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ABSTRACT

Deep Learning (DL) is one of the hottest fields. To foster the growth of DL, several
open source frameworks appeared providing implementations of the most common
DL algorithms. These frameworks vary in the algorithms they support and in the
quality of their implementations. The purpose of this work is to provide a qualitative
and quantitative comparison among three such frameworks: TensorFlow, Theano and
CNTK. To ensure that our study is as comprehensive as possible, we consider multi-
ple benchmark datasets from different fields (image processing, NLP, etc.) and mea-
sure the performance of the frameworks’ implementations of different DL algorithms.
For most of our experiments, we find out that CNTK’s implementations are superior
to the other ones under consideration.
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1. INTRODUCTION
Deep learning (DL) is the hottest trend in machine learning (ML). Although the theoretical concepts

behind DL are not new, it has enjoyed a surge of interest over the past decade due to many factors. One example
is that DL approaches have significantly outperformed state-of-the-art (SOTA) approaches in many tasks across
different fields such as image processing, computer vision, speech processing, natural language processing
(NLP), etc. Moreover, the scientific community (from both the academia and the industry) has quickly and
massively adopted DL. Open source implementations of successful DL algorithms quickly appeared on code
sharing websites, and were subsequently used by many researchers in different fields.

Several DL frameworks exist, such as TensorFlow, Theano, CNTK, Caffe and PyTorch, each with
different features and characteristics. Furthermore, each framework utilizes different techniques to optimize its
code. Although the same algorithm is implemented in different frameworks, the performance of the different
implementations can vary greatly. A researcher/practitioner looking to use such an algorithm in his/her work
would face a difficult choice, since the number of different implementations is high and the effort invested by
the research community in scientifically comparing these implementations is limited.

In this work, we aim at providing qualitative and quantitative comparisons between three popular open
source DL frameworks: TensorFlow, Theano and CNTK. These frameworks support multi-core CPUs as well
as multiple GPUs. All of them import cuDNN, which is a DL library from NVIDIA that supports highly tuned
implementations for standard routines such as forward and backward convolution, normalization, pooling and
activation layers. We compare these frameworks by training different neural network (NN) architectures on
five different standard benchmark datasets for various tasks in image processing, computer vision and NLP.
Despite their importance, comparative studies like ours that focus on performance issues are rare.

Limited efforts have been dedicated to conducting comparative studies between SOTA DL frameworks
running on different hardware platforms (CPU and GPU) to highlight the advantages and limitations for each
framework for different deep NN architectures. These efforts included papers [1-9] as well as online blogs
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(https://github.com/soumith/convnet-benchmarks). Due to space constraint, we do not discuss the details of
these works here. Interested readers are referred to earlier versions of this work [10, 11] for such details.
However, we do note that, in previous studies, the comparison goal focused only on processing time. None of
those comparative studies dealt with CPU and GPU utilization or memory consumption. This work covered
these metrics to find which of the considered frameworks achieve the best performance. Finally and most
importantly, the comparisons involved more datasets from more fields compared with previous studies.

The rest of this paper is organized as follows. Section 2. discusses the frameworks, the way they were
used to train the datasets and a brief comparison between them. The methodology we follow is discussed in
Section 3. Experimental results and the discussion are detailed in Section 4. The work is concluded with final
thoughts presented in Section 5.

2. DEEP LEARNING FRAMEWORKS
The frameworks considered in this comparative study are: CNTK, TensorFlow and Theano. Moreover,

we use Keras on top of these frameworks as discussed later. All of these frameworks provide flexible APIs and
configuration options for performance optimization. Software versions of the frameworks are shown in Table 1
and their properties are shown in Table 2.

