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 The effects of red light-emitting phosphor CaMgSi2O6:Eu2+,Mn2+ on  

the optical properties of single-layer remote phosphor structure (SRPS) and 

dual-layer remote phosphor structure (DRPS) are the focus of this study.  

The differences in color quality and luminous flux (LF) of white light-

emitting diodes (WLEDs) between these two structures are also revealed and 

demonstrated based on the Mie theory. SRPS consists of one mixed phosphor 

layer betweenCaMgSi2O6:Eu2+,Mn2+ andYAG:Ce3+particles, while DRPS 

includes two separated layers: red phosphor layer and yellow phosphor layer. 

In this work, 5% SiO2 is added into the phosphor layers to increase 

scattering abilities. Discrepancies in structures greatly affect the optical 

characteristics of WLEDs. The results showed that the color rendering index 

(CRI) increased with the concentration in both structures with nearly equal 

values. Meanwhile, color quality scale (CQS) of DPRS is 74 at ACCTs 

ranging from 5600K to 8500K, higher than CQS of SRPS which is only 71 at 

8500K. In addition, the luminous flux of DRPS is significantly higher than 

SRPS at 2% -14% of CaMgSi2O6:Eu2+,Mn2+. In summary, DRPS is better 

for color quality and lumen outputin comparison to SRPS and adding  

the right amount of red phosphor can enhance CQS and LF. 

Keywords: 

Color rendering index 

Luminous flux 

Dual-layer phosphor 

Mie-scattering theory 

WLEDs 

Copyright © 2020 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Nguyen Doan Quoc Anh,  

Faculty of Electrical and Electronics Engineering, 

Ton Duc Thang University, 

No. 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam. 

Email: nguyendoanquocanh@tdtu.edu.vn 

 

 

1. INTRODUCTION 

The light-emitting diodes that eject white light (WLEDs) are one of the most commonly used 

lighting solution in the lighting and display systems industry for their unique properties, including reliability, 

luminous efficiency, and energy efficiency, which is likely to replace older lighting techniques in 

the future [1-4]. However, there aremajor changes in WLEDs that can be made to reach the full potential 

including phosphor conversion and luminous efficiency [5-6], as well as improving color purity and price 

competitiveness against incandescent and fluorescent lamps [7-10]. In previous studies, quantum efficiency 

was enhanced using a phosphors synthesis methodology called exploiting flux [11-14] and inventing a novel 

phosphor. Researchers have recently adjusted the configuration of LED tools by modifying the gap between 

the phosphor material and the lighting emitting chip, creating a new type of LED named remote-type LED 
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which works on the scattered photon extraction concept and improves the quantum efficiency of WLED up to 

60% by boosting the back-scattered photons extraction efficiency [15]. 

Enhancing brightness and luminous efficiency also relies upon the color quality. A notable method 

that usually appliedin WLED production is emerging the blue light of InGaN LED chip with the yellow 

green light from a phosphor; however, the red light lack these elements [16]. Therefore, it is essential that red 

phosphor and green-yellow phosphor are combined in order to yield better color quality. The process that 

produce the compound of these two phosphors, however, damages the obtained light from emission process 

due to a part of light emitted from one phosphor is reabsorbed by another causing an overlap of phosphor 

spectrawhich leads tolow color quality [17]. A possible solution is stacking the layers of phosphor materials 

in the order of red phosphor layer below the green one to enhance the efficiency. This pattern suggests that 

the layer of red phosphor can reduce the reabsorption of light from green phosphor if placed directly above 

the chip [18]. Nevertheless, stacked phosphor layers model cannot be re-implemented for copyright and 

patents reasons to avoid risks related to law violations, [8], which forces us to look for a new method named 

phosphor-in-glass (PiG) to improve the chromatic quality and heat performance in WLED configuration with 

remote phosphor layers [19-20]. Not only does PiG benefit the luminous efficacy and thermal stability of 

WLEDs but it also offers color quality advantages that very few research papers have mentioned or proved. 

In this study, optical properties such as luminous efficiency and color quality of WLEDs are improved by 

utilizing a new technique called dual-layer remote phosphor structure (DRPS). Besides, the comparison of 

optical characteristics between SRPS (single remote phosphor structure) and DRPS is also clearly presented 

and demonstrated based on Mie scattering theory. 

