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 Vertical selection is the task of selecting the most relevant verticals to  

a given query in order to improve the diversity and quality of web search 

results. This task requires not only predicting relevant verticals but also these 

verticals must be those the user expects to be relevant for his particular 

information need. Most existing works focused on using traditional machine 

learning techniques to combine multiple types of features for selecting 

several relevant verticals. Although these techniques are very efficient, 

handling vertical selection with high accuracy is still a challenging research 

task. In this paper, we propose an approach for improving vertical selection 

in order to satisfy the user vertical intent and reduce user’s browsing time 

and efforts. First, it generates query embeddings vectors using the doc2vec 

algorithm that preserves syntactic and semantic information within each 

query. Secondly, this vector will be used as input to a convolutional neural 

network model for increasing the representation of the query with  

multiple levels of abstraction including rich semantic information and then 

creating a global summarization of the query features. We demonstrate  

the effectiveness of our approach through comprehensive experimentation 

using various datasets. Our experimental findings show that our system 

achieves significant accuracy. Further, it realizes accurate predictions on new  

unseen data.  
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1. INTRODUCTION 

One of the most significant developments online in the last few years is the rising popularity of 

aggregated search (AS) systems, they present a most popular web search presentation paradigm used by 

major search engines in recent years, this technique consists of integrating search results from a variety of 

diverse verticals such as news, images, videos, health, and Wikipedia into a single interface with general web 

search. As shown in Figure 1 [1], research in aggregated search has taken two main directions. The first 

direction studies different methods used for predicting which verticals to present known as vertical selection 

(VS), another direction involves techniques that analyses the way of presenting these verticals in the Web 

results known as vertical presentation (VP), the research problem investigated in this paper focuses  

on the first one.  

Vertical selection task consists of selecting a subset of the most relevant verticals to a given user 

information need and improves the search effectiveness while reducing the load of querying a large set of 

multiple verticals. The main goal behind this task is to help the user to satisfy his information needs. 
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Identifying the intent behind the user query is a crucial step toward reaching this goal. In a broad sense,  

the automatic prediction of user intentions helps in enhancing the user experience by returning more relevant 

results to users and adapting these results to their specific needs. Thus, vertical selection is associated with 

two main challenges that are: the diversity of the verticals and the understanding of the user intent.  

 

 

 
 

Figure 1. Aggregated search process [1] 

 

 

Regarding the first challenge, a variety of heterogeneous vertical search engines exist in the web, 

which means that each vertical has its own features, for example, some verticals are not directly searchable 

by users like the weather vertical, thus features generated from the vertical query-log will not be available for 

this kind of verticals. Also, features generated from vertical corpus will not be available for verticals such as 

the calculator and language translation [2]. Therefore, researchers must deal with the fact that different 

verticals may require different feature representations when creating new vertical selection approaches.  

The second challenge is related to the user intent; we know that a vertical selection system focuses 

on retrieving relevant verticals for showing its results to the user. For example, if the user searches images 

and news verticals, he specifically needs the results of these verticals, he isn't interested in the content of 

the other verticals such as shopping or weather, even if their content is relevant because the goal is to not 

only have relevant results but also satisfy the user intent.  

Existing research papers to date have studied the problem of vertical selection from different  

ways [3], some prior work focused on constructing models that aim at detecting queries with content-specific 

vertical such as shopping [4], news [5], jobs [4] or Question Answering [6]. Other works for vertical 

selection [7-10] focused on using traditional machine learning techniques to combine multiple types of 

features for selecting several relevant verticals. Although these techniques are very efficient, handling 

vertical selection with high accuracy is still a challenging research task.  

In this paper, we are interested in textual queries; image queries tend to have image results. 

Our proposed approach for predicting vertical intent consists of generating query embeddings vectors using 

doc2vec algorithm, that can accurately preserve syntactic and semantic information within each query, 

therefore we propose to use it as a primary query representation in our vertical selection model pipeline;  

then it will be used as input to a convolutional neural network (CNN) model that can increase this 

representation with multiple levels of abstraction comprising rich semantic information and creating a global 

summarization of the query features. To the best of our knowledge, this is the first time when the benefits of 

deep learning and paragraph vectors are exploited in the context of vertical selection, which can achieve  

an amazing progression and development in this area.  