Table 1. Frameworks used for this comparative study
Framework Major Version Github Commit ID
CNTK 2.0 7436a00
TensorFlow 1.2.0 49961e5
Theano 0.10.0.dev1 8a1af5b
Keras 2.0.5 78f26df

Table 2. Properties of the considered frameworks
Property CNTK TensorFlow Theano Keras
Core C++ C++ Python Python
CPU X X X X
Multi-Threaded CPU X Eigen Blas, conv2D, Limited OpenMP X
GPU X X X X
Multi-GPU X X X (experimental version) X
NVIDIA cuDNN X X X X

2.1. Microsoft cognitive toolkit (CNTK)
CNTK is an open source DL framework developed by Microsoft Research [12] for training and testing

many types of NN across multiple GPUs or servers. CNTK supports different DL architectures like Feedfor-
ward, Convolutional, Recurrent, Long Short-Term Memory (LSTM) and Sequence-to-Sequence NN. In CNTK,
a Computational Network learns any function by converting it to a directed graph, where leaf nodes consist of
an input values or learning parameters while other nodes represent matrix operation applied to its children. In
this case, CNTK has an advantage as it can automatically find the derive gradients for all the computations
which are required to learn the parameters. In CNTK, users specify their networks using a configuration file
that contains information about the network type, where to find input data and the way to optimize param-
eters [13]. CNTK interface supports different APIs of several languages such as Python, C++ and C# across
both GPU (CUDA) or CPU platforms. According to its developers (https://docs.microsoft.com/en-us/cognitive-
toolkit/cntk-evaluation-overview), CNTK was written in C++ in an efficient way, where it removes duplicated
computations in forward and backward passes, uses minimal memory and reduces memory reallocation by
reusing them.

2.2. Theano
Theano is an open source Python library developed at MILA lab at the University of Montreal as a

compiler for mathematical expressions that lets users and developers optimize and evaluate their expressions
using NumPy’s syntax (a Python library that supports a large and multi-dimensional arrays) [3, 14]. Theano
starts performing computations automatically by optimizing the selection of computations, translates them
into other machine learning languages such as C++ or CUDA (for GPU) and then compiles them into Python

Int J Elec & Comp Eng, Vol. 10, No. 5, October 2020 : 5479 – 5486



Int J Elec & Comp Eng ISSN: 2088-8708 r 5481

modules in an efficient way on CPUs or GPUs. Theano’s development started in 2008 and it is more popular
on a research and ecosystem platform than many DL libraries. Several software packages have been developed
to build on top of Theano, with a higher-level user interface which aims to make Theano easier to express and
train different architectures of deep learning models, such as Pylearn2, Lasagne and Keras.

2.3. TensorFlow
TensorFlow is an open source framework developed by Google Brain Team [15]. It uses a single data

flow graph, expressing all numerical computations, to achieve excellent performance. TensorFlow constructs
large computation graphs where each node represents a mathematical operation, while the edges represent the
communication between nodes. This data flow graph executes the communication between sub-computations
explicitly, which makes it possible to execute independent computations in parallel or to use multiple devices to
execute partition computations [15]. Programmers of TensorFlow define large computation graphs from basic
operators, then distribute the execution of these graphs across a heterogeneous distributed system (can deploy
computation to one or more CPUs or GPUs on a different hardware platforms such as desktops, servers, or
even mobile devices). The flexible architecture of TensorFlow allows developers and users to experiment and
train a wide variety of NN models; It is used for deploying ML systems into production for different fields
including speech recognition, NLP, computer vision, robotics and computational drug discovery. TensorFlow
uses different APIs of several languages such as Python, C++ and Java for constructing and executing a graph.
Python API is the most complete and the easiest to use (https://www.tensorflow.org/).

2.4. Keras
Keras is an open source DL library developed in Python. It runs on top of CNTK, Theano or Ten-

sorFlow frameworks. Keras was founded by Google engineer Chollet in 2015 as a part of the research project
ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System). Keras is designed in a way
that allows fast expression with DNN and easy and fast prototyping (modularity and extensibility) [16].

