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1. INTRODUCTION

Image quality can be degraded due to various types of distortion such as noise, blurring, fast fading,
blocking artifacts and contrast distortion. These distortions may occur during operations such as acquisition,
compression, storage, transmission, display and post-processing. Contrast distortion is among the most
common and fundamental distortion. Contrast-distorted image (CDI) is an image with low range of grayscale
as shown in Figure 1. Contrast distortion may be caused by poor lighting condition and poor quality image
acquisition device.

Many image quality assessment algorithms (IQAs) have been developed during the past decade.
However, most of them are designed for images distorted by compression, noise and blurring.
Such distortions cause structural change in image [1] which does not happen in contrast distortion.
Hence, it is not suitable to use the above mentioned IQAs to assess contrast-distorted images (CDI).
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Figure 1. (a) Good contrast image; (b) Poor contrast image

There are very few 1QAs designed specifically for CDI. The first IQA for CDI is a Reduced-Reference
IQA (RR-IQA) called RIQMC [2]. The disadvantage of RIQMC is that it requires partial access to reference
image, which is impractical in real-life application. Unlike distortion caused by image compression where
the original image could be used as reference image, contrast distortion is caused by poor image acquisition
conditions such as poor lighting or poor device so the original image itself is distorted and reference image is
practically not available.

The first practical solution is proposed by Yaming et al. which is called No-Reference IQA for CDI
(NR-1QA-CDI) [3]. It is develop based on the principles of Natural Scene Statistics (NSS) in that there are
certain regularities in the statistics of natural scenes which could be missing from the statistics distorted images.
The five features used in NR-IQA-CDI are the global spatial statistics of an image including
the mean, standard deviation, entropy, kurtosis and skewness. Unfortunately, the performance of NR-IQA-CDI
are not encouraging in two of the three test image databases, TID2013 and CSIQ, where the Pearson Linear
Correlation Coefficients are only around 0.57 and 0.76, respectively.

The existing NR-IQA-CDI relies on features designed by human or handcrafted features because
considerable level of skill, domain expertise and efforts are required to design good handcrafted features.
Recently, there is great advancement in machine learning with the introduction of deep learning through
Convolutional Neural Networks (CNN) which enable machine to learn good features from raw image
automatically without any human intervention. Therefore, it is tempting to explore the ways to transform
the existing NR-IQA-CDI from using handcrafted features to machine-crafted features using deep learning,
specifically Convolutional Neural Networks (CNN).

The evaluation results indicated that NR-IQA-CDI based on machine-crafted features generally
performed better than NR-IQA-CDI based on handcrafted features while enjoying the advantage of requiring
zero human intervention in identifying the features. In the next section (Section 2), Brief overview on CNN for
NR-IQA. Section 3 Designing NR-IQA-CDI Based on Non-Pre-Trained CNN Models are described. Section
4 describes the performance evaluation and Section 5 concludes the current work.

2. CONVOLUTIONAL NEURAL NETWORKS (CNNs) FOR NR-IQA

Acrtificial neural networks has been the most popular tools for machine learning [4], which in more
general sense for deep learning. Among several deep learning architectures, stacked denoising
autoencoders [5], deep belief networks [6-7], and convolutional neural networks [8-13] are three of the most
popular architectures utilized for different type of applications. Convolutional neural networks (CNNSs) are
a special kind of deep learning method, CNNs run much faster on GPUs, such as NVidia‘s Tesla K80 processor,
and has achieved state of the art performance on various computer vision tasks, such as object detection,
recognition, retrieval, annotation, image classification, and segmentation [14-16].

