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1. INTRODUCTION  

Throughout this paper by a space we mean a topological space. Let (𝑋, 𝜏) be a space. (𝑋, 𝜏) is 

homogeneous [1] if for any two points 𝑥, 𝑦 ∈ 𝑋 there exists a homeomorphism 𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) such that 

𝑓(𝑥) = 𝑦. (𝑋, 𝜏) is strongly locally homogeneous (abbreviated: SLH) [2] if 𝜏 has a base 𝜎 such that for each 

𝐴 ∈ 𝜎 and points 𝑥, 𝑦 ∈ 𝐴, there exists a homeomorphism 𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) such that 𝑓(𝑥) = 𝑦 and  𝑓|𝑋−𝐴 

equal to the identity. A separable space (𝑋, 𝜏) is countable dense homogeneous (abbreviated: CDH) [3] if 

given any two countable dense subsets 𝐴, 𝐵 of 𝑋, there is a homeomorphism 𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) such that 

𝑓(𝐴) = 𝐵. [4-17] are some recent works related to the above concepts. Let 𝑓: (𝑋, 𝜏₁) → (𝑌, 𝜏₂) be a function. 

Then 𝑓 is slightly continuous [18] if the inverse image of every clopen subset of (𝑌, 𝜏₂) is a clopen subset of 

(𝑋, 𝜏₁). 𝑓 is slightly homeomorphism [19] if 𝑓 is a bijection and 𝑓 and 𝑓⁻¹ are slightly continuous. There are 

some papers in the literature where the definition of a homogeneous space is modified in the manner that  
the role of homeomorphisms is given to prehomeomorphisms ([20] and [21]) or semihomeomorphisms [22].  

In [19], the authors used slightly homeomorphisms to introduce slightly homogeneous spaces and slightly 

countable dense homogeneous spaces. In this paper, we will use slightly homeomorphisms to introduce 

slightly strongly homgeneous spaces and two new types of slightly countable dense homogeneous spaces. 

Throughout this paper, for any space (𝑋, 𝜏) and 𝐴 ⊆ 𝑋, |𝐴| will denote the cardinality of 𝑋 and  𝜏𝐴 will 

denote the subspace topology on 𝐴 relative to 𝜏. Moreover, for a subset 𝐴 of ℝ we write (𝐴, 𝜏𝑢) to denote  

the subspace topology on A relative to the usual topology. For a non-empty set 𝑋, 𝜏𝑑𝑖𝑠𝑐 will denote  

the discrete on 𝑋. 

PROPOSITION 1.1. [19] If 𝑓: (𝑋, 𝜏₁) → (𝑌, 𝜏₂) is a bijective function such that (𝑋, 𝜏₁) and (𝑌, 𝜏₂) are both 

connected, then 𝑓 is a slight homeomorphism. 

PROPOSITION 1.2. [19] Every homeomorphism is slight homeomorphism. 

PROPOSITION 1.3. [23] Every connected SLH space is homogeneous. 
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PROPOSITION 1.4. [19] If 𝑓: (𝑋, 𝜏₁) → (𝑌, 𝜏₂) is a slight homeomorphism such that (𝑋, 𝜏₁) and (𝑌, 𝜏₂) are 

zero dimensional spaces, then 𝑓 is a homeomorphism. 

Definition 1.5. [19] A space (𝑋, 𝜏)  is said to be slightly homogeneous if for any two points 𝑥, 𝑦 ∈ 𝑋, there 

exists a slight homeomorphism 𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) such that 𝑓(𝑥) = 𝑦. A subset of a space (𝑋, 𝜏), which has 

the form , 𝑆𝐶𝑥 = {𝑦 ∈ 𝑋: there is a slight homeomorphism 𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) such that 𝑓(𝑥) = 𝑦} is called 

the slightly homogeneous component of 𝑋 at 𝑥. 

Definition 1.6. [19] A separable space (𝑋, 𝜏) is said to be slightly countable dense homogeneous 

(abbreviated: SCDH) if given any two countable dense subsets 𝐴, 𝐵 of 𝑋, there is a slight homeomorphism 

𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) such that 𝑓(𝐴) = 𝐵. 

PROPOSITION 1.7. [24] Every zero-dimensional CDH space is SLH. 

PROPOSITION 1.8. (a) [19] Every CDH space is SCDH but not conversely. (b) [4] Every zero-dimensional 

SCDH space is CDH. 

PROPOSITION 1.9. [19] Every zero-dimensional slightly homogeneous space is homogeneous 

PROPOSITION 1.10. [24] Every zero dimensional homogeneous space that is 𝑇₀ is SLH. 

PROPOSITION 1.11. [19] If 𝑓: (𝑋, 𝜏₁) → (𝑌, 𝜏₂) is a slight homeomorphism, 𝐴 is a clopen subset of 𝑋 and 

𝑓(𝐴) is a clopen subset of Y, then the restriction function on 𝐴, 𝑓|𝐴: (𝐴, (𝜏₁)𝐴) → (𝑓(𝐴), (𝜏₂)𝑓(𝐴)) is a slight 

homeomorphism. 

PROPOSITION 1.12. [19] Let (𝑋, 𝜏) be a space and 𝐴 be a clopen subset of 𝑋. If 𝑓₁: (𝐴, 𝜏𝐴) → (𝐴, 𝜏𝐴) and 

𝑓₂: (𝑋 − 𝐴, 𝜏𝑋−𝐴) → (𝑋 − 𝐴, 𝜏𝑋−𝐴) are slight homeomorphisms. Then 𝑓₁ ∪ 𝑓₂: (𝑋, 𝜏) → (𝑋, 𝜏) is a slight 

homeomorphism. 

PROPOSITION 1.13. [19] Let 𝑈 be a non-empty clopen subset of a space (𝑋, 𝜏). If 𝑆𝐶𝑥 is a slightly 

homogeneous component of x∈X and 𝑈 ⊆ 𝑆𝐶𝑥, then 𝑆𝐶𝑥 is open in 𝑋. 

PROPOSITION 1.14. [23] (ℝ, 𝜏𝑢) is a CDH space. 

PROPOSITION 1.15. [23] (ℚ 𝑐 , 𝜏𝑢) is CDH. 

Definition 1.16. [25] Let {(𝑋𝛼 , 𝜏𝛼): 𝛼 ∈ 𝛬} be a collection of spaces such that 𝑋𝛼 ∩ 𝑋𝛽 = ∅ for all 𝛼 ≠ 𝛽.  

