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 Many image quality assessment algorithms (IQAs) have been developed 
during the past decade. However, most of them are designed for images 
distorted by compression, noise and blurring. There are very few IQAs 
designed specifically for Contrast Distorted Images (CDI), e.g. Reduced-
reference Image Quality Metric for Contrast-changed images (RIQMC) and 
NR-IQA for Contrast-Distorted Images (NR-IQA-CDI). The existing  
NR-IQA-CDI relies on features designed by human or handcrafted features 
because considerable level of skill, domain expertise and efforts are required 
to design good handcrafted features. Recently, there is great advancement in 

machine learning with the introduction of deep learning through Convolutional 
Neural Networks (CNN) which enable machine to learn good features from 
raw image automatically without any human intervention. Therefore, it is 
tempting to explore the ways to transform the existing NR-IQA-CDI from 
using handcrafted features to machine-crafted features using deep learning, 
specifically Convolutional Neural Networks (CNN). The results show that 
NR-IQA-CDI based on non-pre-trained CNN (NR-IQA-CDI-NonPreCNN) 
significantly outperforms those which are based on handcrafted features. 

In addition to showing best performance, NR-IQA-CDI-NonPreCNN also 
enjoys the advantage of zero human intervention in designing feature, making 
it the most attractive solution for NR-IQA-CDI. 
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1. INTRODUCTION  

Image quality can be degraded due to various types of distortion such as noise, blurring, fast fading, 

blocking artifacts and contrast distortion. These distortions may occur during operations such as acquisition, 

compression, storage, transmission, display and post-processing. Contrast distortion is among the most 

common and fundamental distortion. Contrast-distorted image (CDI) is an image with low range of grayscale 
as shown in Figure 1. Contrast distortion may be caused by poor lighting condition and poor quality image 

acquisition device.  

Many image quality assessment algorithms (IQAs) have been developed during the past decade. 

However, most of them are designed for images distorted by compression, noise and blurring. 

Such distortions cause structural change in image [1] which does not happen in contrast distortion. 

Hence, it is not suitable to use the above mentioned IQAs to assess contrast-distorted images (CDI). 
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Figure 1. (a) Good contrast image; (b) Poor contrast image 

 

 

There are very few IQAs designed specifically for CDI. The first IQA for CDI is a Reduced-Reference 

IQA (RR-IQA) called RIQMC [2]. The disadvantage of RIQMC is that it requires partial access to reference 

image, which is impractical in real-life application. Unlike distortion caused by image compression where 

the original image could be used as reference image, contrast distortion is caused by poor image acquisition 

conditions such as poor lighting or poor device so the original image itself is distorted and reference image is 

practically not available. 

The first practical solution is proposed by Yaming et al. which is called No-Reference IQA for CDI 

(NR-IQA-CDI) [3]. It is develop based on the principles of Natural Scene Statistics (NSS) in that there are 
certain regularities in the statistics of natural scenes which could be missing from the statistics distorted images. 

The five features used in NR-IQA-CDI are the global spatial statistics of an image including  

the mean, standard deviation, entropy, kurtosis and skewness. Unfortunately, the performance of NR-IQA-CDI 

are not encouraging in two of the three test image databases, TID2013 and CSIQ, where the Pearson Linear 

Correlation Coefficients are only around 0.57 and 0.76, respectively. 

The existing NR-IQA-CDI relies on features designed by human or handcrafted features because 

considerable level of skill, domain expertise and efforts are required to design good handcrafted features. 

Recently, there is great advancement in machine learning with the introduction of deep learning through 

Convolutional Neural Networks (CNN) which enable machine to learn good features from raw image 

automatically without any human intervention. Therefore, it is tempting to explore the ways to transform  

the existing NR-IQA-CDI from using handcrafted features to machine-crafted features using deep learning, 
specifically Convolutional Neural Networks (CNN). 

The evaluation results indicated that NR-IQA-CDI based on machine-crafted features generally 

performed better than NR-IQA-CDI based on handcrafted features while enjoying the advantage of requiring 

zero human intervention in identifying the features. In the next section (Section 2), Brief overview on CNN for 

NR-IQA. Section 3 Designing NR-IQA-CDI Based on Non-Pre-Trained CNN Models are described. Section 

4 describes the performance evaluation and Section 5 concludes the current work. 