The remainder of this paper is structured as follows. In the next section, we review the related work 

concerning vertical selection. In Section 3, we provide a description of our proposed method. Section 4 is 

devoted to the experimental settings. We present and discuss the experimental results in Section 5. Finally, 

we conclude the study and discuss the future issue.  
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2. RELATED WORK 

Aggregated search can be compared to federated search, which aims to provide an integrated search 

across multiple text collections, referred to as resources, into one single ranking list [11]. Similar to 

aggregated search, federated search is typically decomposed into two sub-tasks: resource selection and results 

merging. The main difference between federated search and aggregated search is the heterogeneity of  

the data and the presentation of the results.  

Regarding resource selection, existing approaches can be categorized into two classes of algorithms: 

term-based and sample-based. For the first class, Term-based algorithms represent shards by collection 

statistics about the terms in the search engine’s vocabulary. Callan et al. [12] propose the CORI algorithm,  

in which a shard is represented by the number of its documents that contain the terms of a vocabulary.  

The shards are ranked using the INDRI version of the 𝑡𝑓. 𝑖𝑑𝑓 score function using the mentioned number as 

the frequency of each query term. CORI selects a fixed number of shards from the top of this ranking. 

Another work of [13] proposes Taily, a novel shard selection algorithm that models a query’s score 

distribution in each shard as a Gamma distribution and selects shards with highly scored documents in the tail 

of the distribution. Taily estimates the parameters of score distributions based on the mean and variance of 

the score function’ s features in the collections and shards. Concerning the algorithms of the second category, 

they use a central sample index (CSI) of documents from each shard for shard selection. For example, in [14] 

authors proposed REDDE algorithm, where they rank shards according to the number of the highest ranked 

documents that belong to this shard, weighted by the ratio between the shard’s size and the size of the shard’s 

documents in the CSI. The SUSHI algorithm [15] choose the best fitting function from a list of possible 

functions between the estimated ranks of a shard’s documents in the CSI and their observed scores from  

the initial search. Using this function, the algorithm estimates the scores of the top-ranked documents of each 

shard. SUSHI selects shards based on their estimated number of documents among a number of top-ranked 

documents in the global ranking.  

In the other hand, identifying the query intent of a user is a well-known problem in Information 

retrieval and have been studied by a considerable number of researchers in this field, where its goal is to 

select relevant documents or web search results that can satisfy the user information need. For this reason, 

most of the approaches cited in the literature employ query logs, supervised, semi-supervised classifiers, 

different language models and word embeddings. We have for example some popular works that examined 

query intent detection, like the work of [16] where the authors have developed a new dataset with almost 

2,000 queries tagged in informational, navigational and transactional categories. They calculated features for 

each of these queries using a real-world query log. Jiang et Yang in [17], tackle the problem of query  

intent inference by integrating multiple information sources in a seamless manner. They first propose  

a comprehensive data model called Search Query Log Structure (SQLS) that represents the relationship 

between search queries via the User dimension, the URL dimension, the Session dimension, and the Term 

dimension. Then they propose three new frameworks that are effective to infer query intents by mining  

the multidimensional structure constructed from the search query log. Another work in [18] explores  

the competence of lexical statistics and embedding method. First, a novel term expansion algorithm is 

designed to sketch all possible intent candidates. Moreover, an efficient query intent generation model is 

proposed, which learns latent representations for intent candidates via embedding-based methods, and then 

vectorized intent candidates are clustered and detected as query intents. Kim et al. [19] used enriched word 

embeddings to force semantically similar or dissimilar words to be closer or farther away in the embedding 

space to improve the performance of intent detection task for spoken language understanding, and thus by 

exploiting several semantic lexicons, such as WordNet, PPDB (Paraphrase Database), and Macmillan 

Dictionary, and using them later as initial representation of words for intent detection. Thus, they train  

an end-to-end model that jointly learns the slot and intent classes from the training data by building  

a bidirectional LSTM (Long Short-Term Memory). In [20], the proposed approach aims at identifying query 

intent as a multi-class classification task which extracted query vector representations using CNN instead of 

engineering query features. This method uses deep learning to find query vector representations, then use 

them as features to classify queries by intent.  

As we can see in the reviewed approaches above, the problem of query intent detection is studied 

without considering the vertical intent issue. knowing that with the appearance of aggregated search, various 

web search engines do not return uniform lists of Web pages, but they also include results of a different type 

from different verticals such as images, news, videos, and so on, which means that the key component of this 

domain is the notion of verticals. Therefore, an aggregated search system must make predictions about which 

vertical(s) are more expected to answer the issued query, which allows reducing the load of querying a large 

set of multiple verticals, and then improves the search effectiveness.  