Let 𝑋 = ⋃𝑋𝛼 be topologized by {𝑈 ⊆ 𝑋: 𝑈 ∩ 𝑋𝛼 ∈ 𝜏𝛼 for all 𝛼 ∈ 𝛬}. Then (𝑋, 𝜏) is called the disjoint sum of 

the spaces (𝑋𝛼 , 𝜏𝛼), 𝛼 ∈ 𝛬. 

PROPOSITION 1.17. [19] Let {(𝑋𝛼 , 𝜏𝛼): 𝛼 ∈ 𝛬} be a collection of slightly homogeneous spaces with 𝑋𝛼 ∩
𝑋𝛽 = ∅  and (𝑋𝛼 , 𝜏𝛼) is slightly homeomorphic to (𝑋𝛽 , 𝜏𝛽) for all 𝛼, 𝛽 ∈ 𝛬. Then the disjoint sum of  

the spaces {(𝑋𝛼 , 𝜏𝛼): 𝛼 ∈ 𝛬} is slightly homogenous. 

PROPOSITION 1.18. [19] Every connected space is slightly homogeneous. 
 

 

2. SLIGHTLY STRONGLY LOCALLY HOMOGENEOUS SPACES 

Definition 2.1. A space (𝑋, 𝜏) is said to be slightly strongly locally homogeneous (SSLH) if for all 𝑝 ∈ 𝑋 and 

𝑈 an open neighborhood of 𝑝, then there is an open set 𝑉 in 𝑋 with 𝑝 ∈ 𝑉 ⊆ 𝑈 such that if 𝑞 ∈ 𝑉, there exists 

a slight homeomorphism ℎ: (𝑋, 𝜏) → (𝑋, 𝜏) such that ℎ(𝑝) = 𝑞 and ℎ(𝑥) = 𝑥 for all 𝑥 ∈ 𝑋 − 𝑉. 

THEOREM 2.2. Being "SSLH" is a topological property. 

Proof. Let (𝑋, 𝜏₁) be an SSLH space and let (𝑌, 𝜏₂) be any space homeomorphic to (𝑋, 𝜏₁). Let 𝑦₀ ∈ 𝑌 and 

let 𝑈 be an open subset of 𝑌 with 𝑦₀ ∈ 𝑈. Let 𝑓: (𝑋, 𝜏₁) → (𝑌, 𝜏₂) be a homeomorphism. Then 𝑓⁻¹(𝑦₀) ∈
𝑓⁻¹(𝑈), which is open in 𝑋. Since (𝑋, 𝜏₁) is SSLH, there is an open set 𝑊 of 𝑋 with 𝑓⁻¹(𝑦₀) ∈ 𝑊 ⊆ 𝑓⁻¹(𝑈) 

such that if 𝑞 ∈ 𝑊, then there is a slight homeomorphism ℎ: (𝑋, 𝜏₁) → (𝑋, 𝜏₁) such that ℎ(𝑓⁻¹(𝑦₀)) = 𝑞 and 

ℎ(𝑥) = 𝑥 for all 𝑥 ∈ 𝑋 − 𝑊. Take 𝑉 = 𝑓(𝑊). Then 𝑉 is open in 𝑌 with 𝑦₀ ∈ 𝑉. Let 𝑦₁ ∈ 𝑉. Then 𝑓⁻¹(𝑦₁) ∈
𝑊 and so there is a slight homeomorphism ℎ: (𝑋, 𝜏₁) → (𝑋, 𝜏₁) such that ℎ(𝑓⁻¹(𝑦₀)) = 𝑓⁻¹(𝑦₁) and ℎ(𝑥) =
𝑥 for all 𝑥 ∈ 𝑋 − 𝑊. Define 𝑔: (𝑌, 𝜏₂) → (𝑌, 𝜏₂) by 𝑔(𝑦) = (𝑓 ∘ ℎ ∘ 𝑓⁻¹)(𝑦). Then 𝑔 is a slight 

homeomorphism such that 𝑔(𝑦₀) = 𝑦₁ and if 𝑦 ∈ 𝑌 − 𝑉 = 𝑓(𝑋 − 𝑊), then ℎ(𝑓⁻¹(𝑦)) = 𝑓⁻¹(𝑦), which 

implies 𝑔(𝑦) = 𝑦. 

THEOREM 2.3. Every connected space is SSLH. 

Proof. Let (𝑋, 𝜏) be a connected space. Let 𝑥 ∈ 𝑋 and 𝑈 be an open neighborhood of 𝑥. Take 𝑉 = 𝑈. Let 𝑦 ∈
𝑉. Define 𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) by 𝑓(𝑥) = 𝑦, 𝑓(𝑦) = 𝑥  and 𝑓(𝑡) = 𝑡 for 𝑡 ∈ 𝑋 − {𝑥, 𝑦}. Since (𝑋, 𝜏) is 

connected, by Proposition 1.1, 𝑓 is a slight homeomorphism. Also, 𝑓(𝑥) = 𝑦 and 𝑓(𝑡) = 𝑡 for all 𝑡 ∈ 𝑋 − 𝑉. 

Hence (𝑋, 𝜏) is SSLH. 

The following example shows that the converse of Theorem 2.3 is not true in general. 

Example 2.4. Consider the set 𝑋 = {𝑎, 𝑏, 𝑐} with the topology 𝜏 = {∅, 𝑋, {𝑎}, {𝑏, 𝑐}}. Then (𝑋, 𝜏) is  

a disconnected SSLH space. 

Example 2.4, also is an example of SSLH space that is not slightly homogeneous. 
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THEOREM 2.5. Every SLH space is SSLH. 

Proof. Let (𝑋, 𝜏) be an SLH space. Let 𝑥 ∈ 𝑋 and let 𝑈 be an open neighborhood of 𝑥. Then there exists an 

open neighborhood 𝑉 of 𝑥 such that 𝑥 ∈ 𝑉 ⊆ 𝑈 and for every 𝑦 ∈ 𝑉, there is a homeomorphism 𝑓: (𝑋, 𝜏) →
(𝑋, 𝜏) such that 𝑓(𝑥) = 𝑦 and 𝑓(𝑡) = 𝑡 for all 𝑡 ∈ 𝑋 − 𝑉. By Proposition 1.2, f is a slight homeomorphism. 

Therefore, (𝑋, 𝜏) is SSLH 

The space ([0,1], 𝜏𝑢) is connected and by Theorem 2.3, it is SSLH. On the other hand, by 
Proposition 1.3 it is not SLH. So, the converse of Theorem 2.5 is not true in general. However, we have the 

following result.  