 

 

2. CONVOLUTIONAL NEURAL NETWORKS (CNNs) FOR NR-IQA 

Artificial neural networks has been the most popular tools for machine learning [4], which in more 

general sense for deep learning. Among several deep learning architectures, stacked denoising 

autoencoders [5], deep belief networks [6-7], and convolutional neural networks [8-13] are three of the most 
popular architectures utilized for different type of applications. Convolutional neural networks (CNNs) are 

a special kind of deep learning method, CNNs run much faster on GPUs, such as NVidia‘s Tesla K80 processor, 

and has achieved state of the art performance on various computer vision tasks, such as object detection, 

recognition, retrieval, annotation, image classification, and segmentation [14-16]. 

The fundamental difference between convolutional neural network (CNN) and conventional machine 

learning is that, rather than using hand-crafted features, such as SIFT [17] and HoG, CNN can automatically 

learn features from data (images) and acquire scores from the output of it [18]. Figure 2 shows the difference 

between machine learning and deep learning. 
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Figure 2. The difference between CNN and machine learning 

 

 

Generally, a CNN architecture comprises different layer types such as convolutional layer, Rectified 

Linear Unit (ReLU) layer, cross channels normalization layer, pooling layer, fully connected layer, dropout 

layer, SoftMax layer, and output classification layer. Each layer obtains the data from the previous layer. 

Then, the data is transformed and passed to the subsequent layer. CNN architecture varies in terms of  
the number of outputs per layer, the size and type of spatial pooling, the number of layers, and the size of  

the convolutional filters. In general, CNNs are trained in a supervised pattern using the standard 

backpropagation [19]. Figure 3 shows the typical architecture of a CNN model. 

 

 

 
 

Figure 3. The typical architecture of convolutional neural networks (CNNs) 

 

 
The application of CNN in IQA was first proposed by Kang et al. [20]. They treated image patches as 

input and employed CNN to predict the image quality. As a result, CNN could predict the quality score on 

small image patches in an accurate manner. Also, instead of using handcrafted features, it could merge  

the feature learning and regression processes into a single optimization process.  

In order to eliminate the need for manual feature extraction, deep learning is performed to learn  

the features from raw data (images) automatically. For example, NR-IQA learns important features 

automatically from raw images [21]. Most of the conventional NR-IQA depends on two main steps: feature 

extraction and score prediction, while in NR-IQA based on machine-crafted features, learning and feature 

extraction are integrated into one single step. 

 

 

3. DESIGNING NR-IQA-CDI BASED ON NON-PRE-TRAINED CNN MODELS 

The proposed NR-IQA-CDI based on non-pre-trained CNN (NR-IQA-CDI-NonPreCNN) is trained 

from scratch is illustrated in Figure 4. The details of the network architecture and the training procedures are 

as presented in the following two sections. 
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Figure 4. The diagram of NR-IQA-CDI-nonpreCNN based on CNN architecture 

 

 

3.1. Network architecture 

Instead of feeding the entire image as an input to the proposed network, grayscale image is 

decomposed into non-overlapping patches of size N x M, where N > H, image height and M > W, image width. 

These non-overlapping patches of the image are given to network as input since this would increase number of 

training samples tremendously and could help to improve the performance. Experiments were conducted on 

various patch size (32, 64, 128, 256). The experiments showed that the optimum patch size is 64 x 64. 

Each image patch is considered as an independent image sample during the training step, and it is labeled with 

the quality value of the corresponding source image. 

There is no golden rule in designing CNN model in terms of the number of layers and the size of 

filters. This work started with designing the network with 3 convolutional layers. Each layer contains 96, 256, 

and 384 filters of size 12x12, 5x5, 3x3 respectively. This work was also tested on various settings of number 

of layers and filter size and the results are as presented in the coming section 4, Figures 7 and 8.  
The ReLU (Rectified Linear Unit) activation functions were embedded as well. The first two convolutional 

layers were subjected to 2x2 max pooling while no pooling was applied to the third layer. The three 

convolutional layers were attached to a fully-connected layer containing 9600 hidden units and a linear 

regression layer (for image quality score prediction). 