The relevance of a vertical depends basically on two factors, the relevance of the documents within 

the vertical collection and on the user’s intent to the vertical (Vertical Intent). For the first one, to make 
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vertical selection decision, various approaches use traditional machine learning techniques to combine 

different sources of evidence that can be found in Query features (features depend only on the query) [6-9], 

in Vertical features (features depend only on the vertical) [2, 5, 21, 22] and in Vertical-Query features 

(features aim to measure relationships between the vertical and the query, and are therefore unique to  

the vertical-query pair) [2, 7, 22-24]. Indeed, among all these works, there are those that integrate the content 

from a single vertical [3]. In this respect, Li et al. [4] address the general problem of vertical selection using 

an approach that focuses on shopping and job verticals to extract implicit feedback using semi-supervised 

learning based on clickthrough data. Diaz [5] investigated also the vertical selection problem with respect to 

the news vertical, where he derived features from news collection, web and vertical query-logs and 

incorporated click-feedback into the model. More recent work in [6] has also targeted a variant of the vertical 

selection problem, where the author use Community Question Answering (CQA) Verticals for detecting 

queries with CQA intent.  

Other approaches have been developed where several verticals are considered simultaneously [3]. 

Arguello et al. [7] propose a classification-based approach for vertical selection in which they exploit features 

from the vertical content, the query string, and the vertical’s query log. The click-through data is used to 

construct a descriptive language model for each vertical’s related queries. Diaz and Arguello [9] also present 

several algorithms for combining user feedback with offline classifier information, the focus of their work 

was to maximize user satisfaction by presenting the appropriate vertical display. Another work from Arguello 

et al [8] have been proposed where the goal was to use training data associated with a set of existing verticals 

in order to learn a model that can make vertical selection predictions for a target vertical. Recent work in 

the same context was proposed from [10], in which the desired vertical of the user is placed on the top of 

the web result page. This is achieved by predicting verticals based on the user’ s past behavior.  

Regarding the second factor, there are a few works addressing the vertical intent issue when 

studying query intent detection. From the user intent perspective, user vertical intent also plays an important 

role in the improvement of the aggregated search process. For example, Zhou et al. [25] propose  

a methodology to predict the vertical intent of a query using a search engine log by exploiting click-through 

data. Recent work of Tsur et al. [6] present a supervised classification scheme where they aim at detecting 

queries with question intent as a variant of the vertical selection problem. They introduced two classification 

schemes that consider query structure. In the first approach, they induce features from the query structure as 

an input to supervised linear classification. In the second approach, word clusters and their positions in  

the query are used as input to a random forest classifier to identify discriminative structural elements  

in the query.  

Despite its interesting role, the research in this direction is still limited, and there is no huge 

literature regarding vertical selection based on user vertical intent, especially with the evolution shown in IR 

(Information Retrieval) during the last years. Therefore, we will focus in this work on the problem of vertical 

intent prediction, where we propose a new approach that combines the doc2vec algorithms and convolutional 

neural networks and exploits for the first time the benefits of both techniques in order to improve vertical 

selection task.  

 

 

3. PROPOSED APPROACH 

Through the vertical selection process, the query is processed and sent to multiple verticals as well 

as the Web search engine, in order to decide which of those should be selected for a given query,  

this depends on what are the verticals intended to be retrieved by the user, we refer to this as the user vertical 

intent (VI) and it can be defined as follows:  

Given a user’s query (𝑄) and a set of candidate verticals 𝑉 =  {𝑣1, 𝑣2, … , 𝑣𝑛}, the vertical intent 𝐼𝑄 

is represented by the vector 𝐼𝑄 =  {𝑖1, 𝑖2, … , 𝑖𝑛}, where each value 𝑖𝑘 indicates the importance of the given 

vertical 𝑣𝑘 to the query 𝑄, and for each vertical 𝑣𝑘, given a threshold 𝛿, above which the vertical is assumed 

to have a high intent for the query: if 𝑖𝑘 >  𝛿 then we can say that the vertical 𝑣𝑘 is intended by the query 𝑄. 