The fundamental difference between convolutional neural network (CNN) and conventional machine
learning is that, rather than using hand-crafted features, such as SIFT [17] and HoG, CNN can automatically
learn features from data (images) and acquire scores from the output of it [18]. Figure 2 shows the difference
between machine learning and deep learning.
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Figure 2. The difference between CNN and machine learning

Generally, a CNN architecture comprises different layer types such as convolutional layer, Rectified
Linear Unit (ReLU) layer, cross channels normalization layer, pooling layer, fully connected layer, dropout
layer, SoftMax layer, and output classification layer. Each layer obtains the data from the previous layer.
Then, the data is transformed and passed to the subsequent layer. CNN architecture varies in terms of
the number of outputs per layer, the size and type of spatial pooling, the number of layers, and the size of
the convolutional filters. In general, CNNs are trained in a supervised pattern using the standard
backpropagation [19]. Figure 3 shows the typical architecture of a CNN model.
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Figure 3. The typical architecture of convolutional neural networks (CNNs)

The application of CNN in IQA was first proposed by Kang et al. [20]. They treated image patches as
input and employed CNN to predict the image quality. As a result, CNN could predict the quality score on
small image patches in an accurate manner. Also, instead of using handcrafted features, it could merge
the feature learning and regression processes into a single optimization process.

In order to eliminate the need for manual feature extraction, deep learning is performed to learn
the features from raw data (images) automatically. For example, NR-IQA learns important features
automatically from raw images [21]. Most of the conventional NR-IQA depends on two main steps: feature
extraction and score prediction, while in NR-IQA based on machine-crafted features, learning and feature
extraction are integrated into one single step.

3. DESIGNING NR-IQA-CDI BASED ON NON-PRE-TRAINED CNN MODELS

The proposed NR-IQA-CDI based on non-pre-trained CNN (NR-IQA-CDI-NonPreCNN) is trained
from scratch is illustrated in Figure 4. The details of the network architecture and the training procedures are
as presented in the following two sections.
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Figure 4. The diagram of NR-1QA-CDI-nonpreCNN based on CNN architecture

3.1. Network architecture

Instead of feeding the entire image as an input to the proposed network, grayscale image is
decomposed into non-overlapping patches of size N x M, where N > H, image height and M > W, image width.
These non-overlapping patches of the image are given to network as input since this would increase number of
training samples tremendously and could help to improve the performance. Experiments were conducted on
various patch size (32, 64, 128, 256). The experiments showed that the optimum patch size is 64 x 64.
Each image patch is considered as an independent image sample during the training step, and it is labeled with
the quality value of the corresponding source image.

There is no golden rule in designing CNN model in terms of the number of layers and the size of
filters. This work started with designing the network with 3 convolutional layers. Each layer contains 96, 256,
and 384 filters of size 12x12, 5x5, 3x3 respectively. This work was also tested on various settings of number
of layers and filter size and the results are as presented in the coming section 4, Figures 7 and 8.
The ReLU (Rectified Linear Unit) activation functions were embedded as well. The first two convolutional
layers were subjected to 2x2 max pooling while no pooling was applied to the third layer. The three
convolutional layers were attached to a fully-connected layer containing 9600 hidden units and a linear
regression layer (for image quality score prediction).

The network layers are organized as follows: Input patch 256x256, Conv 96x62x62— Max 31x31x96—
Conv 256x14x14— Max 7x7x256— Conv 384x5x5— FC 5x5x384=9600— Output (FC-1). (Conv denotes
the convolution layer; max denotes the max-pooling layer; FC denotes the full-connected layer.) Figure 4 shows
the architecture of proposed (NR-IQA-CDI-NonPreCNN), which is based on Convolutional Neural Networks
with 8 layers.

3.2. Training the CNN

Since the input size (image size) of CNN is fixed, the input images for all databases were resized to
512x512. During the training phase, the quality label of the whole image was assigned to all patches of
the same image. The proposed networks were trained repeatedly by performing backpropagation over several
epochs. Here, one epoch is defined as the period during in which each sample from the training set has been
used once. While fixing the learning rate as 0.0001, all models were trained for 150 epochs. Upon inserting
the training image as input, the forward propagation step (consisting of convolution, ReLU and pooling
operations in the fc layer) was performed to identify the output probability of each class. A laptop (Intel (R)
Core (TM) 2 Duo CPU, 8G RAM memory and NVDIA GTX 950M GPU with a MATLAB R2017a platform)
was used to perform the experiment.

4. PERFORMANCE EVALUATION

In this section, the performance evaluation of the proposed NR-IQA-CDI based on non-pre-trained
CNN (NR-IQA-CDI-NonPreCNN) is trained from scratch is presented. The presentation begins with
the details of the evaluation methodology such as the test image databases, performance metrics and
evaluation procedures. This is followed by discussions on the evaluation results and conclusions from
the performance evaluation.

