up until the 14th iteration. At the 15th iteration the heuristic value gets increased by

23% which means again that the quality of the “best” solution as represented by the heuristic value becomes

rather limited. After the 15th iteration, the heuristic value remains the same at -17 which means that the best

solution is reached at that point.

c. Acceptability

In order to show the validity, usability and quality of this tool, 20 instructors who were actually

involved in the preparation of the school timetable in 6 schools, were solicited to attend to a questionnaire

entailing 9 items where their responses to a special questionnaire designed for this purpose. These responses,

as shown, readily reflect the satisfaction of the constituents involved with the outcome of the research work,

as presented in this paper.

6. CONCLUSION

The work proposed in this research effort has tackled the manual school scheduling (timetable

scheduling) problem by developing a system for administrators’ uses at schools to help them develop

the school timetable for each semester and have it readily for the upcoming semester in a more automated

manner. The proposed system was developed using various supporting technologies including SQL Server

2008, Visual Studio .NET and ASP .NET. This system leveraged the Hill Climbing Algorithm which

provided good results for different school sizes under various hard and soft constraints. The proposed

technique was found to save more time and effort by contriving multiple alternate versions of the school

timetable in minutes, with the end result of creating more handy timetables at reduced time costs.

ACKNOWLEDGEMENTS

This paper is funded by deanship of research, Jordan University of Science and Technology,

grant no. 145/2018.

REFERENCES
[1] A. Hiendro, “Projectile-target search algorithm: a stochastic metaheuristic optimization technique,” International

Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 5, pp. 3772-3778, 2019.

[2] Erwin, et al., “Hybrid Multilevel Thresholding and Improved Harmony Search Algorithm for Segmentation,”

International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 6, pp. 4593-4602, 2018.

[3] A. Schaerf, “Local search techniques for large high school timetabling problems,” IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans, vol. 29, no. 4, pp. 368-377, 1999.

[4] I. Chorbev, et al., “Solving the High School Scheduling Problem Modelled with Constraints Satisfaction using

Hybrid Heuristic Algorithms,” Greedy Algorithms Open Access Book, InTech Publisher, 2008.

[5] T. Song, et al., “An iterated local search algorithm for the University Course Timetabling Problem,” Applied Soft

Computing, vol. 68, no. 7, pp. 597-608, 2018.

[6] J. A. Soria-Alcaraz, et al., “Iterated local search using an add and delete hyper-heuristic for university course

timetabling,” Applied Soft Computing, vol. 40, no. 5, pp. 581-593, 2016.

[7] Y. Bykov and S. Petrovic, “A step counting hill climbing algorithm applied to university examination timetabling,”

Journal of Scheduling, vol. 19, no. 4, pp. 479-492, 2016.

[8] S. Eftekhari and M. O. Sadegh, “The effect of load modelling on phase balancing in distribution networks using

search harmony algorithm,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 3,

pp. 1461-1471, 2019.

[9] S. Abdullah and H. Turabieh, “Generating university course timetable using genetic algorithms and local search,”

in Third International Conference on Convergence and Hybrid Information Technology (ICCIT'08), vol. 1,

pp. 254-260, 2008.

[10] A. Rahimi, et al., “Using meta-heuristics for project scheduling under mode identity constraints,” Applied Soft

Computing, vol. 13, no. 4, pp. 2124-2135, 2013.

[11] K. Paul and N. Kumar, “Cuckoo Search Algorithm for Congestion Alleviation with Incorporation of Wind Farm,”

International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 6, pp. 4871-4879, 2018.

[12] P. A. Sonawane and L. Agha, “Hybrid Genetic Algorithm and TABU Search Almgorithm to Solve Class Time

Table Scheduling Problem,” International Journal of Research Studies in Computer Science and Engineering,

vol. 1, no. 4, pp 19-26, 2014.

[13] S. M. J. Moghaddam and S. Alipour, “Resource allocation in cloud computing using advanced imperialist

competitive algorithm,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 4,

pp. 3286-3297, 2019.

[14] F. F. Yeng, et al., “The saturation of population fitness as a stopping criterion in genetic algorithm,” International

Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 5, pp. 4130-4137, 2019.

Int J Elec & Comp Eng ISSN: 2088-8708 

Courses timetabling based on hill climbing algorithm (Abdoul Rjoub)

6573

[15] A. K. Ariyani, et al., “Hybrid Genetic Algorithms and Simulated Annealing for Multi-trip Vehicle Routing

Problem with Time Windows,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8,

no. 6, pp. 4713-4723, 2018.

[16] L. A. Bewoor, et al., “Comparative Analysis of Metaheuristic Approaches for Makespan Minimization for No Wait

Flow Shop Scheduling Problem,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7,

no. 1, pp. 417-423, 2017.

[17] R. Kumar and R. Kumar, “Optimizing requirement analysis by the use of meta-heuristic in search-based software

engineering,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 5, pp. 4336-4343,

2019.

[18] A. Schaerf, “Tabu search techniques for large high-school timetabling problems,” Technical Report, Centre for

Mathematics and Computer Science, Amsterdam, Netherlands, pp. 363-368, 1996.

[19] I. A. Joundan, et al., “A new efficient way based on special stabilizer multiplier permutations to attack the hardness

of the minimum weight search problem for large BCH codesIssam,” International Journal of Electrical and

Computer Engineering (IJECE), vol. 9, no. 2, pp. 1232-1239, 2019.

[20] W. Shao, et al., “An extended teaching-learning based optimization algorithm for solving no-wait flow shop

scheduling problem,” Applied Soft Computing, vol. 61, no. 12, pp. 193-210, 2017.

[21] R. Raghavjee and N. Pillay, “Using genetic algorithms to solve the South African school timetabling problem,”

in 2010 Second World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 286-292, 2010.

[22] K. Nguyen, et al., “Simulated annealing-based algorithm for a real-world high school timetabling problem,”

Second International Conference on Knowledge and Systems Engineering (KSE), pp. 125-130, 2010.

[23] A. Cerdeira-Pena, et al., “New approaches for the school timetabling problem,” Seventh Mexican International

Conference on Artificial Intelligence, pp. 261-267, 2008.

[24] Y. Zheng, et al., “Quantum-inspired genetic evolutionary algorithm for course timetabling,” Third International

Conference on Genetic and Evolutionary Computing, pp. 750-753, 2009.

[25] A. N. Fauziyah and W. F. Mahmudy, “Hybrid Genetic Algorithm for Optimization of Food Composition on

Hypertensive Patient,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 6, pp.

4673-4683, 2018.

