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 Currently, cryptography plays a major role in various computer and 

technological applications. With the high number of internet users, the use of 

cryptography to provide information security has become a priority. 

Several applications such as e-mails, electronic banking, medical databases 

and e-commerce require the exchange of private information. While, 

if the connection is not secure, this sensitive information can be attacked.  

The best-known cryptographic systems rely on the generation of random 

numbers, which are fundamental in various cryptographic applications such 

as key generation and data encryption. In what follows, we want to use 

pseudo-random sequences generated by the middle square generator. In this 

work, it must be possible to estimate that the data produced has random 

characteristics, knowing that the algorithm used is deterministic. Overall, this 

paper focuses on the testing of pseudo-random sequences generated 

by the middle square generator and its use in data encryption. 
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1. INTRODUCTION  

The development of algorithms generating pseudo-random numbers is very much related to that of 

cryptography [1-8]. Especially, the militarily importance such as communication and monitoring [9-10] of 

this science have motivated many researches throughout history. But there is no pseudo-random algorithm 

that can escape from statistical analysis, especially because the "seed" must theoretically itself be random, 

and the algorithm used cannot be initialized by itself. The current cryptographic generators are thus obliged 

to include element that is not generated in a deterministic way. One thus moves towards hybrid generators, 

founding a robust algorithm of pseudorandom number generation by initializing itself through a physical 

means of chance production. 

On the other hand, the image becomes more and more indispensable in several fields and essentially 

in communication between people. Indeed, the exponential development of communication media on the one 

hand, and digital storage media on the other hand, have enormously transformed the way we communicate. 

These new technologies are based essentially on the efficient exchange and storage of multimedia data and in 

particular digital images, hence the need for image encryption algorithms. 

In what follows, we discuss the design and realization of the middle-square generator in the context 

of producing pseudo-random sequences. The simplistic of middle-square generator can be exploited for good 

random sequence. In order to evaluate these sequences and validate our generator, we implemented five 

static tests. 
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This paper is structured as follows. Section 2 introduces some basic principles of pseudo-random 

number generator. Section 3 discusses the formation of middle square generator, outlining the procedure with 

an examples. Section 4 presents various types of testings purposedly to evaluate the quality of our proposed 

method. Section 5 reports the findings according to various tests proposed earlier Section 6 concludes  

our studies. 

 

 

2. PSEUDO-RANDOM GENERATORS 

The need for random numbers is felt in many applications of cryptography. In common 

cryptographic systems, the keys (numbers) that are used must be randomly generated. For example, when one 

consults on the Internet his e-mail accounts or, when one carries out an order by Internet some "sensitive" 

information (your access code or your credit card number) must remain confidential to ensure authenticity, 

nobody should be able to access the accounts or order with the card. To ensure these functions, Internet 

protocols have been put in place. They allow you to enter your codes on a web page without the risk of  

an outside person having access to them. These protocols use random numbers to encrypt data and 

prevent spying. 

 

2.1. Definition of a random sequence 

In mathematics, a random sequence, or random infinite sequence, is a sequence of symbols of an 

alphabet having no structure, no regularity, or identifiable prediction rule [11-12]. Such a sequence 

corresponds to the intuitive notion of numbers drawn at random. A sequence of random numbers is  

a sequence of numbers randomly chosen. This sequence has the property that we cannot predict the numbers 

to come from the already known numbers, whatever they are [13]. 

 

2.2. Definition of a pseudo-random sequence 

The pseudo-random term is used in mathematics and computer science to designate a sequence of 

numbers that approaches a statistically perfect hazard [14-16]. By the algorithmic processes used to create it 

and the sources used, the sequence cannot be completely considered as truly random. A pseudo-random 

sequence (Pseudo Random Sequence in English) [17] is a sequence of integers x0, x1, x2, ... taking its values 

in the set M = {0, 1, 2, ..., m-1}. The term xn (n> 0) is the result of a calculation (to be defined) on 

the previous term (s). The first term x0 is called the seed. With the same initial seed,  

the sequence of pseudorandom numbers produced by the pseudorandom number generator is deterministic 

and can therefore be reproduced. 

A pseudo-random number generator is an algorithm that generates a sequence of numbers with 

certain properties of chance. The principle of these generators is to create from an initial seed, a so-called 

pseudo-random number, which has no apparent logical or arithmetic connection with the seed. This generated 

number is then used to create a second pseudo-random number. We can thus recursively generate a series of 

numbers that do not appear to have any logical link in their sequence, but which are in fact all obtained by  

a deterministic formula. This class of generators is easy to implement and allows high throughputs while 

producing suites that have good statistical properties. It is therefore very suitable for applications that do not 

require the unpredictability of the suites (such as digital simulation), but can also be used in cryptographic 

applications provided that certain criteria are met. 