4.1. Evaluation methodology

The test image databases used for the evaluation are similar to those used to evaluate the existing
NR-1QA-CDI for fair comparison. They are CSIQ database [22], TID2013 database [23] and CID2013
database [2]. The test images used include only the contrast distorted images in the three databases without

Improve of contrast-distorted image quality assessment based on convolutional ... (Ismail Taha Ahmed)



5608 O ISSN: 2088-8708

the reference images. A total of 116, 250, and 400 distorted images are selected from CSIQ [22],
T1D2013 [23], and CID2013 [2], respectively. Subjective scores are represented by either mean opinion score
(MOS) or differential mean opinion score (DMOS).

Cross-validation was used in the performance evaluation. It is a model validation method to evaluate
how well the performance of the model could generalize to an independent data set. k-fold cross-validation
(k-fold cv) was chosen for this work. This method allows performance evaluation with many different
combinations of data set to minimize bias. In this method, data are divided into k subsets and performance
evaluation is repeated for k times. During the k times of evaluation, each of the k subsets is used for
testing for one time while the rest used for training. The final evaluation result is the average results of
the k times of evaluation.

It is well-known that the performance of a machine learning model tends to improve with
the increase number of training data. Therefore, k-fold cv with higher k tends to show better performance.
In this work, the k-fold cv was repeated for k range from 2 to 10 to reduce bias due to the size of training data.
However, only 10 train-test iterations are conducted as the training of CNN is very time consuming.

In order to evaluate the performance of IQA, the performance metrics such as (1) Spearman Rank-
Order Correlation Coefficient (SROCC), (2) Pearson’s (Linear) Correlation Coefficient (PLCC) and (3) Root
Mean Square Error (RMSE) between the predicted objective scores and the subjective Mean Opinion Scores
(MOS) were employed. Conditions such as SROCC~1, PLCC~1 and RMSE~0 indicate good performance
in terms of correlation with human perception.

4.2. Evaluation of NR-IQA-CDI-nonpreCNN

The evaluation was repeated with various patch sizes M x N such as 256 x 256, 128 x 128, 64 x 64,
and 32 x 32 as well as without patches (the image was resized before input to CNN) to determine the best
setting. Tables 1-5 show the average result of assessment using patch size 256 x 256, 128 x 128, 64 x 64,
32 x 32 and without using patch, respectively.

Table 1. The average PLCC, SROCC and RMSE across 10 train-test rounds for three databases
using NR-IQA-CDI-nonpreCNN of patch size 256 x 256

K csIQ TID2013 CID2013 All Databased
PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE
2 07629 07098 0.8862 07940 0.7689 07183 0.8476 0.8647 0.3246 0.8969 009427 0.6878
3 07610 0.7587 08974 08182 0.8041 0.6398 0.8839 0.8876 03023 0.9083 09148 0.8410
4 08276 08819 08501 08102 07884 07501 09179 09332 02433 0.8893 0.8791 0.9793
5 08682 09097 07956 0.8176 07853 06236 09198 09429 02398 09184 09310 0.7208
6 08893 08663 07103 0.8219 07797 05879 09155 09353 02311 0.8891 09197 0.8510
7 09282 09120 0.6014 0.8299 0.7899 06217 09285 09421 02229 0.8595 0.8829 0.9326
8 08997 09229 07068 0.8202 07931 0.6072 09299 09472 02142 09076 0.9206 0.8638
9 09513 09293 05103 08319 07932 06163 09276 09395 02119 09085 0.8901  0.9429
10 09351 09384 0.6892 0.8358 0.7989 05909 09392 09528 0.2024 09354 08587  0.9692
Av_ 0.8692 0.8698 0.7385 0.8199 0.7890 06395 09122 09272 02436 09014 09044  0.8653
Table 2. The average PLCC, SROCC and RMSE across 10 train-test rounds for three databases
using NR-IQA-CDI-nonpreCNN of patch size 128 x 128
K csIQ TID2013 CID2013 All Databased
PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC  SROCC RMSE
2 07612 07589 0.8398 08189 0.7679 0.6892 0.8892 0.8921 03041 09089 09579  0.6709
3 07926 07996 0.8418 08174 08093 06302 09125 09127 02959 09181 09282 0.8311
4 08469 08988 08123 08426 08182 06686 09295 09397 02312 09013 0.8938  0.9532
5 08784 09321 07502 0.8584 0.8367 05611 09312 09558 0.2317 09294 09476  0.7045
6 09116 08892 06879 0.8493 0.8265 05723 09289 09464 02219 09012 09324  0.8439
7 09328 09269 05792 0.8494 08326 05639 09372 09553 0.2034 0.8719  0.8993  0.9256
8 09179 09394 06779 08568 0.8398 05612 09385 09592 02012 09278 09391 0.8571
9 09723 09416 05026 0.8538 0.8356 05579 0.9369 0.9489 0.2049 09283  0.9089  0.9336
10 09417 09519 0.6463 0.8684 08497 05231 0.9448 09656 0.1961 09521  0.8698  0.9541
Av 08839 0.8931 07042 0.84611 0.8240 05919 09276 09417 02322 09154 09196 0.8526
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Table 3. The average PLCC, SROCC and RMSE across 10 train-test rounds for three databases using
NR-1QA-CDI-nonpreCNN of patch size 64 x 64

