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 In this research, we focus on the solutions to enhance the lighting  

properties as well as the heat regulation of the white light-emitting diodes 

(WLEDs) with conventional phosphor and quantum dots (QDs). Although 

receiving lots of attention for being an innovative lighting solution with good 

color rendering index, the potentials of WLEDs conjugated with quantum 

dots (QDS), especially the QDs-phosphor mixed nanocomposites ones, 

are restrained due to the lacking performance in the aspects mentioned 

above. The crucial requirement to produce better WLEDs is finding solutions 

that improve the lacking aspects, therefore, through observing previous 

studies and applying advanced technique, this research suggest an effective 

and unique packaging configuration, in which the nanocomposites 

QDs-phosphor layer is set horizontally to the WLED. This novel packaging 

configuration allow WLED performance in terms of lighting and heating to 

reach it peaks. This is the first time four different types of WLEDs, single-

layer phosphor, dual-layer remote phosphor with yellow-red and 

yellow-green, and triple-layer phosphor, were simulated, utilized and 

compared in one study to decide the best WLED configuration. The results 

show that the triple-layer phosphor configurations improve the color 

rendering ability and lumen output better than the other configurations. 
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1. INTRODUCTION  

With many advantages, white light-emitting diodes (WLEDs) is the new light source that begins to 

replace conventional lighting solutions in daily lighting, backlighting and automatic lighting [1-3]. 

Conjugating GaN LED chip with Y3Al5O12:Ce3+ (YAG:Ce3+) yellow phosphor and let the light emitted from 

these two sources merge and create white light is the most commonly used technique to fabricate WLEDs. 

Despite having its advantage, the WLEDs produced from this technique is lacking red light component due to 

the inability of YAG phosphor to generate red component [4]. This leads to inferior CRI and prevents  

the QDs-phosphor nanocomposites WLEDs from being widely used. It is obvious that adding more red light 

component is the solution to develop the color rendering ability, therefore, different types of red phosphors 

were utilized to combine with the yellow phosphor layer. This method has earned recognition for its ability  

to enhance the effectiveness of WLEDs, however, the extensive emission wavelength of the deep red 

phosphors, which is above 650 nm, locates outside the cognitive range of the human eyes causing harm  

to the luminous efficiency (LE) [5–8]. As a result, colloidal quantum dots (QDs) are being used as  
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an alternative for normal materials to yield chromatic lights, with desirable features such as small emission 

spectra and large absorption spectra the QDs are predicted to overcome the issues of the prior material [9-12]. 

Through extensive research, CdSe, InP, CuInS2,C, CH3NH3PbBr3, CsPbBr3 and several other kinds 

of QDs have gained many positive interests. Cdse QDs, an semiconductor in group II-VI, is regarded as  

the most effective ones out of all QDs and has high market value for possessing hyper quantum efficiency 

over 95%, full width at half maximum (FWHM) from 20-30 nm and can cover the whole cognitive range by 

customizing the size of particles. Recognizing the advantages of CdSe QDs, researchers were focused on 

using CdSe QDs to manufacturer the earliest QDs WLEDs on the market [13, 14]. Even though the usage of 

CdSe QDs WLEDs are widespread from common lighting application to advanced purpose of backlighting, 

its potential is limited as a result of containing Cd, a substance that is harmful to human [15]. Many 

researches have been conducted to eliminate the Cd component as well as finding the optimal replacement,  

as a result, InP, CuInS2 and carbon QDs are the promising contenders for this issue. The issues with InP and 

CuInS2 QDs is that they are not as effective and have broader FWHM in comparison to the CdSe QDs, on 

the other hand, carbon QDs shows inefficiency in converting large wavelength color such as red emitted light 

[16–18]. Therefore, perovskite QDs with luminescence quality and excellent chromatic performance, 

especially green, such as CH3NH3PbBr3 and CsPbBr3 are proposed as a new color converting materials [19]. 

The perovskite QDs with narrower FWHM and the ability to fit in different emission spectra by adjusting 

the components is an upgrade in comparison to the CdSe Qds, the problem is perovskite QDs is unstable 

under airy condition, especially those red and blue perovskite QDs [20].  

