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 In recent years, the importance of the mobile edge computing (MEC) 

paradigm along with the 5G, the Internet of Things (IoT) and virtualization 

of network functions is well noticed. Besides, the implementation of 

computation-intensive applications at the mobile device level is limited by 

battery capacity, processing capabalities and execution time. To increase  

the batteries life and improve the quality of experience for computationally 

intensive and latency-sensitive applications, offloading some parts of these 

applications to the MEC is proposed. This paper presents a solution for  

a hard decision problem that jointly optimizes the processing time and 

computing resources in a mobile edge-computing node. Hence, we consider  

a mobile device with an offloadable list of heavy tasks and we jointly 

optimize the offloading decisions and the allocation of IT resources to  

reduce the latency of tasks’ processing. Thus, we developped a heuristic 

solution based on the simulated annealing algorithm, which can improve  

the offloading rate and reduce the total task latency while meeting short 

decision time. We performed a series of experiments to show its efficiency. 

Finally, the obtained results in terms of full-time treatrement are very 

encouraging. In addition, our solution makes offloading decisions within 

acceptable and achievable deadlines. 
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1. INTRODUCTION  

Smart Mobile devices are changing day by day in the marketplace. These devices are compact and 

small, thing that makes convenient to use. There are currently billions of connected objects in the world  

(IoT) [1]. Mobile devices typically have limited resources, such as limited battery power and local CPU 

capacity, and may therefore suffer from an unsatisfactory computing experience. Mobile edge computing is 

emerging as a promising remedy. By offloading computing tasks to physically close MEC servers, the quality 

of the computing experience, such as device power consumption and turnaround time, could be greatly 

improved [2, 3]. As a result, the execution time of these tasks can be effectively reduced by offloading heavy 

tasks to an MEC node. 

Computationally demanding mobile applications, such as face recognition, language processing and 

online gaming, have been developing fast and increasingly outgrowing the limited capabilities of devices [4]. 

Typical characteristics of MEC include low latency, proximity, high bandwidth, mobility support and 

location awareness [5]. There is only a number of works that have jointly optimized the offloading decisions 

and resource allocation of multiple devices, typically for delay-tolerant services [6, 7]. In [7], both offline and 

online approaches were proposed for the joint optimization, where a single task was offloaded to the MEC 

server while the others were executed locally. In [7], the allocations of computational resources and 
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transmission bandwidths were optimized by exploiting semi-definite programming, and the offloading 

decisions were generated through randomized rounding. In [6], a heuristic scheme based on a submodular 

optimization method was proposed to jointly optimize offloading decisions and resource allocations for  

delay-tolerant tasks. More recent studies have been focused on either offloading decisions or resource 

allocation among multiple devices [8-12], with no allocation of transmission or computational resources.  

In [12], under limited cloud resources, both online and offline algorithms were developed to partition tasks 

for multiple devices. In [9], using queueing theory, offloading decisions were formulated as a non-

cooperative game in a three-tier MEC architecture consisting of mobile devices, cloudlets and distant cloud. 

Mobile edge Computing is a form of computer architecture [13-15]. It is about processing the data at 

the periphery of the network directly where they are generated. Rather than transfering the data generated by 

devices connected to the IoT to the cloud or the data center. It can offer nearby customized services that 

require good transmission bandwidth, additional data storage and processing. As illustrated in Figure 1, MEC 

can augment mobile devices’ capabilities by offloading [3, 16, 17] some parts of their heavy applications via 

wireless access to a resource-rich edge node, and then effectively reduces their power consumptions [18]. 

The first works which dealt with the offloading within MEC environments were interested in studying  

the multi-user single-task case. In these scenarios, a user only targets to offload only a unique task. They 

studied resource allocation while they optimize the average task duration [19]. Actually, an application is 

generally partitioned into multiple tasks, and the offloading decisions must concern each of them. 

Consequently, even a single user has to handle simultaneously multiple tasks. Therefore, the offloading 

decision parameters should be selected according to a multi-task scenario. 