K CSIQ TID2013 CID2013 All Databased
PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE
2 07841 0.7828 0.8212 0.8294 07893 0.6732 0.9075 0.9068 0.2808 0.9258 0.9711 0.6371
3 08062 0.8095 0.8337 0.8281 0.8278 0.6088 0.9325 0.931 02711 09372 0.9476 0.8161
4 08626 09174 08011 0.8496 0.8348 0.6379  0.9497 09594 0.2102 09245 0.9182 0.9329
5 08979 09391 0731 0.8674 08523 05443 09512 09721 02113 09491 0.9653 0.6784
6 09253 09098 06725 0.8583 0.8417 05532 09489 09625 02019 09282 0.9527 0.8126
7 09441 09411 05509 0.8581 0.8474 05439 09565 0.9686 0.1932 0.9026 0.9288  0.8979
8 09332 09532 06513 0.8678 0.8582 05437 0.9577 09714 0.1939 09487 0.9529 0.8274
9 09798 09561 04924 0.8685 0.8525 05326 09562 0.9667 0.1943 0.9495 0.9298  0.9017
10 09602 09687 06187 0.8859 0.8612 0501 09671 09798 0.1794 09712 0.9028 0.9268
Av  0.8992 09086 0.6858 0.8570 0.8405 0.5709 09474 0.9575 0.2151 0.9374 009410 0.8256

Table 4. The average PLCC, SROCC and RMSE across 10 train-test rounds for three databases using
NR-1QA-CDI-nonpreCNN of patch size 32 x 32

K CsIQ TI1D2013 CID2013 All Databased
PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE
2 07892 07878 08123 0.8395 0.7992 06626 09179 09175 02732 09368 09795 0.6296
3 08087 08169 08167 0.8389 08367 0.6007 09364 09397 0.2627 09464  0.9569  0.8083
4 08694 09182 07812 0.8586 08412 0.6251 09558 09624 02019 09327 0.9288  0.9241
5 09121 09427 07119 0.8693 0.8623 05246 09569 09781 0.2036 009576 0.9722  0.6702
6 09284 09166 06525 0.8679 0.8517 05344 009547 09692 01921 09381 09619  0.8063
7 09467 09472 05309 0.8668 0.8537 05258 009631 09726 0.1814 09121 09379  0.8909
8 09389 09565 06211 0.8734 08698 05247 09655 009749 0.1807 009587 0.9624  0.8178
9 09831 09596 0.4834 08772 08589 05129 09649 09742 0.1832 009595 0.9397  0.8935
10 09679 09827 0.6007 0.8938 08746 0.4965 09742 0.9895 01765 009816  0.9183  0.9142
Av 09049 09142 06678 0.8650 0.8497 0.5563 09543 0.9642 0.2061 0.9470 09508  0.8172