Through consideration of all the materials mentioned above, it seems that CdSe QDs remain as  

an acceptable option to improve the WLEDs color rendering ability. Regarding the phosphor configuration, 

most WLEDs with QDs components work well with remote phosphor setup that creates a gap between  

the QDs layer and the LED chip, this feature allows the WLEDs to achieve better quantum particles, higher 

efficiency and consistent heating performance. This conclusion is made based on the results of previous 

studies, which involves studying about the distance between phosphor layers in flat dual-remote phosphor 

(FDRP) structure and concave dual-remote phosphor structure (CDRP), analyzing distances between 

phosphor layers in triple-remote phosphor structure, and calculating the impacts of SrBaSiO4:Eu2+ particles 

in controlling WLEDs green light output with conformal phosphor packages. However, these studies focus 

on the effect of distance on the lighting efficiency while neglecting other quality indicators and the solutions 

to improve them. Therefore, an overall assessment of optical performances from single-layer to triple-layer 

structure is needed.  

In this research, we conducted that assessment with the results of each phosphor structure is 

compared to the others for optical quality evaluation and development study [21, 22]. In fact, the light 

conversion layer that consists of phosphor layers and QDs usually has issues with the energy transfer 

efficiency and show inadequate lighting efficiency and thermal performance due to the back-scattering 

occurs between the phosphor and QDs [23]. To address this problem and improve WLEDs optical and 

thermal performance, the phosphor layers and the QDs plate are placed separately in a vertical position, this 

is the vertically packaging structure that is applied in the mixed-type WLEDs [18–21]. The position of  

the phosphor layer has direct influences on the performance of WLEDs as it shows through the improvement 

in quantum yield in phosphor compared to QDs when putting the phosphor layer beside the LED chip, 

furthermore, the effectiveness of the color converting process is also determined by the layer next to the LED 

chip [24, 25]. The WLED with QDs-on-phosphor configuration perform excellently and shows incredible 

capability in LE, CRI and controlling thermal performance compared to the mixed-type or phosphor-on-QDs 

type in both occasions which promote QDs-In-phosphor as the correct choice to create high quality WLEDs. 

This packaging structure is good at many aspects yet unable to eradicate reabsorption as the red QDs still 

absorb the green and yellow light from the phosphor layers when they pass through it. Another concern is 

that LED has a Lambertian intensity distribution, which means the energy transfer efficiency is not consistent 

and the intensity focus on the center and gradually falling towards the side. These are important issues that 

need immediate attention, therefore, we renovated the packaging structure and decided to arrange  

the phosphor layers horizontally as a solution to the problem of reabsorption and inconsistent energy 

conversion. This is the first time the horizontally layered QDs phosphor nanocomposite ability to improve  

the lighting features of WLEDs is applied in a structure and achieved positive results. Four distinct types of 

WLEDs including single-layer phosphor, dual-layer remote phosphor with yellow-red and yellow-green, and 

triple-layer phosphor configuration were assembled and applied in the experiments, the phosphor fabrication 

processes, mathematic equations and detailed results are presented respectively throughout the article.  

The results are informative instruction for the selection of the suitable packaging configuration to fulfill  

the manufacturing requirements.  
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2. EXPERIMENT AND SIMULATION DETAILS 

2.1. Preparation of phosphor materials  

The green phosphor was utilized LaSiO3Cl:Ce3+,Tb3+ to stimulate the green light component in 

WLEDs leading to increased luminous flux and color uniformity. The red phosphor Mg2TiO4:Mn4+ with red 

emission ability is an essential element in enhancing WLEDs color rendering index (CRI) and color quality 

scale (CQS). The procedures to fabricate these two phosphors are expressed in the following instructions:  

The preparation procedure of LaSiO3Cl:Ce3+,Tb3+ compound consists of 7 steps that needed to be 

applied in the exact order of mixing, drying, firing, re-firing twice, washing, and drying again, to achieve  

the highest quality phosphor. First of all, mixing the materials thoroughly in water added with NH3 until 

forming a uniform slurry. After the first step, leave the materials to dry in airy place and then powderize 

when they are completely dry. In the first firing process, place the materials in a capped quartz tube filled 

with N2 and put it in the furnace at approximately 500°C for 1 hour, after the product cooled down powderize 

it to obtain the desirable fine powdery state. Re-firing the materials in capped quartz tubes filled with N2 for 

an hour but this time at 1200°C before powderizing. Repeat the firing process one last time in open quartz 

boats filled with CO at 1200°C for one hour and finish by powderizing the product. After the firing 

processes, washing the mixture in water for several times to remove unwanted residues. Finally, leave  

the product until dry and store in concealed container. The fabrication process of Mg2TiO4:Mn4+ also have to 

be in a specific order to yield the best result as each prior step is related to the subsequent ones. To create 

Mg2TiO4:Mn4+, the first step is to blend the starting materials into water or methanol until the mixture 

reaches a uniform state. Drying the mixture in airy condition before powderize the dried materials. 