 

 

 
 

Figure 1. Mobile edge computing illustration 

 

 

Recently, the authors of [20] studied a single-user multi-task offloading senario by optimizing radio 

resources and local frequency. They did not consider the local energy availability nor the remote server’s 

frequency. Besides, they consider tasks with the same deadline Td. In this work, we study the general  

multi-task offloading senario where we introduce the control of the available local energy, and consider  

the edge server’s frequency as a decision parameter in our optimization problem. Moreover, we consider  

a general setting where each offloadable task has to be executed within its specific deadline ti
max. According 

to our vision, we can prolong the battery life of the mobile device by considering the amount of its available 

power, and reduce the tasks’ processing time by adjusting the edge server’s frequency. Subsequently,  

we have formulated an optimization problem that minimizes the processing time by jointly deciding the local 

and edge computing frequencies, as well as the offloading decisions. Due to its combinatorial nature and after 

its decomposition, we propose a heuristic solution based on a simulated annealing algorithm to jointly decide  

the tasks’ offloading and the allocation of computing resources. The objective is to minimize the processing 

time via the offloading by considering the tasks’ latency constraints and a threshold of available processing 

time. The remainder of this paper is organized as follows : the system’s model and the optimization problem 

formulation are presented in Section 2. In Section 3, we present our method to solve the optimization 

problem. In section 4 we present the simulation results and their discussion. Finally, Section 5 concludes  

the paper. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Time and resource constrained offloading with multi-task… (Mohamed El Ghmary) 

3759 

2. SYSTEM MODEL AND PROBLEM FORMULATION 

2.1.  System model 

Figure 2 Shows a single smart mobile device (SMD) containing an offloadable multi-task list. In this 

work, we plan to study the behavior of the offloading process for a multi-task SMD in an edge environment, 

while we optimize computation resources available at the edge server as well as at the mobile device. 

Particularly, the available energy at the SMD for tasks execution is limited. Besides, in the context of 

offloading, some pieces of a computationally intensive application are divided into multiple mutually 

independent offloadable tasks [21-24]. Therefore, according to the available computational and radio 

resources, some tasks are pick-up from the resulting tasks list to be offloaded to the edge servers for 

computing. The others are performed locally on the SMD itself. The execution of the whole list must happen 

within the time limit of the application. Additionally, it is assumed that the SMD concurrently performs 

computation and wireless transmission. For all these considerations, we derive a mathematical processing 

time model that considers three main decisions: the offloading decision for each task, the local execution 

frequency of the SMD, and the server execution frequency at the edge. Then, we formulate an processing 

time problem. 

 

 

 
 

Figure 2. System model illustration 

 

 

Practically, the SMD is connected to an edge node (EN), and is intended to offload a set of 

independent tasks by the mean of an edge access point (EAP). Additionally, the wireless channel conditions 

between the SMD and the wireless access point are not considered in this work. Moreover, at the time of  

the offloading decision and the transmission of the offloadable tasks, the uplink rate r is assumed  

almost unchanged. 

As shown in Figure 2., the considered smart mobile device contains N independent tasks denoted 

as τ ≜ {τ1, τ2, … , τN}. In addition, these tasks are assumed to be computationally intensive and delay 

sensitive and have to be completed. Each task τi can be processed either locally or at the edge. It represents 

an atomic input data task that cannot be divided into sub-tasks. Moreover, it is characterized by the following 

three parameters τi ≜ 〈di, λi, ti
max〉. The first one denoted di[bits] identifies the amount of the input 

parameters and program codes to transfer from the user’s local device to the edge server. The second one 

denoted λi [cycles] specifies the workload referring to the computation amount needed to accomplish  

the processing of this task. The third parameter ti
max refers to the required maximum latency for this task.  