The network layers are organized as follows: Input patch 256×256, Conv 96x62x62− Max 31x31x96− 

Conv 256x14x14− Max 7x7x256− Conv 384x5x5− FC 5x5x384=9600− Output (FC-1). (Conv denotes 

the convolution layer; max denotes the max-pooling layer; FC denotes the full-connected layer.) Figure 4 shows 

the architecture of proposed (NR-IQA-CDI-NonPreCNN), which is based on Convolutional Neural Networks 

with 8 layers. 

 

3.2. Training the CNN 
Since the input size (image size) of CNN is fixed, the input images for all databases were resized to 

512x512. During the training phase, the quality label of the whole image was assigned to all patches of  

the same image. The proposed networks were trained repeatedly by performing backpropagation over several 

epochs. Here, one epoch is defined as the period during in which each sample from the training set has been 

used once. While fixing the learning rate as 0.0001, all models were trained for 150 epochs. Upon inserting 

the training image as input, the forward propagation step (consisting of convolution, ReLU and pooling 

operations in the fc layer) was performed to identify the output probability of each class. A laptop (Intel (R) 

Core (TM) 2 Duo CPU, 8G RAM memory and NVDIA GTX 950M GPU with a MATLAB R2017a platform) 

was used to perform the experiment. 

 

 

4. PERFORMANCE EVALUATION 
In this section, the performance evaluation of the proposed NR-IQA-CDI based on non-pre-trained 

CNN (NR-IQA-CDI-NonPreCNN) is trained from scratch is presented. The presentation begins with  

the details of the evaluation methodology such as the test image databases, performance metrics and 

evaluation procedures. This is followed by discussions on the evaluation results and conclusions from 

the performance evaluation. 

 

4.1. Evaluation methodology 

The test image databases used for the evaluation are similar to those used to evaluate the existing 

NR-IQA-CDI for fair comparison. They are CSIQ database [22], TID2013 database [23] and CID2013 

database [2]. The test images used include only the contrast distorted images in the three databases without 
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the reference images. A total of 116, 250, and 400 distorted images are selected from CSIQ [22], 

TID2013 [23], and CID2013 [2], respectively. Subjective scores are represented by either mean opinion score 

(MOS) or differential mean opinion score (DMOS).  

Cross-validation was used in the performance evaluation. It is a model validation method to evaluate 

how well the performance of the model could generalize to an independent data set. k-fold cross-validation 

(k-fold cv) was chosen for this work. This method allows performance evaluation with many different 

combinations of data set to minimize bias. In this method, data are divided into k subsets and performance 

evaluation is repeated for k times. During the k times of evaluation, each of the k subsets is used for  
testing for one time while the rest used for training. The final evaluation result is the average results of  

the k times of evaluation. 

It is well-known that the performance of a machine learning model tends to improve with  

the increase number of training data. Therefore, k-fold cv with higher k tends to show better performance. 

In this work, the k-fold cv was repeated for k range from 2 to 10 to reduce bias due to the size of training data. 

However, only 10 train-test iterations are conducted as the training of CNN is very time consuming.  

In order to evaluate the performance of IQA, the performance metrics such as (1) Spearman Rank-

Order Correlation Coefficient (SROCC), (2) Pearson’s (Linear) Correlation Coefficient (PLCC) and (3) Root 

Mean Square Error (RMSE) between the predicted objective scores and the subjective Mean Opinion Scores 

(MOS) were employed. Conditions such as SROCC~1, PLCC~1 and RMSE~0 indicate good performance 

in terms of correlation with human perception. 

 

4.2. Evaluation of NR-IQA-CDI-nonpreCNN 

The evaluation was repeated with various patch sizes M x N such as 256 x 256, 128 x 128, 64 x 64, 

and 32 x 32 as well as without patches (the image was resized before input to CNN) to determine the best 

setting. Tables 1-5 show the average result of assessment using patch size 256 x 256, 128 x 128, 64 x 64, 

32 x 32 and without using patch, respectively.  