 

 

2. DETAIL OF SIMUALTION 

2.1. Simulation of SRPS and DRPS 

As can be seen from Figure 1(a), the WLED simulation with remote phosphor structuresthat have 

the average CCTs of 5600 K, 6600 K,7000 K, 7700 K, and 8500 Kwas made from a commercial software 

utilizing the Monte Carlo ray-tracing method, the LightTools 8.1.0. Figure 1(b) depicted the 3-D simulation 

physical model of WLEDs used to perform optical simulations of remote package WLEDs. SRPS consists of 

a single phosphor layer in which CaMgSi2O6:Eu2+,Mn2+ are mixed with YAG:Ce3+ compound as illustrated 

in Figure 1 (c). On the other hand, according to Figure 1 (d), DRPS includes two separated layers of red 

phosphor and yellow phosphor.This realistic model of WLEDs consists ofan 8 mm long reflector at the sole, 

2.07 mm high, and 9.85 mm long at its top surface. As depicted in Figure 1(d), the thickness for each layer of 

remote phosphor is 0.08 mm with nine LED chips, each of them has 1.16 W radiant power at 455 nm 

wavelength, a square sole of 1.14 mm, and is 0.15 mm high bounded to the spaces at the botton of  

the reflector.When the SiO2 concentration in the mixture of phosphor is fixed at 5%, the concentration of 

CaMg phosphor climbs ceaselessly from 2% to 30%. However, the average CCT values are stabilized with 

the modification of YAG:Ce3+ wt. 
 

 

    
(a) (b) (c) (d) 

 

Figure 1. a) Photograph of WLEDs sample, (b) Simulation of the WLEDs using LightTools program,  

(c) Illustration of SRPS with SiO2 (green) and CaMgSi2O6:Eu2+,Mn2+ (red) in YAG:Ce3+ compound (yellow), 

(d) Illustration of DRPS with SiO2 in CaMgSi2O6:Eu2+,Mn2+ compound and YAG:Ce3+ compound. 
 

 

Next, the LightTools 8.5.0 software is applied to simulate the particles properties of SiO2 and 

CaMgSi2O6:Eu2+,Mn2+. The refractive index of SiO2 and CaMgSi2O6:Eu2+,Mn2+ phosphor is 1.54 and 1.80 

respectively. The SiO2 particles have spherical shape with a 3 µm average radius in the Mie simulation while 

the YAG:Ce3+ phosphor particles have an average radius of 7.25 μm with consistent 1.38 refractive index at 

every wavelengths, and the refractive index for the silicone glue is 1.5. To keep the average CCT value steady, 

it is vital to vary the diffusional particle density in the direction of increasing the weight of the diffuses to 

increase their percentage while lessening the weight of YAG:Ce3+ phosphor to retain the balance. 
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2.2. Preparation of CaMgSi2O6:Eu2+,Mn2+ phosphor 

Ordinarily, red-emitting phosphor CaMgSi2O6:Eu2+,Mn2+ is suitable for high loading and long 

lifetime fluorescent lamps because of the outstanding properties in quantum efficiency or chemical and 

thermal stability [11]. The CaMgSi2O6:Eu2+,Mn2+ composition,which is supposedly a substance that can 

enhance the luminous efficacy of WLEDs,is created through the chemical processes between different 

materials such as CaO, MgO, SiO2, Eu2O3, MnCO3 and NH4Cl. The CaMgSi2O6:Eu2+,Mn2+ phosphor 

composition is calculated in detail as can be seen from Table 1. The fabrication of CaMgSi2O6:Eu2+,Mn2+ 

must be taken in order of six separate steps: mixing, drying, firing twice, washing and drying again to get  

the best result, each of them plays an essential role and closely relates to the preceding step(s). This order is 

presented specifically as follows: (1) Mix the materials by slurrying them in methanol with the focus on 

soaking with a few cubic centimeters water; (2) Dry the mixture in the air until it completely gets drained; 

(3) Fire the dried materials in capped quartz tubes under the condition of N2 at 1000ºC within an hour; 

(4) Fire this compound again in capped quartz tubes n an hour but with CO at 1150ºC. (5) Collect and wash 

with water to remove residue and dust. (6) Wait until the materials dry and we achieve CaMgSi2O6:Eu2+,Mn2+. 

 

 

Table 1. Composition of the red-emitting CaMgSi2O6:Eu2+,Mn2+phosphor 
Ingredient Mole (%) By weight 

(g) 

Molar mass  

(g/mol) 

Mole 

(mol) 

Ions Mole 

(mol) 

Mole 

(%) 

CaO 26,659 64 56.0774 1.141 Ca2+ 1.141 0.106 

MgO 23.183 40 40.304 0.992 Mg2+ 0.992 0.092 

SiO2 48.989 126 60.08 2.097 Si4+ 2.097 0.195 

Eu2O3 0.234 3.5 351.926 0.01 O2- 6.478 0.601 

MnCO3 0.935 4.6 114.9469 0.04 Eu2+ 0.02 0.002 

NH4Cl -- 21.4 53.49 -- Mn2+ 0.04 0.004 

 

 

3. SCATTERING COMPUTATION 

The scattering coefficient μsca(λ), anisotropy factor g(λ), and reduced scattering coefficient 