The execution nature decision for a task τi either locally or by offloading to the edge server is 

denoted xi where  xi ∈ {0; 1}. xi = 1 indicates that the SMD has to offload τi to the edge server, and xi = 0 

indicates that τi is locally processed. From this point, all time expressions are given in Seconds, and energy 

consumptions are given in Joule. Then, if the SMD locally executes task τi, the completion time of its local 

execution is ti
L =

λi

fL
. So, for all tasks, we have: 

 

 tL = ∑ (1 − xi)
λi

fL

N
i=1 . (1) 

 

additionally, the corresponding energy consumption is given by: ei
L = kL. fL

2. λi [11]. Hence, the total energy 

consumption while executing all tasks that were decided to be locally executed in the SMD is given by: 

 

   eL = kL. fL
2. ∑ λi(1 − xi)

N
i=1   (2) 
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if task 𝜏𝑖 is offloaded to the edge node, the offloading process completion time is: 𝑡𝑖
𝑂 = 𝑡𝑖

𝐶𝑜𝑚 + 𝑡𝑖
𝐸𝑥𝑒𝑐 + 𝑡𝑖

𝑅𝑒𝑠, 

where ti
Com is the time to transmit the task to the EAP, and it is given by ti

Com =
di

r
 . ti

Exec is the time to 

execute the task τi at the EN, and it can be formulated as ti
Exec =

λi

fS
. ti
Res is the time to receive the result out 

from the edge node. Because the data size of the result is usually ignored compared to the input data size, we 

ignore this relay time and its energy consumption as adopted by [25]. Hence, for the 𝜏𝑖 task ti
O = xi (

di

r
+

λi

fS
), 

and for all tasks, we have: 
 

tO = ∑ xi (
di

r
+

λi

fS
)N

i=1 . (3) 

 

So, the energy consumption of the communication process can be obtained by multiplying the resulting 

transmission period by the transmission undertaken power 𝑝𝑇 , and the rest of the execution period by the idle 

mode power 𝑝𝐼. Thus, this energy is: 
 

eC =
pT ∑ xidi

N
i=1

r
. (4) 

 

Finally, given the offloading decision vector 𝕏 for all tasks, the local execution frequency 𝒇𝑳 of the SMD, 

and the server execution frequency 𝒇𝑺 at the edge, the total execution time for the SMD is composed of its 

local execution time, the communication time as well as the execution time at the EN, and it is given by: 
 

T(𝕏, fL, fS) =  t
L + tO. (5) 

 

Then, according to (1) and (3) and if we note Λ = ∑ 𝜆𝑖
𝑁
𝑖=1  , the total execution time can be formulated as: 

 

T(𝕏, fL, fS) = {
Λ

fL
−

∑ λixi
N
i=1

fL
+

∑ dixi
N
i=1

r
+ 

∑ λixi
N
i=1

fS
}. (6) 

 

2.2.  Problem formulation 

In this section, we present our optimization problem formulation that aims to minimize the overall 

execution time in the offloading process. Initially, to prepare the problem’s data we start with an initial 

sorting of the tasks list τ ≜ {τ1, τ2, … , τN} according to their deadlines ti
max. Hence, the tasks execution order 

within the SMD or the edge server in the final solution must fulfill the initial order for both cases. 

Accordingly, the obtained problem is formulated as: 
 

𝓟𝟏: min
{x,fL,fS}

{
Λ

fL
−
∑ λixi
N
i=1

fL
+
∑ dixi
N
i=1

r
+ 

∑ λixi
N
i=1

fS
}, 

s.t. (C1.1)              xi ∈  {0; 1};                                                     i ∈  ⟦1; N⟧; 

(C1.2)             FL
min ≤ fL ≤ FL

max; 

(C1.3)             0 < fS ≤ FS ; 

(C1.4)             ti
L =

(1−xi)

fL
∑ λk(1 − xk)
i
k=1 ≤ ti

max;         i ∈  ⟦1; N⟧; 

(C1.5)             ti
O = xi∑ xk (

dk

r
+

λk

fS
)i

k=1 ≤ ti
max ;            i ∈  ⟦1; N⟧; 

(C1.6)             e
L + eC = kL. fL

2. ∑ λi(1 − xi) +
pT

r
∑ dixi
N
i=1

N
i=1 ≤ Emax. 