 

 

Table 1. The average PLCC, SROCC and RMSE across 10 train-test rounds for three databases 

using NR-IQA-CDI-nonpreCNN of patch size 256 x 256 

 

 

Table 2. The average PLCC, SROCC and RMSE across 10 train-test rounds for three databases 
using NR-IQA-CDI-nonpreCNN of patch size 128 x 128 

K CSIQ TID2013 CID2013 All Databased 

PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE 

2 0.7612 0.7589 0.8398 0.8189 0.7679 0.6892 0.8892 0.8921 0.3041 0.9089 0.9579 0.6709 

3 0.7926 0.7996 0.8418 0.8174 0.8093 0.6302 0.9125 0.9127 0.2959 0.9181 0.9282 0.8311 

4 0.8469 0.8988 0.8123 0.8426 0.8182 0.6686 0.9295 0.9397 0.2312 0.9013 0.8938 0.9532 

5 0.8784 0.9321 0.7502 0.8584 0.8367 0.5611 0.9312 0.9558 0.2317 0.9294 0.9476 0.7045 

6 0.9116 0.8892 0.6879 0.8493 0.8265 0.5723 0.9289 0.9464 0.2219 0.9012 0.9324 0.8439 

7 0.9328 0.9269 0.5792 0.8494 0.8326 0.5639 0.9372 0.9553 0.2034 0.8719 0.8993 0.9256 

8 0.9179 0.9394 0.6779 0.8568 0.8398 0.5612 0.9385 0.9592 0.2012 0.9278 0.9391 0.8571 

9 0.9723 0.9416 0.5026 0.8538 0.8356 0.5579 0.9369 0.9489 0.2049 0.9283 0.9089 0.9336 

10 0.9417 0.9519 0.6463 0.8684 0.8497 0.5231 0.9448 0.9656 0.1961 0.9521 0.8698 0.9541 

Av 0.8839 0.8931 0.7042 0.84611 0.8240 0.5919 0.9276 0.9417 0.2322 0.9154 0.9196 0.8526 

 
 

 

 

 

 

K CSIQ TID2013 CID2013 All Databased 

PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE 

2 0.7629 0.7098 0.8862 0.7940 0.7689 0.7183 0.8476 0.8647 0.3246 0.8969 0.9427 0.6878 

3 0.7610 0.7587 0.8974 0.8182 0.8041 0.6398 0.8839 0.8876 0.3023 0.9083 0.9148 0.8410 

4 0.8276 0.8819 0.8501 0.8102 0.7884 0.7501 0.9179 0.9332 0.2433 0.8893 0.8791 0.9793 

5 0.8682 0.9097 0.7956 0.8176 0.7853 0.6236 0.9198 0.9429 0.2398 0.9184 0.9310 0.7208 

6 0.8893 0.8663 0.7103 0.8219 0.7797 0.5879 0.9155 0.9353 0.2311 0.8891 0.9197 0.8510 

7 0.9282 0.9120 0.6014 0.8299 0.7899 0.6217 0.9285 0.9421 0.2229 0.8595 0.8829 0.9326 

8 0.8997 0.9229 0.7068 0.8202 0.7931 0.6072 0.9299 0.9472 0.2142 0.9076 0.9206 0.8638 

9 0.9513 0.9293 0.5103 0.8319 0.7932 0.6163 0.9276 0.9395 0.2119 0.9085 0.8901 0.9429 

10 0.9351 0.9384 0.6892 0.8358 0.7989 0.5909 0.9392 0.9528 0.2024 0.9354 0.8587 0.9692 

Av 0.8692 0.8698 0.7385 0.8199 0.7890 0.6395 0.9122 0.9272 0.2436 0.9014 0.9044 0.8653 
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Table 3. The average PLCC, SROCC and RMSE across 10 train-test rounds for three databases using  