δsca(λ)according to Mie theory [21-25] can be defined by applying expressions (1-3): 

 

 (1) 

 

 (2) 

 

 (3) 

 

where N(r) indicates the density of distributed diffusional particles (mm3), Csca is the scattering cross sections 

(mm2), p(θ,λ,r) is the phase function, λ is the light wavelength (nm), r is diffusional particles radius (µm), θ is 

the scattering angle (°C), and f(r) is the function describe the diffusor distribution of size in the phosphor 

layer, which can be calculated as follows: 

 

 (4) 

 

 (5) 

 

The function N(r) are compiled by the density ofdiffusive particle Ndif(r) and phosphor particle Nphos(r). fdif(r) 

and fphos(r) are functions fordiffusor and phosphor particle  size distribution. KN is the diffusor unitsin one 

diffusor concentration and is defined by: 
 

  (6) 
 

where M(r) is the diffusive unit spatial distribution of mass, proposed by equation: 
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  (7) 
 

ρdiff(r) and ρphos(r)describethe diffusor and phosphor density.  

In Mie-scattering theory, Csca can be achieved as a results of the equation below: 
 

  (8) 
 

where k = 2π/λ, and an and bn are estimated by: 
 

 (9) 
 

 (10) 
 

Which have the refractive indexx= k.rm, andRiccati - Bessel function  and . It can be 

seen from Figure 2 that the scattering coefficients at453 nm, 555 nm, and 680 nm wavelengthsincrease 

dependently on the CaMgSi2O6:Eu2+,Mn2+ phosphor concentration. The scattering effects of 

CaMgSi2O6:Eu2+,Mn2+ and SiO2 particles cause considerable influence on RP-WLEDs. Particularly, the red 

light from CaMgSi2O6:Eu2+,Mn2+ has better absorbing capability than the light radiation of LED and therefor, 

the will be abundant red light which can be used to compensate for deficiency in RP-WLEDs. Furthermore, 

5% wt. of SiO2 was added to enhance the scattered light, resulting in a rise assimilated light of pc-LEDs, 

which is the reason why CaMgSi2O6:Eu2+,Mn2+ and SiO2 particles are utilized to yield white LEDs with 

better color quality. Next, the anisotropy factor of CaMgSi2O6:Eu2+,Mn2+ particles for wavelengths of 453nm, 

555nm, and 680nm was presented in Figure 3, which indicates the anisotropy factor values at 680nm 

wavelength increases in comparison to 555nm values. In comparison with other wavelengths, the anisotropy 

factor values obtained at 453nm wavelength is the highest, which means CaMgSi2O6:Eu2+,Mn2+ particles are 

favorable to the color homogeneity of remote phosphor WLEDs. 

 

 

  

 

Figure 2. Scattering coefficients of 

CaMgSi2O6:Eu2+,Mn2+ of 453 nm, 555 nm,  

and 680 nm wavelengths 

 

Figure 3. Anisotropy scattering of 

CaMgSi2O6:Eu2+,Mn2+of 453 nm, 555 nm,  

and 680 nm wavelengths 

 

 

The refractive index of silicone (nsil) in SRPS and DRPS is 1.53 while nphos is the refractive index of 

the phosphor particles. Therefore, the relative refractive values of diffusive particles (mdif) and phosphor 

(mphos) in the silicone can be computed from  and . Then the phase 

function is expressed as follows: 

34
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where , S1(θ) and S2(θ) are the angular scattering amplitudes calculated by the following 

equations: 

 

  (12) 

 

  (13) 

 

 (14) 

 

 

4. RESULTS AND DISCUSSION 

Figure 4 showed that the reduction in scattering coefficient of CaMgSi2O6:Eu2+,Mn2+at 453nm, 

555nm, and 680nm wavelengths are nearly equal, creating the scattering stability of CaMgSi2O6:Eu2+,Mn2+, 

which is beneficial for the chromatic performance of remote phosphor WLEDs. The angular scattering 

amplitudes of CaMgSi2O6:Eu2+,Mn2+ are also computed by MATLAB program after that. According to  

the obtained results, CaMgSi2O6:Eu2+,Mn2+ particles are greatly advantageous to the blue-light scattering. As 

known, a large amount in blue light can lessen the effect of yellow ring. Meanwhile, CaMgSi2O6:Eu2+,Mn2+ 

particles not only compensate to the red-light but also to the blue-light, as shown in angular scattering 

amplitudes within Figure 5. These calculations demonstrating the results from Figure 6 to Figure 8. 

 

 

  
 

Figure 4. Reduced scattering coefficient of 

CaMgSi2O6:Eu2+,Mn2+of 453nm, 555nm, and 680nm 

wavelengths 

 

Figure 5. The angular scattering amplitudes of 

CaMgSi2O6:Eu2+,Mn2+of 453nm, 555nm, and 680nm 

wavelengths 

 

 

The discrepancy in CRI values between the SRPS and DRPS shown in Figure 6 is negligible. 