 

In this work, each one of the available tasks can be either executed locally or offloaded to the edge 

node. Thus, every feasible offloading decision solution has to satisfy the above constraints. The constraint 

(C1.1) refers to the offloading decision variable xi for task τi which equals 0 or 1. The second constraint 
(C1.2)indicates that the allocated variable local frequency fLbelongs to a priori fix interval given by 

[FL
min, FL

max]. Similarly, the allocated variable remote edge server frequency fSbelongs to the interval 

[0, FS
max] in constraint (C1.3). The constraint (C1.4) shows that the execution time of each decided local task 

must satisfy its deadline ti
max. Similarly, in constraint (C1.5), the offloading time of each decided offloadable 

task must satisfy the same deadline ti
max. The final constraint (C1.6) imposes that the total local execution 

energy must not exceed the tolerated given amount Emax. This constraint is important especially for SMDs 

with critical battery. 
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3. PROBLEM RESOLUTION 

In this section, we will introduce how we derive our solution from the obtained optimization 

problem. 

 

3.1.  Problem decomposition 

In our proposed model, the offloading decision vector for all the tasks is denoted 𝕏. Let define  

the vector that contains the offloadable tasks’ identifiers: 

 

𝕏1 = {i ∈ 𝕏   /    xi = 1 } (7)  

 

𝕏0 = {i ∈ 𝕏   /    xi = 0 } (8) 

 

Additionally, we define: Λi = ∑ λi
i
k=1 , Λi

1 = ∑  xiλi
i
k=1  , Di = ∑ di

i
k=1   , Di

1 = ∑  xidi
i
k=1 .  

Also, given the decision vector 𝕏1, constraint (C1.4) for a local task can be reformulated as  
Λi−Λi

1

ti
max ≤ fL;  ∀ i ∈  ⟦1; N⟧. Finally, it is equivalent to one constraint: max

i
{
Λi−Λi

1

ti
max } ≤ fL. Likewise, constraint 

(C1.5) for an offloadable task means 
Di
1

r
+

Λi
1

fS
≤ ti

max (∀ i ∈  ⟦1; N⟧). So   
Di
1

r
 and  

Λi
1

fS
  must be strictly less than 

ti
max (∀ i ∈  ⟦1; N⟧) ; particularly min

i
{ti
max −

Di
1

r
} > 0. In this case constraints (C1.5) can be reformulated as 

Λi
1

ti
max−

Di
1

r

≤ fS;  ∀ i ∈  ⟦1; N⟧. Finally, it is equivalent to one constraint: max
i
{

Λi
1

ti
max−

Di
1

r

} ≤ fS.  

Similarly, constraint (C1.6) means kL. fL
2. (ΛN − ΛN

1 ) +  
pT DN

1

r
≤ Emax. So 𝑘𝐿 . 𝑓𝐿

2. (ΛN − ΛN
1 ) and 

𝒑𝑇 DN
1

𝑟
 

must be strictly less than Emax. In this case constraint (C1.6) can be reformulated as fL ≤ √
Emax− 

𝐩T DN
1

r

kL(ΛN−ΛN
1 )

. For ease 

of use, let note: 

 

fL
− = max

i
{
Λi−Λi

1

ti
max }; (9) 

 

fL
+ = √Emax− 

pT DN
1

r

kL(ΛN−ΛN
1 )

; (10) 

 

fS
− = max

i
{

Λi
1

ti
max−

Di
1

r

}. (11) 

 

Thus, for a given offloading decision vector 𝕏, we get the following optimization sub-problem: 

 

𝓟𝟐(𝕏):   min
{fL,fS}

{
ΛN−ΛN

1

fL
+

 DN
1

r
+ 

ΛN
1

fS
}, 

         s.t.    (C2.1)              FL
min ≤ fL ≤ FL

max; 

                  (C2.2)             fL
− ≤ fL ; 

                  (C2.3)            fS
− ≤ fS ≤ FS ; 

                  (C2.4)            kLfL
2(ΛN − ΛN

1 ) +
pT DN

1

r
≤ Emax. 

 

Considering the continuous variables fL and fS, problem P2 is a continuous multi-variable 

optimization problem. The objective function T(𝕏, fL, fS) =
ΛN−ΛN

1

fL
+

 DN
1

r
+ 

ΛN
1

fS
 can be decomposed into  

the following two independent functions T1(fL) and T2(fS) where T1(fL) =
ΛN−ΛN

1

fL
 and T2(fS) =

 DN
1

r
+ 

ΛN
1

fS
. 

