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 The robustness of speaker identification system over additive noise  

channel is crucial for real-world applications. In speaker identification (SID) 

systems, the extracted features from each speech frame are an essential  

factor for building a reliable identification system. For clean environments, 

the identification system works well; in noisy environments, there is an 

additive noise, which is affect the system. To eliminate the problem of 

additive noise and to achieve a high accuracy in speaker identification  

system a proposed algorithm for feature extraction based on speech 

enhancement and a combined features is presents. In this paper, a wavelet 

thresholding pre-processing stage, and feature warping (FW) techniques are 

used with two combined features named power normalized cepstral 

coefficients (PNCC) and gammatone frequency cepstral coefficients (GFCC) 

to improve the identification system robustness against different types of 

additive noises. Universal background model Gaussian mixture model 

(UBM-GMM) is used for features matching between the claim and actual 

speakers. The results showed performance improvement for the proposed 

feature extraction algorithm of identification system comparing with 

conventional features over most types of noises and different SNR ratios. 
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1. INTRODUCTION  

Speaker recognition is a task of identifying the speaker by the voice information that is extracted 

from speakers underlying speech [1] and its divided into speaker identification system which define  

the speaker from a group of speakers, and speaker verification system which determining if the voice is really 

the claimed speaker’s voice [2]. Furthermore, it falls in two classes, text-dependent, in which the speaker 

should utter a password, and text-independent, which letting the speaker free to say any words in mind [3]. 

There are many applications for speaker identification system, such as remote access to services, banking 

operations through a telephone line, authentication and forensic applications [1]. 

In speaker identification (SID) systems, the extracted features from each speech frame are a crucial 

factor for building a reliable identification system. In clean environments, the identification system performs 

well, but in noisy environments, the distribution models of the features that extracted from the noisy speech 

will not matches the clean features distribution model that built in training phase [4]. To overcome this 

problem, the researchers applied many approaches to achieve this goal. In this section, we presents some 

related works; Speech enhancement is one of these approaches, where the noisy speech signal pre-processed 

first to suppress the noise. Spectral subtraction (SS) speech enhancement technique [5] depends on  

the correlation absence between the clean speech and the noise in which they are additive in time domain. 
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The noise is assumed to change very slow compared with speech so, the noise spectrum can be estimated 

during silence periods, and the clean speech spectrum can be estimated by subtracting the estimated  

noise spectrum from noisy speech signal spectrum. Improved spectral subtraction [6] based on two steps, 

speech activity detection (SAD) and noise amplitude spectral estimation; it was adopted based on frequency 

band variance to detect speech endpoints to calculate the noise power spectrum. Brajevic et al [7] proposed to 

use Ephraim-Malah estimation and short time Fourier transform to suppress stationary noise by reducing 

spectral coefficients.  

Abd El-Fattah et al [8], used Adaptive wiener filter in time domain to estimate noise from speech 

signal. Ahmet M. and Aydin A. [9] used empirical mode decomposition (EMD) for speech signal 

decomposition with detrended fluctuation analysis (DFA) technique to threshold the noisy intrinsic mode 

functions (IMFs) and drop them, the experiments showed good results on Gaussian noise at 0 db. S. Abd  

El-Moniem, et al. [10] proposed the use of EMD and SS as a pre-processing stage to enhance the noisy 

speech, SS was used to estimate and suppress noise spectrum on each IMF before reconstructing the input 

signal which would be enhanced. S.M. Govidan et al [4] used Adaptive bionic wavelet shrinkage (ABWS) 

which is a speech enhancement technique that's used to suppress the additive noise and increase the accuracy 

of the speaker recognition system, a double threshold is computed and applied based on estimated noise on 

each sub-band decomposed by adaptive bionic wavelet coefficients, a good results was reported in variety of 

noise types and levels. Y. Xu et al [11] obtained clean speech signal from noisy one with deep neural 

network (DNN) by calculating log-power spectra of noisy speech signal then mapping noisy to clean data 

using a well-trained DNN, the mapping function was trained with DNN over 104 noise types with 2500 hour 

of training.  