Then proceed to fire the materials in a quartz boat that is left open to let the air in, the temperature should be 

at about 1300ºC and the length of this process is one hour, powderize the product by grinding or milling it 

once the firing process is done and the product is back to normal temperature. Firing the materials one more 

time in an open quartz boat but with O2 at 570°C overnight for 16 hours. The final product is stored in 

concealed container. Before conducting the optical simulation of LaSiO3Cl:Ce3+,Tb3+ and Mg2TiO4:Mn4+ 

particles, the input data such as phosphor concentration, phosphor particles sizes, excitation spectra, 

absorption spectra, and the emission spectra of the phosphor needed to be properly examined through 

experiments to ensure authenticity. Among the aforementioned parameters, parameters relating to the spectra 

are constant numbers while phosphor concentrations and phosphor particle sizes are the unknown values 

needed to enhance the color quality and luminous flux of WLEDs. Based on the results of prior researches, 

the diameter of each phosphor particle is fixed at an average of 14.5 µm.  

 

2.2. Simulation process 

In Figure 1(a) is an image of the physical model simulated to use in the experiments, in which 

contains 9 blue chip, phosphor layers and dorm-like lens. Figure 1(b) contains the detailed measurements of 

this WLED and Figure 1(c), 1(d), 1(e) and 1(f) shows this remote phosphor WLEDs with different types of 

phosphor from single-layer phosphor, Dual-layer remote phosphor with YR structure and YG structure to 

triple-layer phosphor structure. The substrate in the simulation is aluminum nitride and the phosphor is 

YAG:Ce3+, the CCTs are 6600 K and 7700 K for packages to ensure accuracy and the experiments are 

observed through the vertical axis.  

The measurement of the remote phosphor layers is fixed at 0.08 mm. To maintain the average  

color correlated temperature (ACCT), it is crucial that the concentration of YAG:Ce3+ must adjust 

accordingly to the changes occur in the concentration of green or red phosphor. At different ACCTs of  

each phosphor configuration the concentration of YAG:Ce3+ also varies, this lead to distinct light scattering 

effects in each WLED resulting in diverse lighting properties. By analyzing the content of Figure 2, it can  

be concluded that the concentration of the yellow emitting phosphor YAG:Ce3+ is at the highest level in  

the Y structure and struggle in YRG structure at all ACCTs. When examining the same ACCT in all remote 

phosphor structures, the higher the concentration of YAG:Ce3+ get, the greater the reabsorption losses 

become causing the luminous flux to decline. Moreover, the high concentration of YAG:Ce3+ also induce  

the imbalance between the three colors constituting white light, red, yellow and green, which is detrimental 

to the chromatic quality of WLEDs. Therefore, keeping the balance between the white light constituent 

colors as well as limiting the light loss from back-scattering effect are the fundamental requirements in 

enhancing luminous flux and color quality of WLEDs. To achieve these goals, the red emissive phosphor 

with red light component can be employed to boost the color rendering index while the green light 

component from the green phosphor can be useful in managing color uniformity and luminous flux. 

Possessing both red and green phosphor, the triple remote phosphor stands out as the most beneficial 

phosphor configuration for improving the lighting performance of WLEDs. However, to fully determine  

this statement, we need to consider another important parameter of the remote phosphor structure that is  

the emission spectrum. As can be seen from the graphs of Figure 3, the differences between the emission 
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spectra are apparent. Regarding the width of the emission spectra, the Y structure has the lowest intensity at 

all ACCTs when compared to others structures, this confirms that the luminous flux obtains from this 

structure is the smallest while in YRG structure, the emission spectrum intensity in the wavelength ranging 

from 380–780 nm is the highest. When comparing the YG and the YR structure, we can see that  

the luminous flux of YG is higher than that of YR owing to YG structure higher spectrum intensity in  

the wavelength band from 400–500 nm. On the contrary, the spectrum intensity of YG is lower than YR in 

the wavelength band from 650–750 nm which proving that YR has better color rendering index than YG. 