NR-IQA-CDI-nonpreCNN of patch size 64 x 64 
K CSIQ TID2013 CID2013 All Databased 

PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE 

2 0.7841 0.7828 0.8212 0.8294 0.7893 0.6732 0.9075 0.9068 0.2808 0.9258 0.9711 0.6371 

3 0.8062 0.8095 0.8337 0.8281 0.8278 0.6088 0.9325 0.931 0.2711 0.9372 0.9476 0.8161 

4 0.8626 0.9174 0.8011 0.8496 0.8348 0.6379 0.9497 0.9594 0.2102 0.9245 0.9182 0.9329 

5 0.8979 0.9391 0.731 0.8674 0.8523 0.5443 0.9512 0.9721 0.2113 0.9491 0.9653 0.6784 

6 0.9253 0.9098 0.6725 0.8583 0.8417 0.5532 0.9489 0.9625 0.2019 0.9282 0.9527 0.8126 

7 0.9441 0.9411 0.5509 0.8581 0.8474 0.5439 0.9565 0.9686 0.1932 0.9026 0.9288 0.8979 

8 0.9332 0.9532 0.6513 0.8678 0.8582 0.5437 0.9577 0.9714 0.1939 0.9487 0.9529 0.8274 

9 0.9798 0.9561 0.4924 0.8685 0.8525 0.5326 0.9562 0.9667 0.1943 0.9495 0.9298 0.9017 

10 0.9602 0.9687 0.6187 0.8859 0.8612 0.501 0.9671 0.9798 0.1794 0.9712 0.9028 0.9268 

Av 0.8992 0.9086 0.6858 0.8570 0.8405 0.5709 0.9474 0.9575 0.2151 0.9374 0.9410 0.8256 

 

 

Table 4. The average PLCC, SROCC and RMSE across 10 train-test rounds for three databases using  

NR-IQA-CDI-nonpreCNN of patch size 32 x 32 
K CSIQ TID2013 CID2013 All Databased 

PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE 

2 0.7892 0.7878 0.8123 0.8395 0.7992 0.6626 0.9179 0.9175 0.2732 0.9368 0.9795 0.6296 

3 0.8087 0.8169 0.8167 0.8389 0.8367 0.6007 0.9364 0.9397 0.2627 0.9464 0.9569 0.8083 

4 0.8694 0.9182 0.7812 0.8586 0.8412 0.6251 0.9558 0.9624 0.2019 0.9327 0.9288 0.9241 

5 0.9121 0.9427 0.7119 0.8693 0.8623 0.5246 0.9569 0.9781 0.2036 0.9576 0.9722 0.6702 

6 0.9284 0.9166 0.6525 0.8679 0.8517 0.5344 0.9547 0.9692 0.1921 0.9381 0.9619 0.8063 

7 0.9467 0.9472 0.5309 0.8668 0.8537 0.5258 0.9631 0.9726 0.1814 0.9121 0.9379 0.8909 

8 0.9389 0.9565 0.6211 0.8734 0.8698 0.5247 0.9655 0.9749 0.1807 0.9587 0.9624 0.8178 

9 0.9831 0.9596 0.4834 0.8772 0.8589 0.5129 0.9649 0.9742 0.1832 0.9595 0.9397 0.8935 

10 0.9679 0.9827 0.6007 0.8938 0.8746 0.4965 0.9742 0.9895 0.1765 0.9816 0.9183 0.9142 

Av 0.9049 0.9142 0.6678 0.8650 0.8497 0.5563 0.9543 0.9642 0.2061 0.9470 0.9508 0.8172 

 

 

Table 5. The average PLCC, SROCC and RMSE across 10 train-test rounds for three databases using  

NR-IQA-CDI-nonpreCNN without patches 
K CSIQ TID2013 CID2013 All Databased 

PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE 

2 0.5948 0.6204 1.4775 0.7717 0.7177 0.7720 0.7852 0.8371 0.4208 0.9375 0.9393 0.7031 

3 0.6183 0.7109 1.4815 0.7904 0.7423 0.7411 0.8618 0.9018 0.3352 0.8845 0.8962 0.8778 

4 0.7788 0.8395 0.9850 0.7886 0.7385 0.7358 0.8804 0.9087 0.3036 0.8340 0.8474 1.0409 