THEOREM 2.6. Let (𝑋, 𝜏) be a zero dimensional space. If (𝑋, 𝜏) is SSLH, then it is SLH. 

Proof. Let (𝑋, 𝜏) be a zero dimensional SSLH space. Let 𝑥 ∈ 𝑋 and 𝑈 an open neighborhood of 𝑥. Then 

there exists an open neighborhood 𝑉 of 𝑥 such that 𝑥 ∈ 𝑉 ⊆ 𝑈, and for 𝑦 ∈ 𝑉, there is a slight 

homeomorphism 𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) such that 𝑓(𝑥) = 𝑦 and 𝑓(𝑡) = 𝑡 for 𝑡 ∈ 𝑋 − 𝑉. By Proposition 1.4, 𝑓 is 

a homeomorphism and the result follows. 

THEOREM 2.7. Every zero dimensional SCDH space is SSLH. 

Proof. Let (𝑋, 𝜏) be a zero dimensional SCDH space. Then by Propositions 1.7 and 1.8 (b), and Theorem 2.7, 

it follows that (𝑋, 𝜏) is SSLH. 

THEOREM 2.8. Every zero dimensional slightly homogeneous 𝑇₀ space is SSLH. 

Proof. Let (𝑋, 𝜏) be a zero dimensional slightly homogeneous 𝑇₀ space. Then by Proposition 1.9 it is 

homogeneous. Thus, by Proposition 1.10 (𝑋, 𝜏) is SLH. Hence by Theorem 2.5, (𝑋, 𝜏) is SSLH. 

Authors in [19] show that the space (ℚ, 𝜏𝑢) is not SCDH. On the other hand, it is well known that 
(ℚ, 𝜏𝑢) is a zero dimensional 𝑇₀ space and homogeneous. Therefore, by Theorem 2.8, it is SSLH. So, SSLH 
spaces are not SCDH in general. 

THEOREM 2.9. Let (𝑋, 𝜏) be an SSLH space. Then every slightly homogeneous component of (𝑋, 𝜏) is  

a clopen subset of 𝑋. 

Proof. Let 𝑥 ∈ 𝑋. Let 𝑦 ∈ 𝑆𝐶𝑥 and let 𝑈 be an open subset of 𝑋 with 𝑦 ∈ 𝑈. Then there exists an open set 𝑉 

such that 𝑦 ∈ 𝑉 ⊆ 𝑈 and for 𝑧 ∈ 𝑉 there is a slight homeomorphism 𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) such that 𝑓(𝑦) = 𝑧 

and 𝑓(𝑡) = 𝑡 for all 𝑡 ∈ 𝑋 − 𝑉. Thus, 𝑦 ∈ 𝑉 ⊆ 𝑆𝐶𝑥 and so 𝑆𝐶𝑥  is open. Therefore, slightly homogeneous 

components are open. On the other hand, since slightly homogeneous components form a partition of 𝑋, they 

are clopen subsets of 𝑋. 

THEOREM 2.10. Every clopen subspace of an SSLH space is SSLH. 

Proof. Let (𝑋, 𝜏) be an SSLH space and let (𝐴, 𝜏𝐴 ) be a clopen subspace of (𝑋, 𝜏). Let 𝑦 ∈ 𝐴 and 𝑈 be an 

open subset of (𝐴, 𝜏𝐴 ) such that 𝑦 ∈ 𝑈. Then 𝑈 is open in 𝑋 and hence there exists an open set 𝑉 ⊆ 𝑋 with 

𝑦 ∈ 𝑉 ⊆ 𝑈, and if 𝑧 ∈ 𝑉, there exists a slight homeomorphism ℎ: (𝑋, 𝜏) → (𝑋, 𝜏) such that ℎ(𝑦) = 𝑧 and 

ℎ(𝑡) = 𝑡 for all 𝑡 ∈ 𝑋 − 𝑉. Since ℎ(𝐴) = 𝐴, we can define 𝑔: (𝐴, 𝜏𝐴 ) → (𝐴, 𝜏𝐴 ) to be the restriction of ℎ to 

𝐴. Then by Proposition 1.11, 𝑔 is a slight homeomorphism. Moreover,  𝑔(𝑦) = 𝑧 and 𝑔(𝑡) = 𝑡 for all 𝑡 ∈
𝐴 − 𝑉. 

COROLLARY 2.11. Let (𝑋, 𝜏) be an SSLH space. If 𝑆𝐶𝑥 is a slightly homogeneous component of (X,τ), 

then 𝑆𝐶𝑥 is SSLH.    

Proof. Let 𝑆𝐶𝑥 be a slightly homogeneous component. According to Theorem 2.9, 𝑆𝐶𝑥is clopen in X. Hence, 

by Theorem 2.10, 𝑆𝐶𝑥  is SSLH. 

THEOREM 2.12. Let {(𝑋𝛼 , 𝜏𝛼): 𝛼 ∈ 𝛬} be a family of SSLH spaces such that 𝑋𝛼 ∩ 𝑋𝛽 = ∅ for all 𝛼 ≠ 𝛽. 

Then the disjoint sum space (⋃{𝑋𝛼: 𝛼 ∈ 𝛬}, 𝜏𝑑) is SSLH. 

Proof. Let 𝑝 ∈ ⋃{𝑋𝛼: 𝛼 ∈ 𝛬} and 𝑈 be an open subset of ⋃{𝑋𝛼: 𝛼 ∈ 𝛬} such that 𝑝 ∈ 𝑈. Then there exists 

𝛽 ∈ 𝛬, such that 𝑝 ∈ 𝑋𝛽. Let 𝑉 = 𝑈 ∩ 𝑋𝛽. Then 𝑉 is open in ⋃{𝑋𝛼: 𝛼 ∈ 𝛬} such that 𝑝 ∈ 𝑉. Since 𝑋𝛽 is 

SSLH, there exists an open set 𝑊 such that 𝑝 ∈ 𝑊 ⊆ 𝑉 ⊆ 𝑈 such that for every 𝑞 ∈ 𝑊, there exists a slight 

homeomorphism ℎ𝛽: (𝑋𝛽 , 𝜏𝛽) → (𝑋𝛽 , 𝜏𝛽) such that ℎ𝛽(𝑝) = 𝑞 and ℎ𝛽(𝑥) = 𝑥 for 𝑥 ∈ 𝑋𝛽 − 𝑊. Note that 𝑊 

is open in ⋃{𝑋𝛼: 𝛼 ∈ 𝛬} and 𝑝 ∈ 𝑊 ⊆ 𝑈. Let 𝑞 ∈ 𝑊, then there exists a slight homeomorphism 