3. METHODOLOGY
The goal of this experimental study is to compare the aforementioned frameworks (Theano, Ten-

sorFlow and CNTK) by using them to train Convolutional NN (CNN) and Recurrent NN (RNN) models on
standard benchmark datasets of classical problems in image processing (MNIST, CIFAR-10 and Self-driving
Car) and NLP (Penn TreeBank and IMDB). Specifically, we aim at comparing the resources consumed by each
framework to reach a certain accuracy level for each problem. Thus, we experiment with different epoch counts
in order to make sure the accuracy for all frameworks are close to each other. Each framework’s performance
is evaluated using running time, memory consumption and CPU and GPU utilization. We use a laptop that has
an Intel Core i7-6700HQ CPU @ 2.60GHz (4 cores) with 16 GB RAM, 64-bit operating system (Windows
10), and NVIDIA GEFORCE GTX 960m graphics card with PCI Express 3.0 bus support, equipped with 4 GB
GDDR5 memory and 640 CUDA cores.

3.1. Benchmark datasets
In this subsection, we discuss the datasets used in our experiments.

3.1.1. MNIST
The MNIST (Mixed National Institute of Standards and Technology) dataset for handwritten digits is

widely used in ML [17]. It has 60,000 training images and 10,000 testing images. Each image is 28× 28 pixels
which is flattened into a 784-value vector. The label of each image is a number between 0 and 9 representing
the digit appearing in the image.

3.1.2. CIFAR-10
The CIFAR-10 dataset is one of the datasets collected by Krizhevsky et al. [18, 19]. It consists of

60,000 32×32 color images evenly distributed over ten classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship and truck. There are 50,000 training images and 10,000 test images. The classes are completely
mutually exclusive. I.e., there is no overlap between them. For instance, the “Automobile” class includes
sedans, SUVs, etc. On the other hand, the “Truck” class includes only big trucks. To avoid overlap, neither one
of these two classes includes pickup trucks.

Benchmarking open source deep learning frameworks (Ghadeer Al-Bdour)



5482 r ISSN: 2088-8708

3.1.3. Penn TreeBank
In 1993, Marcus et al. [20] wrote a paper on constructing a large annotated corpus of English called

the Penn TreeBank (PTB). They reviewed their experience with constructing one large annotated corpus that
consists of over 4.5 million words of American English. It was annotated for part-of-speech (POS) tag infor-
mation. Moreover, half of the corpus was annotated for skeletal syntactic structure. The dataset is large and
diverse. It includes the Brown Corpus (retagged) and the Wall Street Journal Corpus, as well as Department of
Energy abstracts, Dow Jones Newswire stories, Department of Agriculture bulletins, Library of America texts,
MUC-3 messages, IBM Manual sentences, WBUR radio transcripts and ATIS sentences.

3.1.4. IMDB
The IMDB dataset [21] is another example of applying CNN, which is an online dataset of informa-

tion regarding films, TV programs and video games. It consists of 25,000 reviews labeled by the sentiment
(positive/negative) of each review. The reviews have been preprocessed and encoded as integers in a form of a
sequence of word indexes. Words are indexed by overall frequency in the dataset, so that the index i encodes
the ith most frequent word in the data in order to allow operations of quick filtering.

3.1.5. Self-Driving Car
This dataset uses a Udacity’s Self-Driving Car simulator as a testbed for training an autonomous car.

This work started in the 1980s with Carnegie Mellon University’s Navlab and ALV projects [22].
The training phase starts with activating the simulator which is an executable application. A user initiates
the service of collecting the data for training followed by collecting the data as images and saving them locally
on the computer. So, the framework can take these images and train them. The training is done via distin-
guishing the image edges, which are taken by the three cameras laying on the front of the car in the simulator.
After the training phase is done, the testing phase begins by taking the file generated whenever the performance
in the epoch is better than the previous best. Finally, the last generated file is executed in order to make the car
drive autonomously to observe the testing phase results.

3.2. Networks architecture
CNN is used for the MNIST, CIFAR-10, IMDB and Self-Driving Car datasets, where a different

network architecture is used for each dataset. The architecture of each CNN is shown in [23]. For the MNIST
and CIFAR-10 datasets, two convolutional layers with ReLU activation function are used after the input layer.
The activation function is used to reduce the training time and to prevent vanishing gradients. After each CNN
layer, a max-pooling layer is added in order to down-sample the input and to reduce overfitting. In the max-
pooling layer, the stride value must be specified with which the filter is slid. When the stride is x, the filter
(window) is moved x pixels at a time. This will produce smaller output volumes spatially. After each max-
pooling layer, the dropout method is used in order to reduce overfitting by forcing the model to learn many
independent representations of the same data through randomly disabling neurons in the learning phase.