5 0.8391 0.8807 0.8518 0.7842 0.7283 0.7300 0.8771 0.9105 0.3072 0.9094 0.9165 0.7560 

6 0.8581 0.8489 0.7725 0.7851 0.7203 0.7402 0.8755 0.9066 0.3157 0.8777 0.8967 0.8997 

7 0.8867 0.8905 0.6422 0.7880 0.7337 0.7420 0.8946 0.9150 0.2920 0.8490 0.8678 1.0530 

8 0.8716 0.9044 0.7328 0.7855 0.7344 0.7432 0.8777 0.9110 0.3134 0.8906 0.9041 0.8922 

9 0.9244 0.9152 0.5854 0.7942 0.7365 0.7276 0.8971 0.9213 0.3011 0.8537 0.8685 0.9646 

10 0.8813 0.9066 0.7167 0.7907 0.7360 0.7378 0.8927 0.9156 0.2878 0.7291 0.7946 1.2726 

Av 0.8059 0.8352 0.9161 0.7864 0.7319 0.7410 0.8713 0.9030 0.3196 0.8628 0.8812 0.9399 

 

 

Figure 5 (a)-(c) presents the comparison of the results of different patch sizes over the three databases 

in form of bar chart. Notice that the performance clearly improved with the decrease of patch size. 

The NR-IQA-CDI-NonPreCNN of patch size 32 x 32 outperforms the rest across all databases and all three 

performance metrics. 
It is apparent that increasing the number of training samples by dividing the image into patches could 

affect the performance of CNN-based NR-IQA-CDI. For example, there were only 400 images in CID2013 

database but there are about 2400 image patches of patch size 256 x 256 used, and about 153600 image patches 

when patch 32 x 32 was used as shown in Table 6. The average results of k-fold cross-validation (k= 2 to 10) 

are summarized in Table 7 where the patch size ranges from 32 to 256 pixels. It is observed that the proposed 

method shows better performance with increased number of patches as shown in Figure 6. It can also be 

observed that the performance of NR-IQA-CDI-NonPreCNN of small patch size 32 x 32 were not significantly 

improved as compared to those of patch size 64 x 64 to justify the exponential increase in the number of training 

samples. Therefore, the patch size of 64 x 64 was chosen as the optimum patch size. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5. Comparison of SROCC, PLCC, and RMSE of NR-IQA-CDI-nonpreCNN of patch size 256 x 256, 

128 x 128, 64 x 64, 32 x 32, and without patch on CSIQ, TID2013, and CID2013 databases (a, b, and c) 
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Table 6. The patch numbers across different patch sizes for IQA databases 

PATCH SIZE 
CSIQ TID2013 CID2013 ALL DATABASES 

PATCH NO PATCH NO PATCH NO PATCH NO 

RESIZED 116 250 400 766 

256 464 1000 2400 3864 

128 1856 3000 9600 14456 

64 7424 12000 38400 57824 

32 29696 48000 153600 231296 

 

 

Table 7. Performance evaluation of PLCC, SROCC, and RMSE on different patches number 

Patch Size 
CSIQ TID2013 CID2013 All Databases 

PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE 

Resized 0.8059 0.8352 0.9161 0.7864 0.7319 0.7410 0.8713 0.9030 0.3196 0.8628 0.8812 0.9399 

256 0.8692 0.8698 0.7385 0.8199 0.7890 0.6395 0.9122 0.9272 0.2436 0.9014 0.9044 0.8653 

128 0.8839 0.8931 0.7042 0.8461 0.8240 0.5919 0.9276 0.9417 0.2322 0.9154 0.9196 0.8526 

64 0.8992 0.9086 0.6858 0.8570 0.8405 0.5709 0.9474 0.9575 0.2151 0.9374 0.9410 0.8256 

32 0.9049 0.9142 0.6678 0.8650 0.8497 0.5563 0.9543 0.9642 0.2061 0.9470 0.9508 0.8172 

 

 

(a) (b) 

 

(c) (d) 

 

Figure 6. PLCC and SROCC results with various patches number  

(a: CSIQ, b: TID2013, c: CID2013 DB, d: all databases) 

 

 

Figure 7 shows the variation of performance with respect to the number of convolution kernels.  