Another approach is to extract a noise robust features that achieve a high identification rate  

without suppressing noise. H. Hermansky and N.Morgan [12] used Relative spectral perceptual linear 

prediction (RASTA-PLP) was built on the assumption that the human auditory system is sensitive for 

stimulus that are slowly varying, and the performance can be improved by eliminating the very slowly 

changing components comparing to the speech signal change. RASTA filtering ensuring that the output 

signal is much less to the stimuli that varying very slowly. Kim and Stern [13] proposed new features  

called power normalized cepstral coefficients (PNCC) in which the power nonlinearity was used instead of 

log nonlinearity in MFCC features and power-bias subtraction technique to suppress the additive noise. 

Wang, et al. [14] propose to use wavelet octave coefficients residues (WOCOR) that complements MFCC 

features information, the results state that this technique enhanced the system accuracy in mismatched spoken 

contents. Zhao et al [15] introduced new method for extracting features called gammatone frequency cepstral 

coefficients (GFCC), the work was based on the human auditory peripheral model where gammatone  

filter bank was used as a replacement of Mel-frequency filter bank which made it performs better than  

MFCC features. Mean Hilbert envelop coefficients (MHEC) proposed by Sadjadi and Hansen [16] to extract 

features by using smoothed Hilbert envelop of gammatone filter bank, the results showed that MHEC 

features are less prone to noise than MFCC features. Satyanand Singh and Pragya Singh [17] proposed to 

extract speaker specific features based on statistical modeling techniques of the speaker, the authors used 

TIMIT dataset with 1000 utterances and the results showed that using GMM gives the best recognition 

accuracy of 99.1%. Kobra et al [18] proposed to use mean and variance normalization and then applying 

auto-regression moving-average filter (MVA) to MFCC features, the new features give 28% accuracy 

improvement comparing with MFCC features at 5db SNR level. 

To achieve a high accuracy in speaker identification by exclude the problem of additive noise,  

a proposed algorithm for feature extraction based on speech enhancement and roust combined features is 

used. The speech enhancement is based on wavelet thresholding as a pre-processing stage to remove  

the noise from the input speech signal first, after that, two cepstral features (PNCC and GFCC) are extracted 

from the estimated clean speech signal, feature warping is applied to the extracted features, and finally,  

a concatenation of the resulted features was applied to produce the final proposed robust features. 

The rest of the paper is organized as follow. Section (2) describes the proposed feature extraction 

algorithm. Section (3) presents the experimental methodology. Section (4) presents simulation results and 

discussion. Finally, conclusion is in section (5). 

 

 

2.  PROPOSED FEATURE EXTRACTION ALGORITHM 

Figure 1 shows the proposed feature extraction algorithm, where, the input speech signal is denoised 

by implementing discrete wavelet transform (DWT) semisoft thresholding, then extracting PNCC and GFCC 

features followed by applying feature warping technique, and finally concatenating them. The extraction 

algorithm steps are describe in the proceeding subsections. 
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Figure 1. Block diagram of the proposed feature extraction algorithm 

 

 

2.1. Speech enhancement 

Wavelet transform used to analyze speech signals and DWT is a type of wavelet transform where 

the speech signal is decomposed to detail coefficients (CD) and approximation coefficients (CA) at several 

frequency subband levels with a finite impulse response (FIR) filter [19] as shown in Figure 2. The CA 

produced by convolving the speech signal with low-pass filter and the CD produced by convolving 

the speech signal with high-pass filter. Each decomposition level is done by applying DWT to the 

approximation coefficients [20]. 

 

 

 
 

Figure 2. Block diagram of speech enhancement using DWT thresholding 

(h is low-pass filter, g is a high-pass filter, ↓ 2 is down sampling that discarding half of signal data,  

and ↑ 2 is up sampling that doubles signal data) 

 

 

After the speech signal decomposition, adaptive thresholding is applied to each resulted sub-band 

except for last approximation sub-band. Semisoft thresholding function is given by [21]: 

 

𝐷(𝑌, 𝜆1, 𝜆2) =

{
 

 
         0                                , 𝜆1 < |𝑌| ≤ 𝜆2 

𝑠𝑔𝑛(𝑌)
𝜆2(|𝑌| − 𝜆1)

𝜆2 − 𝜆1
           , |𝑌| ≤   𝜆1                   

         𝑌                                       , |𝑌| > 𝜆2                    

  (1) 

 

where: 𝐷(𝑌, 𝜆1, 𝜆2) is the output value after thresholding, 𝑌 is the DWT subband frame, 𝜆1, 𝜆2 is the upper 

and lower thresholds respectively. 