For the Self-Driving Car dataset, the CNN has the same components as the ones used with the MNIST
and CIFAR-10 datasets, but with deeper model that consists of five convolutional layers with Exponential
Linear Unit (ELU) activation function. The convolutional layers are used for feature engineering. The fully
connected layer is used for predicting the steering angle (final output). The dropout avoids overfitting and,
finally, the ELU activation function is used to solve the problem of the vanishing gradient.

In the IMDB dataset, the movie reviews are composed of sequences of words of different lengths.
These words are encoded by mapping movie reviews to sequences of word embeddings where words are
mapped to vectors of real numbers; the network architecture consists of an embedding layer followed by a 1D
convolutional layer which is used for temporal data followed by a global max-pooling operation.
These sequences are padded to have the same size as the largest sequence because they have different lengths.

The other NN type we consider is RNN with LSTM. One of the most popular uses of LSTM is for
text analysis tasks such as the ones associated with the Penn TreeBank (PTB) dataset. Word-level prediction
experiments on PTB was adopted, which consists of 929k training words, 73k validation words and 82k test
words. It has 10k words in its vocabulary. We trained models of two sizes (small and medium) using the
same architecture presented in [24]. To evaluate language models of the PTB implementation, a special metric
called a perplexity is used, where better prediction accuracy is achieved when perplexity value is as low as
possible. Perplexity is the inverse of probability definition. This means that minimizing perplexity value is
the same as maximizing probability. The goal of applying PTB dataset is to match a probabilistic form which
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assigns probabilities to sentences. This process is done by predicting the next words in a text given a history
of previously located words. LSTM cells represent the core of the model which processes one word at a time
and computes probabilities of the possible values for the next word in the sentence. A vector of zeros is used
for the memory state of the network to get initialized and updated after reading each word. In the small model,
two hidden layers (with 200 LSTM units per layer) are used with Tanh activation function. The weights are
initialized to 0.1. We trained it for four epochs with a learning rate of one (number of epochs trained with
initial learning rate) and then the learning rate is decreased by a factor of two after each epoch (the decay of the
learning rate for each epoch after four epochs), for a total of 13 training epochs. The size of each batch is 20,
then the network is unrolled for 20 steps. This model’s architecture is shown in [23].

4. RESULTS AND DISCUSSION
In this section we discuss the results of our experiments. For each model on each dataset,

Table 3 shows the CPU and GPU processing times while Tables 4–8 show the utilization levels of the CPU, GPU
and their memories. For the image classification datasets (MNIST and CIFAR-10), one can observe the superi-
ority of CNTK over TensorFlow and Theano in terms of GPU and CPU multithreading; however, in CIFAR-10
using 8, 16 and 32 threads in CPU, TensorFlow was faster than CNTK. On the other hand, Theano revealed
to be more time consuming than other frameworks. Transitioning to sentiment analysis dataset (IMDB), CPU
multithreading was not performed because CNTK is written in Python in which multithreading is not sup-
ported. Without CPU multithreading (CPU uses the default number of existing physical cores which are equal
one thread per core), the superiority of TensorFlow is revealed in both CPU and GPU environments. The results
for the text analysis dataset (Penn TreeBank) shows the superiority of TensorFlow over CNTK and Theano, for
CPU with 8 threads as well as the case in GPU. Moving forward to video analysis dataset (Self-Driving Car),
the superiority of TensorFlow is revealed in both CPU and GPU environments, while CNTK showed to be more
time consuming than the other two frameworks.

The processing times clearly show the advantage of GPU over CPU for training CNN and RNN.
The advantage of fast GPU would be more significant when training complex models with larger data as in the
Self-Driving Car dataset. From the CPU results, the best performance occurred when the number of threads is
equal to the number of physical CPU cores, where each thread possesses a single core. In our work, we use
a laptop with 8 cores. Thus, in each dataset, the best performance in terms of processing time was achieved
while using 8 threads. The metrics measurement of each framework was conducted to explain the failure of
one of the selected frameworks.