Moreover, given the disjunction between constraints (C2.1), (C2.2) and (C2.4) on the one hand, and (C2.3) in 

problem P2 on the other hand, this last can be equivalently decomposed into the following two independent 

optimization sub-problems. 
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𝓟𝟑. 𝟏(𝕏):   min
{fL}

{T1(fL) =
ΛN−ΛN

1

fL
}  

         s.t.    (C3.1.1)            FL
min ≤ fL ≤ FL

max; 

                   (C3.1.2)           fL
− ≤ fL ≤ fL

+. 

𝓟𝟑. 𝟐(𝕏):   min
{fS}

{T2(fS) =
 DN
1

r
+ 

ΛN
1

fS
}  

         s.t.    (C3.2.1)            fS
− ≤ fS ≤ FS. 

 

3.2.  Problems resolution 

For the 𝒫3.1 problem, the objective function T1(fL) is a strictly increasing continuous function 

according to its variable fL. Hence, by taking into consideration the obtained constraints (C3.1.1) and (C3.1.2), 
we can derive the following function’s optimum fL

∗ given by: 
 

fL
∗ =

{
 
 

 
 

0 if    𝕏 = 𝕏1

∅ if    Emax ≤
pT  DN

1

r
  or fL

− > FL
max or fL

+ < FL
min or fL

− > fL
+

FL
max

fL
+

if fL
+ > FL

min

otherwise

 (12) 

 

for the 𝒫3.2 problem, the objective function T2(fS) is strictly decreasing w.r.t. the variable 𝑓𝑆. So, by taking 

into consideration the (𝐶3.2.1) constraint, we can derive the following function’s optimum 𝑓𝑆
∗ given by: 

 

fS
∗ = {

∅ if    min
i
{ti
max −

Di
1

r
} ≤ 0 or fS

− > FS 

FS otherwise
 (13) 

 

3.2.1. The processing time determination 

Similarly, given an offloading decision vector 𝕏 the following algorithm uses the first algorithm to 

determine the minimal processing time:  

 

Algorithm 1: Processing time calculation 

Input: The list 𝜏 of N sub-tasks, offloading policy 𝕏. 

Output:𝑇(𝕏, 𝑓𝐿 , 𝑓𝑆). 
1: Calculate (𝑓𝐿, 𝑓𝑆) using 𝕏 according to (12) and (13); 

2: if  𝑓𝐿 = ∅ or 𝑓𝑆 = ∅ then  

3:         return ∞;     

4: else 

5:          Calculate 𝑇(𝕏, 𝑓𝐿 , 𝑓𝑆)according to (14); 

6:          return 𝑇(𝕏, 𝑓𝐿 , 𝑓𝑆) ; 
7: end if  

 

3.3.  Proposed solutions 

Next, the problem relies on determining the optimal offloading decision vector 𝕏 that gives  

the optimal processing time. However, to iterate over all possible combinations of a list of N binary variables, 

the time complexity is exponential (the exhaustive search over all possible solutions requires 2N iterations). 

Subsequently, the total time complexity of the whole solution (including Algorithm 1) is O(2N)*O(1)=O(2N) 

that is not practical for large values of N. In the following, we propose a low complexity approximate 

algorithm to solve this question. 

 

3.3.1. Brute force search solution 

For comparison purpose, we introduce the Brute Force Search method for feasible small values of 

N. This method explores all cases of offloading decisions and saves the one with the minimum processing 

time as well as its completion time. Now, the next algorithm summarizes the brute force search solution. 

 

Algorithm 2: Brute Force Search Offloading  

Input: The list τ of N sub-tasks; 

Output: the offloading policy 𝕏∗. 
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Initialize: minTime=∞;  

1: 𝐢 ← 𝟏;   
2: while  𝐢 ≤ 𝟐𝐍 − 𝟏  do 

3:             Use the N bits representation of integer i to build the policy 𝕏; 

4:             Call Algorithm 2 to get newTime using τ and 𝕏; 