In general, the use of more kernels would lead to better performance. In the case of CSIQ, the kernel number 
of the three convolution layers in setting 1-4 are (8, 16, 32), (16, 32, 64), (32, 64,128), and (96,256,384), 

respectively. It can be concluded that the performance could be improved by increasing the number of kernel. 

Similar conclusion also applies to databases TID2013 and CID2013. 
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Figure 7. The SROCC and LCC with various number of kernels (8, 16, 32), (16, 32, 64), (32, 64,128),  

and (96,256,384) which correspond to 1,2,3,4, respectively 

 

 

Generally, higher layers could extract better features. However, high-level features are not necessarily 

better than the low-level ones. From Figure 8, performance increased as the number of convolution layers was 

increased from one to three. However, the performance started to decrease when the numbers of layers were 

further increased. Similar results were found TID2013 and CID2013. Therefore, CNN with three convolution 

layers was optimal for NR-IQA-CDI. 

 
 

 
 

Figure 8. Proposed CNN prediction accuracy for CSIQ database across various layers 

 

 

4.3. Cross-database evaluation 

The cross-database evaluation method used to identify the generalization ability of a NR-IQA-CDI 

across different databases has been introduced in the current work. In this evaluation, all images in one of  

the databases are used for training while the images in the other two databases are used for testing. 
For consistency, the MOS and DMOS scores have been rescaled (0-10). The results of the cross-dataset test 

have been reported in Table 8. It may be observed that results when our method trained on CSIQ is decreased 

compared to being trained on CID2013. Therefore, larger training set would lead to better generalization. 

Hence, the generalization capability of a deep neural network is dependent on the size and diversity of  

the training set. 

 

 

Table 8. Cross database evaluation 
Trained on: CID2013 TID2013 CSIQ 

Tested on: CSIQ TID2013 CID2013 CSIQ CID2013 TID2013 

NR-IQA-

CDI-

NonPreCNN 

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC 

0.8169 0.8372 0.7935 0.7782 0.8273 0.8302 0.8092 0.8163 0.8028 0.8172 0.6584 0.6419 
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4.4. NR-IQA-CDI-nonpreCNN vs NR-IQA-CDI based on handcrafted features 

The proposed NR-IQA-CDI-NonPreCNN is compared against NR-IQA-CDI based on handcrafted 

features. The comparison results shown in Table 9. The best score for each performance metric and database 

is highlighted by bolding the numbers. 

 

 

Table 9. PLCC, SROCC, and RMSE comparison among enhanced versions of NR-IQA-CDI 

Methods 
CSIQ TID2013 CID2013 

PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE 

Existing NR-IQA-CDI 0.7623 0.7657 0.1102 0.5739 0.4943 0.8146 0.8797 0.8798 0.2981 

NR-IQA-CDI-NonPreCNN 0.8992 0.9086 0.0686 0.8570 0.8405 0.5709 0.9474 0.9575 0.2151 

 

 

The results show that NR-IQA-CDI based on non-pre-trained CNN, NR-IQA-CDI-NonPreCNN 

significantly outperforms those which are based on handcrafted features. In addition to showing best 

performance, NR-IQA-CDI-NonPreCNN also enjoys the advantage of zero human intervention in designing 

feature, making it the most attractive solution for NR-IQA-CDI. 

 

 

5. CONCLUSION 

In this paper, a study on transforming the existing NR-IQA-CDI using machine-crafted features based 
on CNN has been presented. It was able to accurately predict the quality score from an image and integrate 

the feature learning and regression into one optimization process. Our method does not require any reference 

image, and any handcrafted features and directly learns discrimination features from raw image pixels to 

achieve much better performance. The evaluation results indicated that NR-IQA-CDI based on machine-crafted 

features generally performed better than NR-IQA-CDI based on handcrafted features while enjoying 

the advantage of requiring zero human intervention in identifying the features. 
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