We notice poor performance of Theano at most datasets comparing to CNTK and TensorFlow.
This could be attributed to its low CPU utilization compared to the other frameworks. CNTK outperformed
both TensorFlow and Theano while training MNIST and CIFAR-10 datasets. This achievement is highly likely
due to the use of BrainScript format (https://docs.microsoft.com/en-us/cognitive-toolkit/BrainScript-Network-
Builder), which is a custom network description language that makes CNTK more flexible for NN customiza-
tion. On the other hand, TensorFlow uses Eigen (http://eigen.tuxfamily.org/index.php?title=Main Page), which
is a C++ template library (BLAS library) for linear algebra including matrices, vectors, numerical solvers and
related algorithms. It is used to make TensorFlow perform better than CNTK and Theano in RNN.

In addition to processing time, we also report the utilization levels of the CPU, GPU and their
memories for each model on each framework under consideration. These results are shown in Tables 4–8.
The utilization levels for both CPU and GPU are high for all models. The only supersizing numbers are the
CPU utilization for Theano, which were very low. The tables also show that the utilization levels are rather
small for both types of memory. This applies to all models for all frameworks. However, the tables also show
that, in most cases, CNTK had the lowest memory utilization while TensorFlow had the highest. Surprisingly,
the case is almost reversed for the video analysis dataset (the Self-Driving Car dataset), where CNTK had the
highest utilization and Theano had the lowest. Another unexpected finding of these experiments is that the
models of the IMDB generally needed the largest portions of memory.

Comparing our work to previous works [1, 2], we reveal the following findings. Bahrampour et al. [1]
based their comparative study on three main aspects including speed, hardware utilization and extensibility.
Besides, they used three NN types: CNN, AutoEncoder (AE) and LSTM to train MNIST, ImageNet [25]
and IMDB datasets on Caffe, Neon, TensorFlow, Theano and Torch frameworks. They came up with the
following results. Training on CPU, Torch performed the best followed by Theano while Neon had the worst
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performance. Moreover, Theano and Torch are the best in terms of extensibility, as well as TensorFlow and
Theano were very flexible and Caffe was the easiest to find the performance. Regarding training datasets on
GPU and for larger convolutional and fully connected networks (FCN), Torch was the best followed by Neon.
For smaller networks Theano was the best. For LSTM, Theano’s results were the best, while TensorFlow’s
performance was not competitive compared with the other studied frameworks.

On the other hand, Shi et al. [2] based their comparative study on two metrics: processing time and
convergence rate. The NN used are fully connected NN, CNN and RNN to train ImageNet, MNIST and
CIFAR-10 datasets on Caffe, CNTK, MXNet, TensorFlow and Torch frameworks. The results of TensorFlow
were the best using CPU. While using single GPU; on FCN, Caffe, CNTK and Torch performed better than
MXNet and TensorFlow. As for small CNN, Caffe and CNTK achieved a good performance and for RNN
(LSTM), however, CNTK was the fastest (5-10x faster than other frameworks). Using multi-GPU implementa-
tion, all frameworks had higher throughput and accelerated the convergence speed compared with single-GPU
implementation.

Table 3. Processing time for each dataset (measured in seconds), For the Environment columns, CPU (x)
denotes CPU with x threads