5:             if 𝐧𝐞𝐰𝐓𝐢𝐦𝐞 < 𝐦𝐢𝐧𝐓𝐢𝐦𝐞 then  

6:                       𝐦𝐢𝐧𝐓𝐢𝐦𝐞 ← 𝐧𝐞𝐰𝐓𝐢𝐦𝐞  ;  

7:                       𝕏∗ ← 𝕏;   

8:             end if 

9:            𝐢 ← 𝐢 + 𝟏;   

10: end while 

11: return 𝕏∗ ; 
 

3.3.2.  Simulated annealing offloading decision solution 

We propose a method based on simulated annealing (SA) as the second solution. In the field of 

optimization, the SA technique has been adopted as a heuristic solution and in particular for difficult 

problems. To improve a solution, it uses an iterative random solution variation. Interested readers may 

consult the following works [26] and [27] for more details about this issue. Some references dealing with  

the offloading in cloud environments [7, 28, 29] use tasks’ workload density defined as ωi =
λi

di
[cycle / bit] as 

a priority factor to decide the tasks’ offloading. Additionally, the generated tasks are generally with different 

workload densities. Moreover, if two tasks are given with a slightly different data sizes, the one that 

consumes less processing time is the one given by the smallest cycles’ count. Besides, with almost the same 

cycles’ count, the one that consumes less offloading processing time is the one given by the smallest data 

size. In both cases, the task with the highest workload density is favorable for offloading (provided to have an 

offloading energy gain compared to the local execution and not to exceed its execution deadline).  

On the other hand, a task with a high workload density often has a large number of cycles. Its local execution 

is generally very expensive and thus makes its offloading often very favorable. In this context, we introduce  

a workload density threshold ωT such that: tasks with ωi > ωT are more favorable to be offloaded.  

The others are executed locally or offloaded with a proportional probability to their computational densities. 

Those with small densities are favorable for local execution, and those with high densities are favorable to be 

offloaded. Accordingly, if we note ωmin = min
i
{ωi} , ωmax = max

i
{ωi} and the middle of the interval 

[ωmax, ωmin] as ωT = (ωmax + ωmin)/2 then ωT can be chosen such that ωT ≤ ωT < ωmax. 

In our proposed second solution, which we denote simulated annealing offloading decision (SAOD), 

we adopted the following general threshold probability:  

 

p = e−∆Ti/T0  (14) 

 

where T0 is the initial temperature constant. ∆Ti is the solutions’ processing time variation while changing  

the task i state. Then, in each stage of our solution and with the intention to avoid local optimums, random 

solutions with poor processing time performance are accepted in line with a certain probability threshold. 

Accordingly, the next algorithm summarizes our heuristic solution.  

 

Algorithm 3: Simulated Annealing Offloading Decision 

Input: The list 𝜏 of N sub-tasks,T0, CF, 𝜀, 𝜔𝑇; 

Output: the offloading policy 𝕏∗. 
Initialize: a random policy 𝕏; 

1: Call Algorithm 1 to calculate oldTime using 𝜏 and 𝕏; 

2: minTime=∞; 

3: while T0> 𝜀  do 

4:     for each i in 𝜏 do 

5:            if 𝜔𝑖 > 𝜔𝑇  then  

6:                   if task i not in 𝕏1 then  

7:                         add  i to 𝕏1 ; 
8:                   end if 

9:            else if 𝜔𝑇 − 𝜔𝑖 ≥ (𝜔𝑇 − 𝜔𝑚𝑖𝑛) ∗ random(0,1)   then 
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10:                    if task i in 𝕏1 then  

11:                             move i from 𝕏1 to 𝕏0 ; 
12:                         end if 

13:                    else if task i in 𝕏0 then  

14:                                move i from 𝕏0 to 𝕏1 ; 
15:                            end if 

16:                    end if                        

17:            end if 

18:            Update 𝕏 using the new 𝕏1; 

19:            Call Algorithm 1 to get newTime using 𝜏 and 𝕏; 

20:             if newTime≠ ∞ then 

21:                      ∆𝑇𝑖 = newTime − oldTime  
22:                       if ∆𝑇𝑖 < 0 then  

23:                                 oldTime=newTime; 

24:                                  if newTime<minTime then  

25:                                             minTime =newTime ;  𝕏∗ = 𝕏 ; 
26:                                   end if 

27:                       else 

28:                                  Calculate p according to (14); 

29:                                   if 𝑒−∆𝑇𝑖/𝑇0 > random(0,1) then  

30:                                             oldTime = newTime; 

31:                                  else 
32:                                             Put back i to its original set; 

33:                                  end if 

34:                       end if 

35:             end if 

36:      end for 

37:      T0= T0*CF 

38: end wile 

39: return 𝕏∗ ; 
In this algorithm, random (0,1) is a function’s call that generates a random number in [0,1]. 