ℎ𝛽: (𝑋𝛽 , 𝜏𝛽) → (𝑋𝛽 , 𝜏𝛽) such that ℎ𝛽(𝑝) = 𝑞 and ℎ𝛽(𝑥) = 𝑥 for 𝑥 ∈ 𝑋𝛽 − 𝑊. Define ℎ: (⋃{𝑋𝛼: 𝛼 ∈

𝛬}, 𝜏𝑑) → (⋃{𝑋𝛼: 𝛼 ∈ 𝛬}, 𝜏𝑑) by ℎ(𝑥) =  ℎ𝛽(𝑥) if 𝑥 ∈ 𝑋𝛽 and ℎ(𝑥) = 𝑥 if 𝑥 ∈ ⋃{𝑋𝛼 − 𝑋𝛽: 𝛼 ∈ 𝛬}. Then by 

Proposition 1.12, h is a slight homeomorphism. Also ℎ(𝑝) = 𝑞 and ℎ(𝑡) = 𝑡 for all 𝑡 ∈ ⋃{𝑋𝛼 − 𝑉: 𝛼 ∈ 𝛬}. 

Thus, (⋃{𝑋𝛼: 𝛼 ∈ 𝛬}, 𝜏𝑑) is SSLH. 
 

 

3. SLIGHTLY DENSE SETS 

Definition 3.1. Let (𝑋, 𝜏) be a space. A subset 𝐴 ⊆ 𝑋 is said to be slightly dense if for every non-empty 

clopen set 𝑈 ⊆ 𝑋, 𝑈 ∩ 𝐴 ≠ ∅. 

THEOREM 3.2. Let (𝑋, 𝜏) be a space. Then every dense subset of 𝑋 is slightly dense. 
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Proof. Let (𝑋, 𝜏) be a space and let 𝐷 be a dense subset of 𝑋. Let 𝑈 be a clopen subset of 𝑋. Then 𝐷 ∩ 𝑈 ≠
∅. Hence, 𝐷 is slightly dense. 

The converse of Theorem 3.2 is not true in general as the following example shows. 

Example 3.3. Consider the space ((0,1) ∪ (2,3), 𝜏𝑢). Let 𝐷 = {(1/2), (5/2)}. Since the only proper clopen 

sets in ((0,1) ∪ (2,3), 𝜏𝑢) are (0,1), (2,3) and 𝐷 ∩ (0,1) ≠ ∅, 𝐷 ∩ (2,3) ≠ ∅, it follows that 𝐷 is a slightly 

dense set. On the other hand, 𝐷 is not dense because 𝐷 ∩ ((1/4),1) = ∅. 

The following theorem gives us a sufficient condition on slightly dense sets to be dense. 

THEOREM 3.4. Let (𝑋, 𝜏) be a zero dimensional space and let 𝐷 ⊆ 𝑋. Then 𝐷 is dense in 𝑋 iff it is slightly 

dense in 𝑋. 

Proof. ⇒) Theorem 3.2.  

⇐) Suppose that 𝐷 is a slightly dense subset of 𝑋. Let 𝑈 be a non-empty open subset of 𝑋. Take 𝑥 ∈ 𝑈 and 

take a clopen basic open set 𝐵 such that 𝑥 ∈ 𝐵 ⊆ 𝑈. Since 𝐷 is slightly dense, 𝐷 ∩ 𝐵 ≠ ∅. Thus, 𝐷 ∩ 𝑈 ≠
∅ and hence 𝐷 𝑖s dense. 

THEOREM 3.5. The slightly continuous image of a slightly dense set is slightly dense. 

Proof. Let 𝑓: (𝑋, 𝜏₁) → (𝑌, 𝜏₂) be a slightly continuous function and let 𝐷 be a slightly dense subset of 

(𝑋, 𝜏₁). To show that 𝑓(𝐷) is slightly dense, let 𝑉 be a non-empty clopen subset of 𝑌. Then 𝑓⁻¹(𝑉) is a non-

empty clopen subset of 𝑋. Since 𝐷 is slightly dense, 𝑓⁻¹(𝑉) ∩ 𝐷 ≠ ∅ and so 𝑉 ∩ 𝑓(𝐷) ≠ ∅ and hence 𝑓(𝐷) 

is slightly dense. 

THEOREM 3.6. Let (𝑋, 𝜏) be a space such that for all 𝑥 ∈ 𝑋, 𝑆𝐶𝑥 is not open. Then 𝑋 − 𝑆𝐶𝑥 is slightly 

dense in (𝑋, 𝜏). 

Proof. Suppose to the contrary that for some 𝑥 ∈ 𝑋, 𝑆𝐶𝑥 is not slightly dense, then there exists a non-empty 

clopen set 𝑈 ⊆ 𝑋 such that 𝑈 ∩ (𝑋 − 𝑆𝐶𝑥) = ∅. Then 𝑈 ⊆ 𝑆𝐶𝑥. Therefore, by Proposition 1.13, it follows 

that 𝑆𝐶𝑥  is open, a contradiction. 

Definition 3.7. For every finite non zero cardinal number 𝑛, denote the set {𝐴 ⊆
𝑋: 𝐴 is slightly dense and |𝐴| = 𝑛} by 𝐶𝑛, and denote the set {𝐴 ⊆ 𝑋: 𝐴 is slightly dense and |𝐴| =
ℵ₀} by 𝐶∞. 

THEOREM 3.8. Let (𝑋, 𝜏) be a space. Then the following are equivalent: 

(i) (𝑋, 𝜏) is connected. 

(ii) 𝐴 is slightly dense for all 𝐴 ⊆ 𝑋. 

(iii) {𝑥} is slightly dense for all 𝑥 ∈ 𝑋. 

(iv) 𝐶₁ ≠ ∅. 

Proof. (i) ⇒ (ii) Let 𝐴 be a subset of 𝑋 and let 𝑈 be a non-empty clopen set in 𝑋. Then 𝑈 = 𝑋 and so 𝐴 ∩
𝑈 ≠ ∅. Therefore, 𝐴 is slightly dense. 

(ii) ⇒ (iii) Obvious. 

(iii) ⇒ (iv) Obvious. 