 

 

3. MIDDLE SQUARE GENERATOR 

This generator is based on the median square method, known in the English literature also as middle 

square, was invented by the American-Hungarian mathematician and physicist John Von Neumann in 1946. 

The middle square is considered as the first method of automatic generation of pseudorandom numbers.  

The principle of this method is very simple, we generate a sequence of numbers each having 2k digits  

(even number). The successor of a number in this sequence is obtained by raising this number squared and 

then retaining the 2k middle numbers. The principle of this method is described by the following steps: 

 Start with a seed (a number) of n-digit (n digits), 

 Raise squared to get a number of 2n digits, add zeros if necessary, 

 Take the middle n numbers as the next random number, 

 Repeat 1-2-3 (the process). 

 

 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Cryptographic adaptation of the middle square generator (Hana Ali-Pacha) 

5617 

Example : If we generate 4-digit numbers from 3567, we get 7234 as the next value since the 3567 

square is equal to 12723489, continuing in the same way, the next number will be 3307, 3567, 7234, 3307, 

9362 , 6470, 8609, 1148, 3179, 1060, 1236, 5276, 8361, 9063, 1379, 9016, 2882, 3059, 3574, 7734, 8147, 

3736, 9576, 6997, 9580, 7764, 2796, 8176, 8469, 7239 , 4031, 2489, 1951, 8064, 280, 784, 6146, 7733, 

7992, 8720, 384, 1474, 1726, 9790, 8441, 2504, 2700, 2900, 4100, 8100, 6100, 2100, 4100, and so on.  

The resulting sequence returns after 46 iterations in a periodic orbit. 

 

 

4. TEST A GENERATOR 

Determining whether a generator is random or not is a tricky problem. Indeed, there is no universal 

test, that can say with certainty that a generator is random [18-19]. The principle is to show that it is not 

biased by studying the properties of the numbers it generates. In practice, a random generator produces  

a sequence of numbers with properties of unpredictability [20-22] and independence, and follows a certain 

distribution (uniform in cryptography, Gaussian in telecommunications, etc.). The evaluation of the random 

quality of a generator thus passes through the control of the properties of the sequence that it generates.  

This is achieved through statistical tests that compare the performance of the generator studied compared to 

those, theoretical. 

The purpose of statistical tests is to measure the quality of a random sequence. We can conclude that 

a suite generated by a PRNG is random and of good quality, if it satisfies these tests. Therefore, a statistical 

test can in no way guarantee that a given sequence is random. The only information that a statistical test can 

provide is that the sequence seems random. Several standards exist to evaluate and certify the quality of 

pseudorandom number generators. We will present some tests used to evaluate the performance of  

our generator. 

 

4.1. Entropy test 

An entropy calculates the amount of information contained in a file. The file is considered as  

a sequence of words of 1 or 8 bits. The entropy is calculated as shown below: 

 

𝐻(𝑥) = − ∑ 𝑃𝑖(𝑋). 𝑙𝑜𝑔2(𝑃𝑖
2𝑛−1
𝑖=0 (𝑋))  

 

Where X is the studied source, Pi is the probability of appearance of the word i of n bits. The computation of 

the entropy makes the minimum number of bits per word containing all the information. For example, 

if the entropy is 6 bits/word for 8-bit words then 2 bits carry redundant information and the file could 

theoretically be compressed to three quarters of its original size. 

 

4.2. Mean, standard deviation and auto-correlation factor 

This is the simplest test possible. It consists of calculating the mean, the variance and  

the autocorrelation factor of the pseudo-random sequence. Let xi, for i = 1, 2, .., n, be a sequence obtained 

from a pseudo-random number generator. The sequence of ui=xi/n, for i = 1, 2, .., n is a sequence of pseudo-

random numbers distributed uniformly in the interval [0,1]. For a random sequence, these factors tend towards 

ideal values, which are thus sufficient to compare with the calculated values for the following U. Ideally, 

we must find the three values below:  

a) Average: 𝜇 =
1

𝑛
. ∑ 𝑢𝑖

𝑛
𝑖=1 =

1

2
. 

b) Variance: 𝜗 =
1

𝑛
. ∑ (𝑢𝑖

2 − 𝜇2) =
1

12

𝑛
𝑖 .  

c) Auto Correlation: 𝑟 =
1

𝑛
. ∑ (𝑢𝑖 ∗ 𝑢𝑖+1) =

1

4

𝑛−1
𝑖 .  