The thresholding value 𝜆1 is very important to the denoising performance, if it’s too low, the noise 

won’t be removed, and if it’s too high, part of the speech signal will be lost [22], Donoho [23] suggested  

the following estimation for the 𝜆1 threshold value: 

 

𝜆1 = 𝜎𝑘√2 log𝑁𝑘 (2) 

 

where: 𝑁𝑘 is the signal length at subband level k, 𝜎𝑘 is the standard deviation at subband level 𝑘 and given  

by [23]: 

 

𝜎𝑘 =
𝑀𝑒𝑑𝑖𝑎𝑛 (|𝐶𝐷𝑘|)

0.6745
 (3) 

 

where: 𝑀𝑒𝑑𝑖𝑎𝑛 (|𝐶𝐷𝑘|) is the median absolute deviation detail coefficients at sub-band level 𝑘. 𝜆2 is 

calculated as [20]: 
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𝜆2 = √2𝜆1 (4) 

 

To recover the enhanced speech signal, Inverse DWT (IDWT) is applied; the de-noising procedure is 

repeated for each frame. 

 

2.2. Robust features extraction 

2.2.1. Pre-processing 

After speech enhancement stage, the enhanced speech is used to extract the proposed features,  

the second step of the pre-processing is the pre-emphasis filter that is applied first to the speech signal to 

intensify high frequencies [24], Pre-emphasis is applied to PNCC features only as in [25] but not applied to 

GFCC features because it leads to performance dropping [26]. Framing is the third step in pre-processing 

stage where the enhanced speech signal is to be cut into short overlapping frames of 20-30 ms to overcome 

the discontinuity problem of the speech signal that may lead to wrong extracted features and performance 

dropping [27]. The fourth step is to apply a hamming window to every frame to increase signal continuity of 

the start and end of the frame [28]. 

 

2.2.2. Power normalized cepstral coefficients (PNCC) 

PNCC features are powerful features that outperform conventional features in noisy and clean 

environments [25]. The high identification accuracy is resulted by the using of power-law nonlinearity that 

gives a close approximation of human auditory system [29]. Figure 3 illustrate the processing stages block 

diagram of PNCC features as described in [13]. 

After the pre-processing stage, the cepstral features are extracted from frequency domain by STFT. 

Frame power is calculated, then, gammatone filter bank is used with Equivalent Rectangular Bandwidth 

(ERB). To suppress the channel noise, Asymmetric Noise Suppression (ANS), temporal masking and weight 

smoothing are used. Power function nonlinearity is used because the output behavior does not critically rely on 

the amplitude of the input [30]. Discrete Cosine Transform (DCT) is applied then to de-correlate the highly 

correlated spectral features [31]. Finally, implement cepstral mean normalization to produce the normalized 

cepstral vector to remove channel distortion and improve recognition rate in noisy environments [32]. 
 

 

 
 

Figure 3. Block diagram of PNCC algorithm 
 

 

2.2.3. Gammatone frequency cepstral coefficients (GFCC)  

The gammatone filter bank is series of overlapping band-pass filters that models the human  

auditory system [33]. The combination of gammatone filter bank (GF), cubic root and equivalent rectangular 

bandwidth (ERB) gives the robustness of GFCC features in noisy environments [34]. The block diagram of 

GFCC features processing stages is depicted in Figure 4 as described in [15]. 
 

 

 
 

Figure 4. Block diagram of GFCC feature extraction algorithm 
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Preprocessed speech signal passed through 64-channel gamma tone filter bank whose center 

frequencies ranging from 50 – 8000 Hz, then, fully rectify the response of the filter (i.e. take absolute value) 

at each channel then decimate into 100 Hz, which yields a 10-ms. frame rate. The absolute value is calculated 

to create T-F representation that is a variant of cochlea-gram. After that, implement cubic root for  

the decimated outputs magnitudes. Finally, apply DCT to de-correlate the cepstral coefficients and reduce 

dimensionality [15]. 