(iv) ⇒ (i) Suppose to the contrary that there exists a non-empty clopen proper subset 𝑈 ⊆ 𝑋. Take 𝑥₀ ∈ 𝑋 

such that {𝑥₀} ∈ 𝐶₁. Then {𝑥₀} ∩ 𝑈 ≠ ∅ and {𝑥₀} ∩ (𝑋 − 𝑈) ≠ ∅, a contradiction. 

THEOREM 3.9. Let (𝑋, 𝜏) be a disconnected space. Suppose that for all 𝑛-tons 𝐴𝑛 ⊆ 𝑋, 𝐴𝑛 ∈
𝐶𝑛 . Then |𝑋| ≤ 2𝑛 − 2. 

Proof. Take a non-empty proper clopen subset 𝑈 ⊆ 𝑋. 

Claim. |𝑈| ≤ 𝑛 − 1 and |𝑋 − 𝑈| ≤ 𝑛 − 1. 

Proof of claim. If |𝑈| ≥ 𝑛, take 𝑛-tons 𝐴𝑛 ⊆ 𝑈. By hypothesis, 𝐴𝑛  is slightly dense and so 𝐴𝑛 ∩ (𝑋 − 𝑈) ≠
∅, absurd. Similarly, we can see that |𝑋 − 𝑈| ≤ 𝑛 − 1. Therefore, |𝑋| ≤ 2𝑛 − 2. 

COROLLARY 3.10. Let (𝑋, 𝜏) be a disconnected space. Suppose that for all 2-tons in 𝑋, 𝐴₂ ∈ 𝐶₂. Then 

|𝑋| = 2 and 𝜏 = 𝜏𝑑𝑖𝑠𝑐 . 
Proof. By Theorem 3.9, |𝑋| ≤ 2. Since (𝑋, 𝜏) is disconnected, |𝑋| = 2 and 𝜏 = 𝜏𝑑𝑖𝑠𝑐. 

COROLLARY 3.11. If X is a set with |𝑋| > 2 and τ is a topology on 𝑋, then (𝑋, 𝜏) is connected iff {𝑥, 𝑦} ∈
𝐶₂ for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. 

Proof. ⇒) Theorem 3.8. 

⇐) Corollary 3.10. 

The following example shows that if 𝐶₂ ≠ ∅, then it is not necessarily true that {𝑥, 𝑦} ∈ 𝐶₂ for all 

𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. 

Example 3.12. Let 𝑋 = {𝑎, 𝑏, 𝑐} and 𝜏 = {∅, 𝑋, {𝑎}, {𝑏, 𝑐}}. Then {𝑎, 𝑏} is slightly dense but {𝑏, 𝑐} is not.  

COROLLARY 3.13. Let (𝑋, 𝜏) be a space such that for all 𝑛-tons 𝐴𝑛 ⊆ 𝑋, 𝐴𝑛 ∈ 𝐶𝑛 , and |𝑋| > 2𝑛 − 2. 

Then (𝑋, 𝜏) is connected. 

Definition 3.14. A space (𝑋, 𝜏) is said to be slightly separable if it contains a countable slightly dense subset. 

PROPOSITION 3.15. A space (𝑋, 𝜏) is slightly separable iff 𝐶𝑛 ≠ ∅ for some 𝑛 ∈ ℕ ∪ {∞}. 

PROPOSITION 3.16. Every connected space is slightly separable. 
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Proof. Let (𝑋, 𝜏) be a connected space. Then by Theorem 3.8, 𝐶₁ ≠ ∅ and so by Proposition 3.15, it follows 

that (𝑋, 𝜏) is slightly separable. 

The discrete space on any countable set 𝑋 with |𝑋| > 1 is a slightly separable disconnected space. 

This shows that the converse of Proposition 3.16 is not true in general. 

PROPOSITION 3.17. Every separable space is slightly separable. 

Proof. Let (𝑋, 𝜏) be a separable space. Choose a countable dense subset 𝐷 ⊆ 𝑋. Then by Theorem 3.2 it 

follows that 𝐷 is slightly dense. Therefore, (𝑋, 𝜏) is slightly separable space. 

The space (ℝ, 𝜏𝑐𝑜𝑐) where 𝜏𝑐𝑜𝑐 is the cocountable topology on ℝ, shows that the converse of 

Proposition 3.17 is not true in general. 

PROPOSITION 3.18. Let (𝑋, 𝜏) be a zero dimensional space. Then (𝑋, 𝜏) is separable iff (𝑋, 𝜏) slightly 

separable space. 

Proof. ⇒) Proposition 3.17.  

⇐) Let 𝐷 be a countable slightly dense subset of 𝑋. Then by Theorem 3.4, 𝐷 is dense. 

THEOREM 3.19. The slightly continuous image of a slightly separable space is slightly separable. 

Proof. Let 𝑓: (𝑋, 𝜏₁) → (𝑌, 𝜏₂) be a slightly continuous function with (𝑋, 𝜏₁) is slightly separable. Let 𝐷 be  

a countable slightly dense subset of 𝑋. Then by Theorem 3.5 𝑓(𝐷) is slightly dense. Furthermore, 𝑓(𝐷) is 

countable and hence (𝑌, 𝜏₂) is slightly separable. 

COROLLAY 3.20. Being "slightly separable" is a slightly topological property. 

COROLLARY 3.21. Being "slightly separable“ is a topological property. 

THEOREM 3.22. A clopen subspace of a slightly separable space is slightly separable. 

Proof. Let (𝑋, 𝜏) be a slightly separable space. Let 𝐴 be a clopen subset of 𝑋. Let 𝑆 be a countable slightly 

dense subset of (𝑋, 𝜏). Then 𝑆 ∩ 𝐴 is a slightly dense subset of (𝐴, 𝜏𝐴). Indeed, let 𝑈 be a non-empty clopen 

subset of (𝐴, 𝜏𝐴). Since 𝑈 is clopen in the clopen subspace (𝐴, 𝜏𝐴), U is clopen in (X,τ). Therefore, 𝑈 ∩ 𝐴 is 

clopen in (X,τ) and 𝑆 ∩ (𝐴 ∩ 𝑈) ≠ ∅. Hence (𝑆 ∩ 𝐴) ∩ 𝑈 ≠ ∅. Therefore, 𝑆 ∩ 𝐴 is a slightly dense subset of 

(𝐴, 𝜏𝐴). 

THEOREM 3.23. Let {(𝑋𝛼 , 𝜏𝛼): 𝛼 ∈ 𝛬} be a family of spaces such that 𝑋𝛼 ∩ 𝑋𝛽 = ∅ for all 𝛼 ≠ 𝛽. If for all 

𝛼 ∈ 𝛬, (𝑋𝛼 , 𝜏𝛼) contains a non-empty slightly dense set 𝐷𝛼, then ⋃{𝐷𝛼: 𝛼 ∈ 𝛬} is slightly dense in the 

disjoint sum space (⋃{𝑋𝛼: 𝛼 ∈ 𝛬}, 𝜏𝑑). 