Env CNTK TensorFlow Theano
MNIST CPU (1) 847 5130 3560

CPU (2) 630 3180 2500
CPU (4) 574 2070 2260
CPU (8) 560 1740 2060

CPU (16) 567 1920 2050
CPU (32) 588 2010 2050

GPU 66.67 328.93 377.86
CIFAR-10 CPU (1) 20196 25905 26700

CPU (2) 14520 16610 18700
CPU (4) 13662 11550 17250
CPU (8) 11484 9955 15800

CPU (16) 11550 10340 15850
CPU (32) 11649 10835 15750

GPU 926 2166.4 2386.1
IMDB CPU (1) - 1244 538

CPU (2) - 642 412
CPU (4) - 390 380
CPU (8) 486 290 368

CPU (16) - 249 368
CPU (32) - 302 384

GPU 73.1 62.4 220.
Self-Driving Car CPU (1) - ∼33.3 hours ∼50 hours

CPU (2) - ∼19.8 hours ∼44.2 hours
CPU (4) - ∼15 hours ∼42.6 hours
CPU (8) ∼47.6 hours ∼14.1 hours ∼43.5 hours

CPU (16) - ∼16.4 hours ∼43.5 hours
CPU (32) - ∼16.4 hours ∼43.5 hours

GPU ∼8.7 hours ∼6 hours ∼6.8hours
PTB CPU (1) - 40560 27066

CPU (2) - 26819 23244
CPU (4) - 18733 21541
CPU (8) 4290 16407 21450

CPU (16) - 16848 21476
CPU (32) - 18369 21541

GPU 2106 1342.28 1630
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Table 4. Performance metrics of all models on the MNIST dataset
Metrics Environment CNTK TensorFlow Theano

Accuracy CPU 99.27 99.14 99.10
GPU 99.26 99.11 99.17

CPU% - 99.6 92.2 14.7
GPU% - 92 77 95

Memory% CPU 1.7 2.2 2.1
GPU 3.6 5.2 4.9

Epochs# CPU 7 15 10
GPU 7 15 10

Table 5. Performance metrics of all models on the the CIFAR-10 dataset
Metrics Environment CNTK TensorFlow Theano

Accuracy CPU 82.68 82.26 82.29
GPU 82.57 82.33 82.30

CPU% - 99.8 87.3 15.3
GPU% - 97 73 94.5

Memory% CPU 3.2 5.3 5.1
GPU 4.5 7.4 7.5

Epochs# CPU 33 55 50
GPU 33 55 50

Table 6. Performance metrics of all models on the IMDB dataset
Metrics Environment CNTK TensorFlow Theano

Accuracy CPU 88.87 88.68 88.72
GPU 88.93 88.83 88.48

CPU% - 94.8 92.2 14.6
GPU% - 76 76 88

Memory% CPU 5.7 6.6 5.1
GPU 6.6 9.1 7.6

Epochs# CPU 2 3 2
GPU 2 3 2

Table 7. Performance metrics of all models on the Self-Driving Car dataset
Metrics Environment CNTK TensorFlow Theano

Accuracy CPU 99.93 99.96 99.71
GPU 99.97 99.97 99.73

CPU% - 93.2 85 22
GPU% - 32.4 34 31

Memory% CPU 5.3 4.3 3.2
GPU 6.6 6.2 5.3

Epochs# CPU 10 10 10
GPU 10 10 10

Table 8. Performance metrics of all models on the Penn TreeBank dataset
Metrics Environment CNTK TensorFlow Theano

Perplexity CPU 113.7 114.79 114.57
GPU 113.2 113.21 113.3

CPU% - 94 91.8 18.3
GPU% - 76.6 77 81

Memory% CPU 1.3 2.3 4.1
GPU 2.2 4.5 5.4

Epochs# CPU 13 13 13
GPU 13 13 13

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have provided a qualitative and quantitative comparison between three of the most

popular and most comprehensive DL frameworks (namely Microsoft’s CNTK, Google’s TensorFlow and Uni-
versity of Montreal’s Theano). The main goal of this work was to help end users make an informed decision
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about the best DL framework that suits their needs and resources. To ensure that our study is as comprehen-
sive as possible, we have used multiple benchmark datasets namely MNIST, CIFAR-10, Self-Driving Car and
IMDB which were trained via multilayer CNN network architecture and Penn TreeBank dataset which was
trained via RNN architecture. We have run our experiments on a laptop with windows 10 operating system.
We have measured performance and utilization of CPU multithreading , GPU and memory. For most of our
experiments, we find out that CNTK’s implementations are superior to the other ones under consideration.
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