 

2.2.4. Feature warping (FW) 

Feature warping is letting the cepstral features following a distribution target to increase  

the robustness of the resulted features. FW processing steps can be summarized as following [35]: 

a. Select a target distribution. 

b. Extract cepstral coefficients. 

c. Create a lookup table to map the rank of sorted features to target warped features. 

d. Isolate a window of 𝑁 features (typically 3 seconds) and sort the values in descending order then give  

a rank of 1 for the maximum value and rank 𝑁 for the minimum value, to be used as an index in  

the lookup table created in step c. 

e. Move the sliding window by 1 frame. 

f. Steps (d) and (e) are repeated for each frame shift. 

The lookup table can be created by calculating the value of 𝑚 by numerical integration method  

for each 𝑅 value by initially making 𝑁 = 𝑅 [35]: 

 

𝑁 +
1
2
− 𝑅

𝑁
= ∫ ℎ(𝑧)𝑑𝑧

𝑚

𝑧=−∞

 (5) 

 

If a normal distribution is chosen, then: 

 

ℎ(𝑧) =
1

√2𝜋
𝑒−

𝑧2

2  (6) 

 

where: 𝑚 is the feature warped component, 𝑁 is the window length and 𝑅 is the rank. 

 

 

3. EXPERIMENTAL METHODOLOGY 

Experiments are done on TIMIT [36] dataset, which consists of 630 speakers, each speaker has  

10 utterances. To train the UBM-GMM classifier, 530 speakers are chosen randomly (i.e. 5300 utterances)  

to train UBM and 100 speakers are left for testing. The GMM is trained with 9 utterances from each speaker 

and the last utterance is left for testing. To test the robustness of the proposed algorithm presented here,  

4 noise types are chosen from the Noisex-92 [37] noise dataset which are artificially added to the test 

utterances with a signal to noise ratio levels 0,5,10 and 15 db. For speech enhancement stage, all utterances 

are framed into non-overlapping frames with 16 ms. length and decomposed with 4 levels using DWT 

wavelet decomposition, scaling function Daubechies 8 techniques and pruned using semisoft thresholding, 

and then reconstruct each frame and recombine them to produce the enhanced speech signal. The feature 

extraction stage includes framing the speech signal into an overlapping Hamming window of 25 milliseconds 

frame length and 10 milliseconds window shifts. GFCC with 42 (21 GFCC and 21 ∆GFCC) features are 

extracted with 64 gammatone filters and dropping 0th coefficient and 42 PNCC (21 PNCC and 21 ∆PNCC) 

features are extracted with 40 filters and applying pre-emphasizing filter with 0.97 and dropping 0th 

coefficient from each frame, then applying feature warping with window length of 301 frames (3 sec) to each 

cepstral features (GFCC and PNCC) to produce GFCC-FW and PNCC-FW. After that, a concatenation  

of resulted features is taken place to obtain the final proposed features. UBM-GMM is used to evaluate  

the results, 256 Gaussian mixtures and 10 expectation maximization iterations are used. 

 

 

4. SIMULATION RESULTS AND DISCUSSION 

In this section, the proposed features robustness tested with both clean and noisy environments,  

then compared with similar studies. 
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4.1. Speech enhancement technique analysis 

To select the best parameters settings for the speech enhancement pre-processing stage, number of 

factors are selected and used in the test, such as, frame length, number of decomposition levels, filter 

function, and number of filters, for their effect on the average identification accuracy. The average results are 

listed in Table 1. The average identification accuracy results that are shown in Table 1, indicates that 4 levels 

of DWT decomposition with db8 and frame length of 16 ms gives the best identification accuracy. 

 

 

Table 1. Average identification accuracy on different parameters settings  

for speech enhancement pre-processing stage 

Effect of number of DWT decomposition levels on  
the average identification accuracy 

Effect of choosing the filter function on  
the average identification accuracy 

2 levels 3 levels 4 levels 5 levels DB. Symlet Coiflet 

83.86 85.01 85.24 85.21 85.24 84.31 85.17 

Effect of frame size on the average  
identification accuracy 

Effect of the number of filters on  
the average identification accuracy 

16 ms 25 ms 32 ms No Framing 5 8 13 

85.24 84.73 83.49 82.22 83.00 85.24 84.96 

 

 

4.2. Comparison between baseline and the proposed features 

Table 2 shows a comparison between baseline and proposed features with and without DWT speech 

enhancement technique and its effect on the identification accuracy rate. The results obtained in Table 2 

shows that DWT with semisoft thresholding and the proposed features give a noticeable improvement in 

identification rate except for the clean speech signal where PNCC features gives the top identification rate. 