Proof. Let 𝑈 be a non-empty clopen set in the disjoint sum space (⋃{𝑋𝛼: 𝛼 ∈ 𝛬}, 𝜏𝑑). Then there exists 𝛽 ∈

𝛬 such that 𝑈 ∩ 𝑋𝛽 ≠ ∅. Since 𝐷𝛽 is slightly dense in 𝑋𝛽 , 𝐷𝛽 ∩ (𝑈 ∩ 𝑋𝛽) ≠ ∅. Thus, (⋃{𝐷𝛼: 𝛼 ∈ 𝛬}) 

∩ 𝑈 ≠ ∅. 

COROLLARY 3.24. Let {(𝑋𝑛 , 𝜏𝑛): 𝑛 ∈ ℕ} be a countable family of spaces with 𝑋𝑛 ∩ 𝑋𝑚 = ∅ for 𝑛 ≠ 𝑚.  

If for all 𝑛 ∈ ℕ, (𝑋𝑛 , 𝜏𝑛) is slightly separable spaces, then the disjoint sum space (⋃{𝑋𝑛: 𝑛 ∈ ℕ}, 𝜏𝑑) is 

slightly separable. 

Proof. For every 𝑛 ∈ ℕ, choose a countable slightly dense set 𝐷𝑛 ⊆ 𝑋𝑛. Then ⋃{𝐷𝑛: 𝑛 ∈ ℕ} is countable. 

Moreover, By Theorem 3.23, it follows that ⋃{𝐷𝑛: 𝑛 ∈ ℕ} is slightly dense. Thus, (⋃{𝑋𝑛: 𝑛 ∈ ℕ}, 𝜏𝑑) is  

a slightly separable space. 

THEOREM 3.25. Let {(𝑋𝛼 , 𝜏𝛼): 𝛼 ∈ 𝛬} be a family of spaces and let (𝛱{𝑋𝛼: 𝛼 ∈ 𝛬}, 𝜏𝑝𝑟𝑜𝑑) be the product 

space. If (𝛱{𝑋𝛼: 𝛼 ∈ 𝛬}, 𝜏𝑝𝑟𝑜𝑑) is slightly separable, then for all 𝛼 ∈ 𝛬, (𝑋𝛼 , 𝜏𝛼) is slightly separable. 

Proof. Let 𝛽 ∈ 𝛬. Since the projection 𝑃𝛽: (𝛱{𝑋𝛼 : 𝛼 ∈ 𝛬}, 𝜏𝑝𝑟𝑜𝑑 ) → (𝛱{𝑋𝛼: 𝛼 ∈ 𝛬}, 𝜏𝑝𝑟𝑜𝑑 ) is continuous, it is 

slightly continuous. Therefore, by Theorem 3.19, it follows that (𝑋𝛽 , 𝜏𝛽) is slightly separable. 

As defined, a space (𝑋, 𝜏) is called extremally disconnected if the closure of every open set is open. 

THEOREM 3.26. Let (𝑋, 𝜏₁) and (𝑌, 𝜏₂) be two extremally disconnected spaces. Then the product space 

(𝑋 × 𝑌, 𝜏𝑝𝑟𝑜𝑑) is slightly separable iff both (𝑋, 𝜏₁) and (𝑌, 𝜏₂) are slightly separable. 

Proof. ⇒) Theorem 3.25. 

⇐) Let 𝐷𝑋 and 𝐷𝑌 be countable slightly dense sets in 𝑋 and 𝑌, respectively. Then 𝐷𝑋 × 𝐷𝑌 is countable. Let 

𝑈 be a non-empty clopen subset of 𝑋 × 𝑌. Take (𝑥, 𝑦) ∈ 𝑈 and take 𝐴 ∈ 𝜏₁, 𝐵 ∈ 𝜏₂ such that (𝑥, 𝑦) ∈ 𝐴 ×
𝐵 ⊆ 𝑈. Thus, 𝐴 × 𝐵 ⊆ 𝑈 and hence 𝐴 × 𝐵 ⊆ 𝑈. Since (𝑋, 𝜏₁) and (𝑌, 𝜏₂) are extremally disconnected 

spaces, 𝐴 and 𝐵 are clopen. Therefore, 𝐴 ∩ 𝐷𝑋 ≠ ∅ and 𝐵 ∩ 𝐷𝑌 ≠ ∅ and so (𝐷𝑋 × 𝐷𝑌) ∩ 𝑈 ≠ ∅. 

 

 

4. TWO TYPES OF SLIGHTLY COUNTABLE DENSE HOMOGENEOUS SPACES 

Definition 4.1. A space (𝑋, 𝜏) is said to be slightly countable dense homogeneous of type (2) (SCDH(2)) if   

(i) (𝑋, 𝜏) is slightly separable.  

(ii) For any two countable slightly dense sets 𝐴 and 𝐵 in 𝑋, there exists a slight homeomorphism ℎ: (𝑋, 𝜏) →
(𝑋, 𝜏) such that ℎ(𝐴) = 𝐵. 

THEOREM 4.2. If (𝑋, 𝜏) is SCDH(2), then every slightly dense subset of 𝑋 different from 𝑋 is infinite.   
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Proof. Suppose to the contrary that there exists a finite slightly dense set 𝐴 ⊂ 𝑋. Take 𝑥₀ ∈ 𝑋 − 𝐴, let 𝐵 =
𝐴 ∪ {𝑥₀}. Then A and B are two countable slightly dense sets in (𝑋, 𝜏), and so there exists a slight 

homeomorphism ℎ: (𝑋, 𝜏) → (𝑋, 𝜏) such that ℎ(𝐴) = 𝐵, a contradiction. 

COROLLARY 4.3. Let (X,τ) be a connected space. Then (𝑋, 𝜏) is SCDH(2) iff |𝑋| = 1. 

Proof. ⇒) Suppose to the contrary that |𝑋| > 1. Take 𝑥₀ ∈ 𝑋. Then {𝑥₀} is a slightly dense subset of 𝑋 

different from 𝑋. This contradicts Theorem 4.2. 

⇐) Trivial. 

In spite of that every dense set is slightly dense, every separable space is slightly separable and 

every homeomorphism is slight homeomorphism. A CDH space need not to be SCDH(2) in general as we 

will see in this example. 