When increasing the concentration of CaMgSi2O6:Eu2+,Mn2+up to 22%, CRI of SRPS and DRPS tend to 

climb up, especially with the highest ACCT at 8500 K, which have an important meaning in improving CRI 

for both SRPS and DRPS. While CRI is hard to control at high ACCT (8500 K), phosphor 

CaMgSi2O6:Eu2+,Mn2+can definitely make it possible. However, CRI is just one of the indicators used to 

evaluate the color quality, which has recently been replaced by a newerquality indicator called CQS. 
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(a) (b) 

 

Figure 6. CRI values of SRPS (a) and DRPS (b) grow with CaMgSi2O6:Eu2+,Mn2+concentration 

 

 

CQS involves three elements: CRI, viewers' preference, and color coordinates, making it becomes 

the most critical indicator to assess color quality. As known, the CRI value of SRPS continues to increase 

when CaMgSi2O6:Eu2+,Mn2+concentration exceeds 30% while the CRI value of DRPS has a tendency to drop 

at all ACCTs after this concentration limit. This is the same to CQS as the results ofSRPS and DRPS CQS 

interactions with CaMgSi2O6:Eu2+,Mn2+concentrationare shown in Figure 7. SRPS can yield the highest CQS 

of 71 at CCT 8500K while 74 is the highest CQS value of DRPS at most ACCTs. Thus, it can be concluded 

that DRPS brings greater color quality than SRPS.As illustrated in Figure 6 and Figure 7, CRI and CQS go 

up sharply when the red phosphor concentration is adjusted in the range of 2% - 30 %. The greatest value of 

CRI and CQS were respectively 85 and 71 at 30% CaMgSi2O6:Eu2+,Mn concentration while the highest 

angular scattering amplitudes of CaMgSi2O6:Eu2+,Mn is achieved at 453 nm wavelength as mentioned in 

Figure 5, which means the blue-light scattering is benefited from the added CaMgSi2O6:Eu2+,Mn 

concentration as well, bringing not only advantages for chromatic performance improvements but also light 

output. The backscattering event, however, will occur in SFPS if CaMgSi2O6:Eu2+,Mn concentration exceeds 

14% causinglight loss and resulting in reduced luminous flux which can be observed from the lumen output 

values of SRPS and DRPS expressed in Figure 8. 

 

 

  

(a) (b) 

 

Figure 7. CQS values of SRPS (a) and DRPS (b) grow with CaMgSi2O6:Eu2+,Mn2+concentration 

 

 

As a result, the luminous flux increases sharply at first, then reaches the peak value and finally goes 

down slightly, as depicted in Figure 8 (a). Figure 8 (b) depicted a sharp reduction in DRPS brightness when 

increasing the concentration of red phosphor CaMgSi2O6:Eu2+,Mn2+, which is the result of a noticeable 

decrease in energy from transmitting light through the red phosphor layer. However, at 2-14% 

CaMgSi2O6:Eu2+,Mn2+, luminous flux of DRPS is always greater than SRPS at all ACCTs. Therefore, DRPS 

provides both higher brightness and CQS for WLEDs than SRPS. 
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(a) (b) 

 

Figure 8. Lumen outputs of SRPS (a) and DRPS (b) with CaMgSi2O6:Eu2+,Mn2+concentration 

 

 

5. CONCLUSION 

To sum up, this study has focused on solving two problems: (1) comparing CQS and LED optical 

performance of SRPS and DRPS, and (2) analyzing the effect of red phosphor CaMgSi2O6:Eu2+,Mn2+ on 

CQS and LF of these two structures. Both phosphor structure and phosphor concentration should be 

simultaneously modified till an appropriate value to achieve the desired CQS and LE. The results showed 

that CRI and CQS go up when raising the CaMgSi2O6:Eu2+,Mn2+ concentration. DRPS yields a CQS of  

74 at ACCTs ranging from 5600K to 8500K but it causes a significant decrease in LF. However,  

this structure always brings higher luminous flux than SRPS does at all ACCTs with about 2-14%  

of CaMgSi2O6:Eu2+,Mn2+. This result is demonstrated through the scattering properties of 

CaMgSi2O6:Eu2+,Mn2+ including the scattering coefficient μsca(λ), anisotropy factor g(λ), reduced scattering 

coefficient δsca(λ), and the angular scattering amplitudes S1(θ) and S2(θ). In conclusion, the CRI of SRPS and 

DRPS are almost equivalent while the CQS and LF of DRPS outperform that of the SRPS. Therefore,  

the concentration of CaMgSi2O6:Eu2+,Mn2+ must be selected appropriately to achieve the desired  

CQS and LF. 
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