 

 

Table 2. Comparison between baseline and the proposed features 

Noise Type Noise Level PNCC GFCC PNCC-FW-GFCC-FW DWT(PNCC-FW-GFCC-FW) 

Clean  99 96 98 98 

Babble 

0db 69 56 74 80 

5db 86 77 88 92 

10db 96 90 92 98 

15db 95 94 95 97 

Factory 1 

0db 49 46 64 70 

5db 75 75 78 81 

10db 88 86 88 94 

15db 92 89 93 97 

Pink 

0db 39 13 46 50 

5db 52 29 72 78 

10db 70 62 85 91 

15db 82 81 91 95 

White 

0db 52 25 54 62 

5db 67 55 72 78 

10db 75 79 89 92 

15db 89 88 93 96 

Average  75 67.12 80.71 85.24 

 

 

4.3. Comparison with similar studies 

The proposed feature extraction algorithm is compared with similar studies to show  

the effectiveness of the algorithm. Table 3 describes briefly the systems of the studies used in  

the comparison. Figure 5 shows the comparison results with other studies and the proposed feature extraction 

algorithm outperforms the other studies results. The same parameters used in the comparison, which  

are frame length, frame shift, the number of gaussian mixtures, and noise types and SNR levels.  

The comparison results shows that the proposed feature extraction algorithm outperforms all the compared 

studies with a grate identification accuracy. 
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Table 3. Brief description of the systems used in the comparison 

Work 
Proposed 

features 

Speaker’s 

dataset 

No. of 

testing 
speakers 

No. of features 
Frame 

length 

Frame 

shift 

Pre-

emphasis 

Evaluation 

system 

No. of 

mixtures 

Proposed Proposed TIMIT 100 42 (21 + 21∆) 25 mSec 10 mSec 

0.97 for 

PNCC 

features 

UBM-
GMM 

256 

[1] Neurogram TIMIT 100 25 
Not 

mentioned 
Not 

mentioned 
No 

UBM-
GMM 

128 

[18] 

Combining 

MFCC and 

MVA 

TIMIT 100 20 15 mSec 10 mSec 0.97 GMM 64 

[38] 

1. PNCC+SGR

s 

2. LPCC+SGR
s 

TIMIT 630 

1. 60 for 
PNCC+SGRs 

(20 + 20∆ + 20 

∆∆) 
2. 24 for 

LPCC+SGRs 

Not 

mentioned 

Not 

mentioned 
No 

UBM-

GMM 
128 

[39] 

Auto-

regressive with 
MFCC (AR-

MFCC) 

TIMIT 200 
64 (32 MFCC 
and 32 AR) 

20 mSec 10 mSec 0.97 GMM 64 

 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 5. Comparison with other studies: (a) with work proposed by [1], (b) with work proposed by [18],  

(c) with work proposed by [38], and (d) with work proposed by [39] 
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5. CONCLUSION  

In this work, new feature extraction algorithm is presented, it consist of two stages, first stage is 

speech enhancement with DWT semisoft thresholding. The second stage is concatinate two extracted features 

named power normalized cepstral coefficients (PNCC) with feature warping (FW) and gammatone frequency 

cepstral coefficients (GFCC) with FW that are studied for robust speaker identification system over noisy 

channel. UBM-GMM is used as feature. Experiments are done on TIMIT dataset where 100 speakers are 

used for test. The testing is done on clean and noisy conditions to test the robustness of the proposed feature 

extraction algorithm, 4 noise types are chosen from the Noisex-92 noise dataset (babble, factory 1, pink and 

white) that are added to the test utterances with SNR levels 0, 5, 10 and 15 db. The results showed that 

the proposed features outperforms baseline features (PNCC and GFCC) and other proposed works Islam et 

al., in 2016, Korba et al., in 2018, Guo et al., in 2017 and Ajgou et al. in 2016, so it’s a promising approach for 

extracting robust features and increasing speaker identification rate. 
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