Example 4.4. Consider the space (ℝ, 𝜏𝑢). By Proposition 1.14, (ℝ, 𝜏𝑢) is CDH. However, Corollary 4.3 

shows that (ℝ, 𝜏𝑢) is not SCDH(2).  

THEOREM 4.5. A zero dimensional space is CDH iff it is SCDH(2). 

Proof. Let (𝑋, 𝜏) be a CDH zero dimensional space. Then by Proposition 3.18, (𝑋, 𝜏) is slightly separable. 

Let A and 𝐵 be two countable slightly dense subsets of 𝑋. Then by Theorem 3.4 they are countable dense 

sets of the CDH space (𝑋, 𝜏) and so there exists a homeomorphism 𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) such that 𝑓(𝐴) = 𝐵. 

By Proposition 1.2 it follows that f is a slight homeomorphism, and then (𝑋, 𝜏) is SCDH(2).  Conversely, 

suppose that (𝑋, 𝜏) is a zero dimensional SCDH(2). Then by Proposition 3.18, (𝑋, 𝜏) is separable. Let 𝐴 and 

𝐵 be two countable dense subsets of (𝑋, 𝜏). Then by Theorem 3.2, 𝐴 and 𝐵 are countable slightly dense 

subsets of (𝑋, 𝜏). Since (𝑋, 𝜏) is SCDH(2), there exists a slight homeomorphism ℎ: (𝑋, 𝜏) → (𝑋, 𝜏) such 

that ℎ(𝐴) = 𝐵. By Proposition 1.4, it follows that h is a homeomorphism. Hence (𝑋, 𝜏) is CDH. 

Example 4.6. Consider the space (ℚ 𝑐 , 𝜏𝑢). By Proposition 1.15, (ℚ 𝑐 , 𝜏𝑢)is CDH, and since it is zero 

dimensional, by the Theorem 4.5 it is SCDH(2). 

LEMMA 4.7. Let (𝑋, 𝜏) be a space. If 𝑋 is the only slightly dense set in 𝑋, then 𝜏 = 𝜏𝑑𝑖𝑠𝑐 . 

Proof. Let 𝑥 ∈ 𝑋. Since 𝑋 is the only slightly dense set, 𝑋 − {𝑥} is not slightly dense. Thus, there exists  

a non-empty clopen set 𝑈 ⊆ 𝑋 such that 𝑈 ∩ (𝑋 − {𝑥}) = ∅. Therefore, 𝑈 = {𝑥} and hence 𝜏 = 𝜏𝑑𝑖𝑠𝑐. 

THEOREM 4.8. Let (𝑋, 𝜏) be a SCDH(2) space. Then 𝑋 is countable iff 𝜏 = 𝜏𝑑𝑖𝑠𝑐 . 

Proof. ⇒) Let 𝐴 be a slightly dense subset of 𝑋. Then there exists a slight homeomorphism 𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) 

such that 𝑓(𝐴) = 𝑋 = 𝑓(𝑋) and so 𝐴 = 𝑋. Thus, the only slightly dense subset of (𝑋, 𝜏) is 𝑋, and hence by 

Lemma 4.7, 𝜏 = 𝜏𝑑𝑖𝑠𝑐 . 

⇐) Suppose to the contrary that 𝑋 is uncountable. Take a countable slightly dense set 𝐴 ⊆ 𝑋. Then 𝐴 = 𝑋,  

a contradiction. 

Example 4.9. The space (ℚ, 𝜏𝑢) is not a discrete space. Since ℚ is countable, by Theorem 4.8, it follows that 

(ℚ, 𝜏𝑢) is not SCDH(2). 

THEOREM 4.10. Let (𝑋, 𝜏) be a zero dimensional space. Then (𝑋, 𝜏) is SCDH(2) iff it is SCDH. 

Proof. ⇒) By Theorem 4.5, (𝑋, 𝜏) is CDH. Thus by Proposition 1.8 (a), (𝑋, 𝜏) SCDH. 

⇐) By Proposition 4.5 (b), (𝑋, 𝜏) is CDH. Thus by Theorem 4.5 (𝑋, 𝜏) is SCDH(2). 

The space (ℝ, 𝜏𝑢) is CDH and hence SCDH, also, we show that (ℝ, 𝜏𝑢)is not SCDH(2). So, in 

Theorem 4.2.10, the condition "zero dimensional" cannot be dropped. 

COROLLARY 4.11. For a zero dimensional space (𝑋, 𝜏), the following are equivalent: 

a) (𝑋, 𝜏) is CDH. 

b) (𝑋, 𝜏) is SCDH. 

c) (𝑋, 𝜏) is SCDH(2). 

THEOREM 4.12. Being "SCDH(2)" is a slightly topological property. 

Proof. Let (𝑋, 𝜏₁) be a SCDH(2) and let (𝑌, 𝜏₂) be any space slightly homeomorphic to (𝑋, 𝜏₁). Let 

𝑓: (𝑋, 𝜏₁) → (𝑌, 𝜏₂) be a slight homeomorphism. Then by Theorem 3.19, (𝑌, 𝜏₂) is slightly separable. Let 𝑆₁ 

and 𝑆₂ be two countable slightly dense sets in 𝑌. Then by Theorem 3.5, 𝑓⁻¹(𝑆₁) and 𝑓⁻¹(𝑆₂) are countable 

slightly dense sets in 𝑋. Since (𝑋, 𝜏₁) is SCDH(2), there exists a slight homeomorphism ℎ: (𝑋, 𝜏₁) → (𝑋, 𝜏₁) 

such that ℎ(𝑓⁻¹(𝑆₁)) = 𝑓⁻¹(𝑆₂). Define 𝑔: (𝑌, 𝜏₂) → (𝑌, 𝜏₂) by 𝑔(𝑦) = (𝑓 ∘ ℎ ∘ 𝑓⁻¹)(𝑦), then 𝑔 is a slight 

homeomorphism takes 𝑆₁ to 𝑆₂. Therefore, (𝑌, 𝜏₂) is SCDH(2).  

COROLLAY 4.13. Being "SCDH(2)" is a topological property. 

THEOREM 4.14. Let {(𝑋𝑛 , 𝜏𝑛): 𝑛 ∈ ℕ} be a family of SCDH(2) spaces with 𝑋𝑛 ∩ 𝑋𝑚 = ∅ for 𝑛 ≠ 𝑚. Then 

the disjoint sum space (⋃{𝑋𝑛: 𝑛 ∈ ℕ}, 𝜏𝑑) is SCDH(2). 