 

4.3. Spectral test 

The idea is to visually represent the sequence of pseudo-random numbers in 1 dimension (1D), 2D 

and 3D. For 3D Representation, three consecutive values will be the coordinates of a point in space. We look 

at whether the points are evenly distributed in a cube. By turning the cube as shown in Figure 1, one sees an 

undesirable effect appear, that is the plans of Marsaglia [20]. It is clear below that the points are located on 

plans. In fact, all linear congruential generators (LCG) suffer from this effect (this is due to the fact that we do 

not generate all reals, but only fractions). The smaller the inter-planar distance, the better the generator. 
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Figure 1. Marsaglia shots  

 

 

4.4. Poker test 

The idea of this test is to compare the theoretical frequencies of hands in poker with the frequencies 

observed by simulating these hands (a hand is a set of cards). A result can be considered as an ordered list of 

4 digits. There are in all 104. The theoretical probabilities obtained are as follows: 

a) For 4 different digits (eg. 1574), the number of possible cases is 10 * 9 * 8 * 7, 10 for the first number,  

9 for the next, and so on the probability is therefore (10 * 9 * 8 * 7) / 10000. 

b) For a pair, type ABCC (eg. 4849), we have 10 * 9 * 8 * 1 ways to make it, to multiply by the number of 

ways to place the pair among the 4 possible places: The probability is: (
4
2

) ∗
10∗9∗8

104 . 

c) For a double pair, type AABB (ex: 7337), we have 10 ways to choose the first number, then 9 ways to 

choose the second one (which must be different), in all 10 * 9 = 90 choices, to multiply by the number of 

ways to place these numbers among the 4 possible places ( 
1

2
∗ (

4
2

) = 3), the probability is = 
1

2
∗ (

4
2

) ∗
10∗9

104 . 

d) For three identical digits, type AAAB (ex: 5515), there are 10 * 9 ways to make it, to multiply by  

the number of ways to place the three digits among the 4 possible places, the probability is = (
4
3

) ∗
10∗9

104 . 

e) Finally, for four identical digits (ex: 4444), it is worth 
10

104 = 0.001.  

Note that the sum of these five probabilities gives 1. 

 

 

5. RESULTS AND INTERPRETATION 

The results are made under a PC TOSHIBA, on which is installed Windows 7 (32 bits), RAM: 

4.00GB, AMD E-450 APU processor with Radeon (TM) HD Graphics 1.65 GHz. The functions developed 

using MATLAB [23-24] allow us to generate pseudo-random sequences and analyze their performance. 

Figure 2 illustrates the sequence of pseudo random numbers according to the Von Neumann medial square 

method, we take as parameter n representing the length of the sequence n = 65536, and the seed 

x0 = 236589741. After generating the suite, we applied statistical tests to evaluate it. 
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Figure 2. Random data suite 

 

 

5.1. Test 1: mean, standard deviation and auto-correlation factor 

Table 1 illustrates several tests with the same seed and of different value n: 

 

 

Table 1. Mean, standard deviation and auto-correlation factor 
Test Seed n Mean Auto-Correlation Variance 

1 

5746 

5000 0.521748 0.272404 0.052689 

2 10000 0.521797 0.272363 0.052520 

3 20000 0.521821 0.272343 0.052435 

4 65336 0.521838 0.272329 0.052376 

5 

236589741 

5000 0.509834 0.260258 0.082758 

6 10000 0.507588 0.257629 0.083097 

7 20000 0.504481 0.254248 0.083054 

8 65336 0.504032 0.254105 0.083523 

9 65336 0.494660 0.244056 0.083462 

10 236589741 5000 0.509834 0.260258 0.082758 

11 236684741 6000 0.501728 0.251207 0.083300 

12 289784741 7000 0.496664 0.247977 0.084119 

13 

236589741 

5000 0.509834 0.260258 0.082758 

14 6000 0.509984 0.259960 0.083188 

15 7000 0.511130 0.260598 0.083012 

 

 

Note that Test 9 corresponds to the standard sequence of the continuation of Test 8. According to 

the results obtained and after several tests, it has been found that with n sufficiently large, and with 

sufficiently large seed (of large digit or > 6) the calculated values gradually tend towards the ideal as shown 

in Figure 3 (Test 8).  
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Figure 3. The graphical curve of the three calculated values 
 

 

5.2. Test 2: the spectral test 

This test aims to analyze the distribution of points in 2D and 3D space, Figure 4 illustrates the visual 

representation of the sequence generated (Test 8). In the 3D representation, by rotating the cube, one visually 

notices the absence of the Marsaglia planes and the points are uniformly distributed, this implies that  

the tested suite is random.  
 