 

 

4. RESULTS AND DISCUSSION  

4.1.  Simulation setup 

The presented results in this work are averaged for 100 time executions. We implement all  

the algorithms on the C++ language. The transmission bandwidth between the mobile device node and 

remote edge server is set tor = 100Kb/s. The local CPU frequency fLof the mobile device will be optimized 

between FL
min = 1MHz and FL

max = 60MHz. The CPU frequency of the remote edge server node will be 

optimized under the value FS = 6GHz. The deadlines ti
max are uniformly defined from 0.5s to 2s.  

The threshold energy Emax is uniformly chosen in [0.6 , 0.8] ∗ Λ. kL. (FL
max)2.Additionally, the data size of 

each one of the N tasks is assumed to be in [30,300] Kb. For the cycle amount of each task, it is assumed to 

belong to [60,600]MCycles. The idle power and transmission power are set to be pI = 0.01 Watt and  

pT = 0.1 Watt respectively. For the energy efficiency coefficients, we set kL = 10−26and kS = 10
−29. 

For the simulated annealing method, the following parameter values are adopted: factor = 0.5,  ε= 0.3, 

εmin = 0.1 and εmax = 0.4, T0 = 200, Δt = 0.02, CF=0.5. 

 

4.2.  Performance analysis 

We present our results in terms of average decision time and average tasks’ processing time.  

We start by studying the average tasks’ processing time for each method. Thus, we carried an experiment 

where we vary the number of tasks parameter between 2 and 26 tasks.  

 

4.2.1. The processing time 

For each method, we start by studying the average tasks’ processing time. Thus, we carried  

an experiment where we vary the number of tasks parameter between 2 and 26. The experiment’s results are 

depicted in the following two figures. Figure 3 represents the obtained results for both based solution (BFS) 

and Simulated Annealing based solution (SAOD). It shows a small distance between the curves representing 
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the realized averaged tasks’ processing time. Accordingly, the differences between the optimal BFS method 

and the SAOD method vary from 0.00% to 2.15%. 

 

4.2.2. The average execution time 

Now Figure 4 depicts the average of the execution time in ms to get the offloading decisions for 

both schemes. While the tasks count N is between 2 and 26, it clearly shows the exponential variation of  

the BFS execution time w.r.t. N. Additionally, the SAOD curve illustrates a slightly stable running time that 

starts from 0.2ms for N=2 and reaches 0.62ms for N=21.  

 

 

  
 

Figure 3. Tasks’ processing time for  

N between 2 and 26 

 

Figure 4. Execution time average for  

N between 2 and 20 

 

 

4.3.  Discusion 
In view of the results presented before, our heuristic solutions SAOD give satisfactory results in 

terms of execution time. In addition, our solution gives an average tasks’ processing time that is comparable 

and very close to the optimal solution with an almost linear execution time. 

 

 

5. CONCLUSION 

In this paper, we propose a simulated annealing based heuristic solution to solve a hard decision 

problem that jointly optimizes the processing time and computing resources for a smart mobile device within 

a mobile edge-computing node. The mobile device intends to optimally offload the content of a list of heavy 

tasks. Each task in its list is time-constrained with a proper deadline. The obtained results show  

the performance of the proposed simulated annealing based algorithm. By optimally adjusting the local and 

the remote computing frequencies, the proposed implementation shows the effectiveness of our solution.  

It brought a real processing time efficiency with almost a linear execution time that satisfies the decision time 

constraints in such edge systems. As a future work, we plan to generalize our study to the multi-user  

case while we introduce more relevant parameters, such as network state and wireless communication 

interference. 
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