These are important information in choosing the suitable structure for WLEDs, however, the results in part 3 

also need consideration before concluding.  
 

 

 

Lead frame: 4.7 mm Jentech Size-S 
LED chip: V45H 

Die attach: Sumitomo 1295SA 

Gold Wire: 1.0 mil 
Phosphor: ITC NYAG4_EL 

 
(a) 

 

(b) 
 

(c) 
 

   
(d) (e) (f) 

 

Figure 1. Illustration of multi-layer phosphor structures of white LEDs:  

(a) the actual MCW-LEDs and (b) its parameters; (c) single-layer phosphor,  

dual-layer remote phosphor with YR (d) and YG (e), and (f) triple-layer phosphor  
 

 

 
 

Figure 2. The concentration of yellow-emitting YAG:Ce3+ phosphor  

correlating to each remote phosphor structures at different ACCTs 
 

 

  
(a) (b) 

 

Figure 3. Emission spectra of phosphor configurations: (a) 6600 K and (b) 7700 K 
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As can be seen from the graphs, the differences between the emission spectra are apparent. Regarding 

the width of the emission spectra, the Y structure has the lowest intensity at all ACCTs when compared to 

others structures, this confirms that the luminous flux obtains from this structure is the smallest while in YRG 

structure, the emission spectrum intensity in the wavelength ranging from 380-780 nm is the highest. 

When comparing the YG and the YR structure, we can see that the luminous flux of YG is higher than that of 

YR owing to YG structure higher spectrum intensity in the wavelength band from 400-500 nm. On the contrary, 

the spectrum intensity of YG is lower than YR in the wavelength band from 650-750 nm which proving that YR 

has better color rendering index than YG. These are important information in choosing the suitable structure for 

WLEDs, however, the results in part 3 also need consideration before concluding. 

 

 

3. RESULTS AND ANALYSIS  

Figure 4 demonstrated the overall review of the CRI between the remote phosphor structures.  

From this graph, the YR is the most favorable structure for the growth of CRI which result in the highest  

CRI at all ACCT. The graphs also show another important finding relating to the improvement of CRI in 

remote phosphor layer that is the CRI increases with ACCT and reach the highest index at 8500 K. 

Even though controlling the color rendering ability of WLEDs at the ACCT above 7000 K is a difficult task,  

the YR structure is still able to benefit the CRI by adding red component from the red phosphor 

SrwFxByOz:Eu2+,Sm2+. The YRG is placed second regarding the achievable CRI and CRI in YG is the lowest 

among all remote phosphor structures. From this result, it is confirmed that YR is the optimal structure for 

mass production if the goal is to achieve the highest CRI possible. However, CRI can only assess a few 

aspects of WLEDs optical characteristics while there are broader and harder to obtain parameter such as CQS 

that can fully describe the performance of WLED. By assembling three important factors including CRI, 

viewer preference, and color coordinate, the color quality scale (CQS) has become a research goal for many 

studies in recent years and is frequently used as a fundamental index to evaluate the chromatic performance 

of WLEDs as the higher the CQS the better the color quality. The CQSs of the remote phosphor utilized in 

this research are measured and expressed in Figure 5. Due to the balance between the three colors red, yellow 

and green provided by the three phosphor layers, the CQS achieved in YRG is the highest among the 4 

remote phosphor structures. The lowest CQS belongs to structure Y, despite having an advantage in luminous 

flux, the color quality of the Y structure is unable to progress due to the lack of red and green lights, the two 

important ingredients for balancing the primary colors and improving the color quality. The color quality of 

Y structure might not be ideal, however, the strong points that this structure has over other options are its 

easy-to-handle producing process and small manufacturing cost. 

As shown in Figure 5, the YRG structure is the most suitable configuration if the target of 

the manufacturers is to produce WLED with the best color quality. However, to determine whether this 

structure going to have a negative effect on the luminescence efficiency or not, a comparison between 

the luminous flux of single-layer structure and dual-layer structure is needed. Figure 6 illustrate 

the luminescence efficiency (LE) between the remote phosphor structures, which shows that the YRG 

structure excels at all ACCTs while Y structure is at the bottom. This confirmed that along with the high 

color quality the YRG structure is also able to yield the largest luminous flux. This can be explained with 

the appearance of both red and green phosphor in the YRG structure forcing a decrease in the concentration 

of yellow phosphor YAG:Ce3+ and as the same time reduce the light loss due to re-absorption. 