 

  
 

Figure 4. Distribution of values in 2D and 3D 
 

 

5.3. Test 3: frequency test 

Recall that this test evaluates whether the sequence is random by comparing the calculated P-value 

with the significance threshold α (taking α = 0.01). If P-value > α, then the sequence is random otherwise it is 

not random. The standardized P-value column corresponds to the normalized sequence (in mod 256).  

The results are presented in Table 2. 
 

 

Table 2. Frequency test results 

Test n Seed P-value 
P-value 

(normalized) 
Interpretation 

1 5000 

236589741 

0.9251 0.7878 + 

2 10000 0.9885 0.5637 + 

3 20000 1 0.3806 + 

4 65536 1.5403 0.0447 + 

 

 

Note that for all four tests, the P-value is greater than α, so we accept the null hypothesis which 

states that "the sequence is random".  
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5.4. Test 4: entropy test 

In Table 3 we find the entropy values for the normalized sequences with different n, the higher  

the entropy, the more random the sequence is. In the ideal case the entropy value is equal to 8. Note that each 

time the value of n is increased, the value of the entropy also increases. 

 

 

Table 3. Entropy test results 
Test n Seed Entropy (normalized) 

1 5000 

236589741 

7.9628 

2 10000 7.9793 

3 20000 7.9899 

4 65536 7.9934 

 

 

5.5. Test 5: poker test 

The purpose of this test is to compare the theoretical probabilities Pt of poker hands with  

the probabilities observed Po by simulating these hands (a set of cards). Noting here that the Po are obtained 

by dividing the observed frequencies of each case on the total number n. 

 

5.5.1. For 4's hand 

This time we calculate the theoretical probabilities, with k = 4 shown in Table 4. 

 

 

Table 4. Theoretical probabilities for hand poker of 4 
 4 different cards 1 pair only 2 distincts pairs 3 identical cards 4 identical cards n 

Pt 0.504 0.432 0.027 0.036 0.001  

Po 

0.4600 0.4400 0.0600 0.0300 0.0100 100 

0.0092 0.9888 0.0012 0.0006 0.0002 5000 

0.0046 0.9944 0.0006 0.0003 0.0001 10000 

0.00023 0.9972 0.0003 0.0001 0.0001 20000 

7.019*10-4 0.9991 9.155*10-5 4.577*10-5 1.525*10-5 65536 

 

 

5.5.2. For 3 hand 

The same principle is used to calculate the theoretical probabilities, but this time with k = 3. In this 

case the test is applied to the standard sequence or the number of digits reduced to 3 shown in Table 5. 

 

 

Table 5. Theoretical probabilities for hand poker of 3 
 3 different cards 1 pair only 3 identical cards n 

Pt 0.7200 0.2700 0.0100  

Po 

0.6400 0.3600 0.0200 100 

0.6982 0.2898 0.0120 5000 

0.7042 0.2846 0.0112 10000 

0.7014 0.2864 0.0122 20000 

0.7032 0.2844 0.0124 65536 

 

 

5.6. Encrypting images 

Using the MATLAB software, we have developed an application to encrypt and decrypt an image, 

using the values produced by the middle square generator, associated with the XOR symmetric encryption 

technique. The XOR ‘1’ digit handles the bits, based on the operation or exclusive bitwise (XOR) as shown 

in Figure 5. 
 

 

 
 

Figure 5. Principle of encryption 
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We use as a key a bit string K of given length L. It is encrypted by performing the exclusive-or 

operation bit by bit of the key K with the clear text, divided into blocks M of length L each. Recall that 

the exclusive-or is associative, commutative and, that it has a neutral element 0, and that any chain K is its 

own inverse: K⊕K = 0. Thus, we can see that the decryption algorithm is identical to the encryption 

algorithm, with the same key: 

 

M = C⊕K = (M⊕K) ⊕K = 

M⊕ (K⊕K) = M⊕0 = M 

 

The basic idea of this process is to perform an "exclusive" or "⊕", bit by bit between the key 

generated by a PRNG, and the image to be encrypted, IO. This algorithm is completely symmetrical, that is 

the same operation is applied again to the encrypted image, IC to find the original image. The images used in 

our application are as in Figure 6 and of size 256x256. 