Proof. Since for each 𝑛 ∈ ℕ, (𝑋𝑛 , 𝜏𝑛) is slightly separable, by Corollary 3.24, (⋃{𝑋𝑛: 𝑛 ∈ ℕ}, 𝜏𝑑) is slightly 

separable. Let 𝑆₁ and 𝑆₂ be two countable slightly dense sets in ⋃{𝑋𝑛: 𝑛 ∈ ℕ}, then for 𝑛 = 1,2, . . . . 𝑆₁ ∩ 𝑋𝑛 

and 𝑆2 ∩ 𝑋𝑛  are countable slightly dense sets in 𝑋𝑛  and so there is a slight homeomorphism 𝑓𝑛: (𝑋𝑛 , 𝜏𝑛) →
(𝑋𝑛 , 𝜏𝑛) such that 𝑓𝑛(𝑆₁ ∩ 𝑋𝑛) = 𝑆₂ ∩ 𝑋𝑛 . Define ℎ: (⋃{𝑋𝑛: 𝑛 ∈ ℕ}, 𝜏𝑑) → (⋃{𝑋𝑛: 𝑛 ∈ ℕ}, 𝜏𝑑) such that if 
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𝑥 ∈ 𝑋𝑛 , then ℎ(𝑥) = 𝑓𝑛(𝑥). Then ℎ is a slight homeomorphism such that ℎ(𝑆₁) = 𝑆₂. It follows that 

(⋃{𝑋𝑛: 𝑛 ∈ ℕ}, 𝜏𝑑) is SCDH(2). 

Definition 4.15. A space (𝑋, 𝜏) is said to be slightly countable dense homogeneous of type (3) (SCDH(3)) if  

(i) (𝑋, 𝜏) is slightly separable. 

(ii) If 𝑛 ∈ ℕ ∪ {∞} and 𝐴, 𝐵 ∈ 𝐶𝑛, then there exists a slight homeomorphism 𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) such that 

𝑓(𝐴) = 𝐵. 
THEOREM 4.16. Every connected space is SCDH(3). 

Proof. Let (𝑋, 𝜏) be a connected space. Then by Theorem 3.16, (𝑋, 𝜏) is slightly separable. Let 𝑛 ∈ ℕ ∪ {∞} 

and let 𝐴, 𝐵 ∈ 𝐶𝑛. Choose a bijection 𝑓: (𝑋, 𝜏) → (𝑋, 𝜏) with 𝑓(𝐴) = 𝐵. Since (𝑋, 𝜏) is connected, 𝑓 is  

a slight homeomorphism and hence (𝑋, 𝜏) is SCDH(3). 

THEOREM 4.17. Every SCDH(2) space is SCDH(3). 

Proof. Let (𝑋, 𝜏) be a SCDH(2). Then (𝑋, 𝜏) is slightly separable. Let 𝑛 ∈ ℕ ∪ {∞} and let 𝐴, 𝐵 ∈ 𝐶𝑛. Then 

𝐴, 𝐵 are countable slightly dense subsets of (𝑋, 𝜏), and hence there is a slight homeomorphism 𝑓: (𝑋, 𝜏) →
(𝑋, 𝜏) such that 𝑓(𝐴) = 𝐵. 

The converse of Theorem 4.17 is not true in general. For example, (ℝ, 𝜏𝑢) is SCDH(3) but not 

SCDH(2). 

THEOREM 4.18. Every zero dimensional CDH space is SCDH(3). 

Proof. Let (𝑋, 𝜏) be a zero dimensional CDH space. Then by Theorem 4.5 (𝑋, 𝜏) is SCDH(2) and by 

Theorem 4.17 it is SCDH(3). 

Since the space (ℚ 𝑐 , 𝜏𝑢) is zero dimensional and CDH space, by Theorem 4.18 it is SCDH(3). 

THEOREM 4.19. Let (𝑋, 𝜏) be a space such that all slightly dense sets in 𝑋 have the same cardinality, then 

(𝑋, 𝜏) is SCDH(2) iff it is SCDH(3). 

Proof. ⇒) Theorem 4.17. 

⇐) Let 𝐴 and 𝐵 be two countable slightly dense sets in 𝑋. Then |𝐴| = |𝐵| and since (𝑋, 𝜏) is SCDH(3),  

we get the result. 

Example 4.20. Let 𝑋 = {𝑎, 𝑏, 𝑐} and 𝜏 = {∅, 𝑋, {𝑎}, {𝑏, 𝑐}}. Then (𝑋, 𝜏) is a SCDH(3) space. Also, Since 𝑋 is 

countable and 𝜏 ≠ 𝜏𝑑𝑖𝑠𝑐 , by Theorem 4.8 it is not SCDH(2). Since (𝑋, 𝜏) is zero dimensional, by Theorem 4.5 

it is not CDH. 

THEOREM 4.21. Being "SCDH(3)" is a slightly topological property.  

Proof. Let (𝑋, 𝜏₁) be a SCDH(3) and let (𝑌, 𝜏₂) be any space slightly homeomorphic to (𝑋, 𝜏₁). Let 

𝑓: (𝑋, 𝜏₁) → (𝑌, 𝜏₂) be a slight homeomorphism. Then by Corollary 3.20, (𝑌, 𝜏₂) is slightly separable. Let 𝑆₁ 

and 𝑆₂ be two countable slightly dense sets in 𝑌 such that |𝑆₁| = |𝑆₂|. Then by Theorem 3.5 𝑓⁻¹(𝑆₁) and 

𝑓⁻¹(𝑆₂) are countable slightly dense sets in 𝑋 with |𝑓⁻¹(𝑆₁)| = |𝑓⁻¹(𝑆₂)|. Since (𝑋, 𝜏₁) is SCDH(3), there 

exists a slight homeomorphism ℎ: (𝑋, 𝜏₁) → (𝑋, 𝜏₁) such that ℎ(𝑓⁻¹(𝑆₁)) = 𝑓⁻¹(𝑆₂). Define 𝑔: (𝑌, 𝜏₂) →
(𝑌, 𝜏₂) by 𝑔(𝑦) = (𝑓 ∘ ℎ ∘ 𝑓⁻¹)(𝑦). Then g is a slight homeomorphism takes 𝑆₁ to 𝑆₂. Thus, (𝑌, 𝜏₂) is 

SCDH(3). 

COROLLAY 4.22. Being "SCDH(3)" is a topological property. 
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