Table 5. The average PLCC, SROCC and RMSE across 10 train-test rounds for three databases using
NR-1QA-CDI-nonpreCNN without patches

K CSIQ TID2013 CID2013 All Databased
PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE
2 05948 0.6204 14775 0.7717 0.7177 07720 07852 0.8371 0.4208 009375 0.9393 0.7031
3 06183 07109 14815 07904 0.7423 07411 08618 0.9018 0.3352 0.8845 0.8962 0.8778
4 07788 0.8395 09850 0.7886 0.7385 0.7358 0.8804 0.9087 0.3036  0.8340  0.8474  1.0409
5 0.8391 0.8807 0.8518 0.7842 0.7283 0.7300 0.8771 0.9105 0.3072 09094 09165 0.7560
6 08581 0.8489 07725 0.7851 0.7203 0.7402 0.8755 0.9066 0.3157 0.8777 0.8967  0.8997
7 08867 0.8905 06422 0.7880 0.7337 0.7420 0.8946 0.9150 0.2920 0.8490 0.8678  1.0530
8 08716 09044 07328 07855 0.7344 07432 08777 09110 0.3134 0.8906 0.9041  0.8922
9 09244 09152 05854 0.7942 0.7365 0.7276 0.8971 0.9213 0.3011 0.8537 0.8685  0.9646
10 0.8813 0.9066 07167 0.7907 0.7360 0.7378  0.8927 0.9156 0.2878 0.7291  0.7946  1.2726
Av  0.8059 0.8352 09161 0.7864 07319 0.7410 0.8713 09030 0.3196 0.8628 0.8812  0.9399

Figure 5 (a)-(c) presents the comparison of the results of different patch sizes over the three databases
in form of bar chart. Notice that the performance clearly improved with the decrease of patch size.
The NR-IQA-CDI-NonPreCNN of patch size 32 x 32 outperforms the rest across all databases and all three
performance metrics.

It is apparent that increasing the number of training samples by dividing the image into patches could
affect the performance of CNN-based NR-IQA-CDI. For example, there were only 400 images in CID2013
database but there are about 2400 image patches of patch size 256 x 256 used, and about 153600 image patches
when patch 32 x 32 was used as shown in Table 6. The average results of k-fold cross-validation (k= 2 to 10)
are summarized in Table 7 where the patch size ranges from 32 to 256 pixels. It is observed that the proposed
method shows better performance with increased number of patches as shown in Figure 6. It can also be
observed that the performance of NR-IQA-CDI-NonPreCNN of small patch size 32 x 32 were not significantly
improved as compared to those of patch size 64 x 64 to justify the exponential increase in the number of training
samples. Therefore, the patch size of 64 x 64 was chosen as the optimum patch size.

Improve of contrast-distorted image quality assessment based on convolutional ... (Ismail Taha Ahmed)
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Figure 5. Comparison of SROCC, PLCC, and RMSE of NR-IQA-CDI-nonpreCNN of patch size 256 x 256,
128 x 128, 64 x 64, 32 x 32, and without patch on CSIQ, TID2013, and CID2013 databases (a, b, and c)
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Table 6. The patch numbers across different patch sizes for IQA databases

csiQ TID2013 CID2013 ALL DATABASES
PATCH SIZE PATCH NO PATCH NO PATCH NO PATCH NO
RESIZED 116 250 200 766
256 464 1000 2400 3864
128 1856 3000 9600 14456
64 7424 12000 38400 57824
32 29696 48000 153600 231296

Table 7. Performance evaluation of PLCC, SROCC, and RMSE on different patches number

Patch Size csiQ TID2013 CID2013 All Databases
PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE

Resized  0.8059 0.8352 0.9161 0.7864 0.7319 0.7410 0.8713 0.9030 0.3196 0.8628 0.8812 0.9399
256 0.8692 0.8698 0.7385 0.8199 0.7890 0.6395 09122 09272 0.2436 0.9014 0.9044 0.8653
128 0.8839 0.8931 0.7042 0.8461 0.8240 05919 09276 09417 0.2322 09154 09196 0.8526
64 0.8992 09086 0.6858 0.8570 0.8405 05709 0.9474 09575 0.2151 0.9374 0.9410 0.8256
32 0.9049 09142 0.6678 0.8650 0.8497 0.5563 0.9543 0.9642 0.2061 0.9470  0.9508 0.8172
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Figure 6. PLCC and SROCC results with various patches number
(a: CSIQ, b: TID2013, ¢c: CID2013 DB, d: all databases)