With the concentration of YAG:Ce3+ decreases, the energy conversion efficiency increases because the blue 

light from the chips can now easily pass through the yellow phosphor layer and reach other phosphor layers. 

As a result, the intensity of the emission spectrum in the YRG structure is the highest compared to other 

structures in the white light wavelength and the luminous flux of this structure is also the highest accordingly. 

Moreover, in the wavelength band from 500 nm – 600nm, the additional green light from the green phosphor 

layer SrBaSiO4:Eu2+ enhance the emission spectrum of YG structure making it higher than YR and Y 

structure, therefore, the second-highest luminous flux belongs to the YG structure. According to the results 

above, the WLEDs with YRG will contain good optical quality in both CQS and LE, this proves that YRG is 

an outstanding structure to choose when manufacturing WLEDs. Beside other features, color uniformity is 

also an essential target when discussing color quality, however, the two most commonly used method to 

improve color uniformity are employing scattered-enhancing particles and using the conformal phosphor, 

which can severely damage the luminous flux of WLEDs. Therefore, using the red phosphor 

SrwFxByOz:Eu2+,Sm2+, green phosphor SrBaSiO4:Eu2+ and the remote phosphor structure is the solution for 

this problem as the phosphor layers are able to boost the scattering properties and improved the white light 

output quality while the remote structure layer is very efficient in enhancing the luminous flux by limiting 

the amount of light reflected to the LED chip. Figure 7 expressed the color deviation between the structures. 

In this figure, the structure with the smallest color deviation index has the highest color uniformity, therefore, 
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the color uniformity of the YRG structure is the best correlating to the lowest color deviation illustrated in 

Figure 7. This is the result of the scattering events occur inside the LED package before forming white light, 

the color uniformity of WLEDs increases with the amount of scattering events occurred. Although having too 

many scattering events also impair the luminous flux, this drawback is compensated with the reduced 

back-scattering effect. As a result, the YRG still has the highest color uniformity while maintaining the best 

luminous flux. The Y structure, on the other, is the structure with the highest color deviation measurement at 

all ACCTs. 

 

 

  
 

Figure 4. Color rendering indexes of phosphor 

configurations corresponding to ACCTs 

 

 

 

Figure 5. Color quality scale of phosphor 

configurations corresponding to ACCTs 

 

  
 

Figure 6. Luminous efficacy of phosphor 

configurations corresponding to ACCTs  

 

Figure 7. Correlated color temperature deviation 

(D-CCT) of remote phosphor configurations 

corresponding to ACCTs 

 

 

4. CONCLUSION  

In conclusion, the YRG offers a balance between the three primary colors, reduced back-scattering 

effect and low color deviation that results in highest color quality, color uniformity, and luminous flux. 

These results confirm that YRG is the optimal WLED structure for the performance enhancing ability and 

superior values in every optical properties compared to other structures, therefore, this is an important 

reference for manufacturers while choosing set up for their product. The YG and YR structures have  

the second-highest optical indices which vary depend on the type of optical property, in particular, the YG 

structure has better luminous flux and color uniformity than the YR structure because the extra green 

component from the green phosphor SrBaSiO4:Eu2+ boosts the luminescence efficiency and color uniformity, 

while the CRI and CQS in the YR structure is better than YG structure because they are enhanced by the red 

light component. The Y structure, although not excelling in terms of quality, is still a very possible choice 

because of the low manufacturing cost, simple producing process, and high luminous efficiency. These results 

are from thorough experiments that compared the optical properties between the most frequently used 

structures, Y, YG, YR, and YRG, and then verified using the Mie theory and the Lambert-Beer law, therefore, 

the relevancy and reliability is high and can be applied in practical situations. The article does not only 

provide information of the best structure for WLED but also demonstrates the most suitable ones for specific 
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occasions, therefore, these are valuable references that can support manufacturers in choosing the appropriate 

structure for the production of WLEDs with any particular demand while ensuring the quality. 
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