We present in the following Figures 7-14 images of the two images "EI: Innocent Children" and 

"FA: Algerian Woman" according to different seeds to see the influence of the size of the seed in this cipher. 

Note that the encryption of the 2 images has failed with sequels that have a seed of 2, 3, 4, 5 or 6 digits. 

From these results we can conclude that to quantify an image it is necessary that the seed is sufficiently wide 

(large digit is greater than 6). This confirms the condition made by Von Neumann using 10-digit numbers. 

 

 

    
 

Figure 6. IO-EI – IO-FA 

 

 

    
 

Figure 7. IC-EI – IC-FA with seed=26 

 

 

 

Figure 8. IC-EI – IC-FA with seed=684 

 

 

    
 

Figure 9. IC-EI – IC-FA with seed=2863 

 

Figure 10. IC-EI – IC-FA with seed=43295 
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Figure 11. IC-EI – IC-FA with seed=928763 

 

 

 

Figure 12. IC-EI – IC-FA with seed=8547267 

 

 

    
 

Figure 13. IC-EI – IC-FA with seed=59412678 

 

Figure 14. IC-EI – IC-FA with seed=236589741 

 

 

5.7.  Analysis of histograms 

A histogram is a statistical curve indicating the distribution of the pixels of an image according to 

their value. In our work, processed images are grayscale images whose pixel values vary in the range  

[0, 255]. We have drawn and analyzed the histograms of the encrypted images of "EI- Innocent Children" 

and "FA-Algerian Women", the illustrated plots the histograms of the encrypted images, HC of the images  

EI and FA respectively according to the size of the seed. Note that, the historgram for the plaintext is  

denoted as HP. 

It thus emerges from the preceding results that the histograms of Figures 21-23 are uniformly 

distributed with respect to the histograms of the original images from Figure 15 with respective encrypted 

images from Figures 16-20 (there is a leakage of information about the pixel distribution of the images).  

This makes cryptanalysis increasingly difficult because the encrypted images provide no element, based on 

the exploitation of the histogram, to design a statistical attack on the proposed image encryption technique. 

 

 

  
 

Figure 15. HP-EI – HP –FA 
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Figure 16. HC-EI – HC-FA with seed=26 

 

 

  
 

Figure 17. HC-EI – HC-FA avec seed=684 

 

 

  
 

Figure 18. HC-EI – HC-FA with seed=2863 
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Figure 19. HC-EI – HC-FA with seed=43295 

 

 

  
 

Figure 20. HC-EI – HC-FA with seed= 928763 

 

 

  
 

Figure 21. HC-EI – HC-FA with seed= 8547267 
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Figure 22. HC-EI – HC-FA with seed= 59412678 

 

 

  
 

Figure 23. HC-EI – HC-FA with seed= 236589741 

 

 

This explanation is reinforced by Table 6 associated with the entropies of the different encrypted 

images of the two images "EI: Innocent Children" and "FA: Algerian Woman". In addition, this table informs 

us about the quality of the images for Figures 8-14. 

 

 

Table 6. Entropy of encrypted images 
Test Seed EI FA 

1 0 7.6916 7.4616 

2 26 7.6916 7.4616 

3 684 7.9676 7.9221 

4 2863 7.9646 7.8748 

5 43295 7.9348 7.8525 

6 928763 7.8716 7.8716 

7 8547267 7.9970 7.9964 

8 59412678 7.9975 7.9968 

9 236589741 7.9972 7.9975 
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6. CONCLUSION 

In this work we have adapted Von Neumann's middle square generator to digital image encryption 

and to real-time application. We first started by analyzing the performance of the number sequences 

produced by the middle square generator and explain how to interpret the results, then we discussed  

the principle of encrypting the images with the keys generated using the encryption system continuously with 

the XOR operation, to finally analyze the encrypted images and validate the algorithm. The size of the key 

used, the power of the algorithm and the ability to keep keys secretly secure, determine the robustness of an 

encryption system. One of the main characteristics of the encryption algorithms studied is that they make it 

possible to achieve a very high level of performance. These performances are expressed either in terms of 

speed of encryption or in terms of material efficiencies. Our middle square generator with its simplicity could 

verify some quality criteria, since it satisfied some tests (in the majority of the cases) with success and it 

managed the encryption of the images. 
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