Figure 7 shows the variation of performance with respect to the number of convolution kernels.
In general, the use of more kernels would lead to better performance. In the case of CSIQ, the kernel number
of the three convolution layers in setting 1-4 are (8, 16, 32), (16, 32, 64), (32, 64,128), and (96,256,384),
respectively. It can be concluded that the performance could be improved by increasing the number of kernel.
Similar conclusion also applies to databases TID2013 and CID2013.
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Figure 7. The SROCC and LCC with various number of kernels (8, 16, 32), (16, 32, 64), (32, 64,128),
and (96,256,384) which correspond to 1,2,3,4, respectively

Generally, higher layers could extract better features. However, high-level features are not necessarily
better than the low-level ones. From Figure 8, performance increased as the number of convolution layers was
increased from one to three. However, the performance started to decrease when the numbers of layers were
further increased. Similar results were found TID2013 and CID2013. Therefore, CNN with three convolution
layers was optimal for NR-1QA-CDI.

CSIQ Database
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Figure 8. Proposed CNN prediction accuracy for CSIQ database across various layers

4.3. Cross-database evaluation

The cross-database evaluation method used to identify the generalization ability of a NR-IQA-CDI
across different databases has been introduced in the current work. In this evaluation, all images in one of
the databases are used for training while the images in the other two databases are used for testing.
For consistency, the MOS and DMOS scores have been rescaled (0-10). The results of the cross-dataset test
have been reported in Table 8. It may be observed that results when our method trained on CSIQ is decreased
compared to being trained on CID2013. Therefore, larger training set would lead to better generalization.
Hence, the generalization capability of a deep neural network is dependent on the size and diversity of
the training set.

Table 8. Cross database evaluation

Trained on: CID2013 TID2013 CSIQ

Tested on: CSIQ TI1D2013 CID2013 CSIQ CID2013 TID2013

NR-IQA- PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

CDI-
NonPreCNN 0.8169 0.8372 0.7935 0.7782 0.8273 0.8302 0.8092 0.8163 0.8028 0.8172 0.6584 0.6419
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4.4. NR-1IQA-CDI-nonpreCNN vs NR-IQA-CDI based on handcrafted features

The proposed NR-IQA-CDI-NonPreCNN is compared against NR-IQA-CDI based on handcrafted
features. The comparison results shown in Table 9. The best score for each performance metric and database
is highlighted by bolding the numbers.

Table 9. PLCC, SROCC, and RMSE comparison among enhanced versions of NR-IQA-CDI

Methods CSIQ T1D2013 CID2013
PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE
Existing NR-IQA-CDI 0.7623  0.7657  0.1102 05739 04943 0.8146 0.8797 0.8798  0.2981

NR-IQA-CDI-NonPreCNN 0.8992  0.9086  0.0686  0.8570  0.8405 0.5709  0.9474 0.9575  0.2151

The results show that NR-IQA-CDI based on non-pre-trained CNN, NR-IQA-CDI-NonPreCNN
significantly outperforms those which are based on handcrafted features. In addition to showing best
performance, NR-IQA-CDI-NonPreCNN also enjoys the advantage of zero human intervention in designing
feature, making it the most attractive solution for NR-IQA-CDI.

5. CONCLUSION

In this paper, a study on transforming the existing NR-IQA-CDI using machine-crafted features based
on CNN has been presented. It was able to accurately predict the quality score from an image and integrate
the feature learning and regression into one optimization process. Our method does not require any reference
image, and any handcrafted features and directly learns discrimination features from raw image pixels to
achieve much better performance. The evaluation results indicated that NR-1QA-CDI based on machine-crafted
features generally performed better than NR-IQA-CDI based on handcrafted features while enjoying
the advantage of requiring zero human intervention in identifying the features.
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