To address this problem, we propose an approach based on Doc2vec and Convolutional Neural 

Networks. First, it generates a query embeddings vector using the doc2vec algorithm that preserves syntactic 

and semantic information within each query. Secondly, this vector will be used as input to a Convolutional 

Neural Network model for increasing the representation of the query with multiple levels of abstraction 

including rich semantic information and then creating a global summarization of the query features. Figure 2 

shows the overall architecture of our proposed vertical selection system. It contains two main parts,  

the semantic representation of the query and the query level feature extraction. Subsections bellow describe 

these two parts and all performed steps in depth.  
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Figure 2. Architecture of the proposed vertical selection system 

 

 

3.1.  Semantic representation of the query 

The core algorithm of this step is doc2vec which is an unsupervised model that is used most to 

construct distributed representations of arbitrarily long sentences. It is an extension of word2vec that learns 

fixed-length feature representations for variable-length pieces of texts such as sentences, paragraphs,  

and documents [26]. A Doc2vec or paragraph vectors has two different architectures: The Distributed  

Bag-of-Words model and the Distributed Memory model. The Distributed Bag-of-Words (DBOW) model 

trains faster and does not consider word order; it predicts a random group of words in a paragraph based on 

the provided paragraph vector. In the Distributed Memory (DM) model, the paragraph is treated as an extra 

word, which is then averaged with the local relevant word vectors for making predictions. This method, 

however, acquires additional calculation but can achieve better results than DBOW.  

We chose Doc2Vec model because it overcomes the disadvantages of the other bag-of-words 

models by learning semantic relationships between words, this is why it has been widely used recently in 

various NLP tasks [27-29] and Information Retrieval works [30-35] where it has proven that it is able to 

capture the semantics of paragraphs which leads to excellent results. In this step, the goal is to learn a good 

semantic representation of the input query, following that idea; we tried to represent each query as vector and 

used this vector as features for our classification model as presented in Figure 2. Therefore, Doc2vec 

algorithm contributes effectively for improving the performance of our system.  

 

3.2.  Query level feature extraction 

Unlike traditional approaches that require handcrafted features to predict relevant verticals, our 

approach consists of using a Convolutional Neural Network to extract the most important semantic features 

that represent each query and delete those that are unnecessary. Recently, CNNs have achieved promising 

performances in various NLP tasks, such as Information Extraction [36], Summarization [37], Machine 

Translation [38], Classification [39], Question Answering [40] and other traditional NLP tasks [41-43]. CNN 

architecture used in this paper is shown in Figure 3.  

- Input Layer: First of all, once the query embeddings vectors are generated from the previous step, we use 

them to construct the input matrix needed in the embedding layer where each query is being represented 

as a 2-dimensional matrix.  

- Convolutional layer: The primary purpose of this layer is to capture the syntactic and semantic features of 

the entire query and compress these valuable semantics into feature maps. Thus, we perform several 

convolutions over the embedded query vectors using multiple filters with different window size.  

As the filter moves on, various features are produced and combined into a feature map. Activation 

functions are added to incorporate element-wise non-linearity.  
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- Pooling layer: In this layer, the goal is to extract the most relevant features within each feature map, 

therefore, we use the max-pooling strategy for the pooling operation. Since there are multiple feature 

maps, we have a vector after each pooling operation. All vectors that are obtained from the max-pooling 

layer are concatenated into a fixed-length feature vector.  

- Fully connected layers: these layers constitute the classification part of our model; their main purpose is 

to use high-level features obtained from the previous layers and passed them to the final softmax layer for 

classifying the input query into various classes based on its vertical intents scores.  

In addition to these different layers, there are some optimizations that we have performed in order to 

reduce the overfitting and obtain better test accuracy. These optimizations include applying an l2 norm 

constraint of the weight vectors in the convolutions and fully connected layers as well as adding several 

Batch Normalization layers, that normalize the activations of the previous layer for each batch during 

training, which helps to train our model faster and consequently improve our model’s performance.  

 

 

 
 

Figure 3. Illustration of the CNN model architecture 

4. EXPERIMENTS 

This section describes the datasets used and the various hyperparameters chosen for evaluating  

the performance of our system, it also gives details about how the doc2vec and CNN were trained.  

 

4.1.   Datasets 

In these experiments, we employ three public datasets for the training, validation and testing our 

proposed system respectively, a summary statistic of these datasets is listed in Table 1. We describe each 

dataset in detail below:  
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In the first dataset, we use the official NTCIR-12 IMine-2 vertical intent collection for English 

Subtopics [44] which was designed to explore and evaluate the technologies of understanding user intents 

behind the query. IMINE-2 includes a set of 100 topics (i.e. queries). Each topic is labeled by a set of intents 

with probabilities, and there is a set of subtopics as relevance judgment for each vertical intent. A subtopic of 

a given query is viewed as a search intent that specializes and/or disambiguates the original query,  

the number of these subtopics is 533. The general idea is to first generate a more complete representation of 

the different possible intents associated with the input query, and then to perform vertical selection for each 

intent separately.  

In addition, this dataset includes five types of queries, namely “ambiguous”, “faceted”, “very clear”, 

“task-oriented”, and “vertical-oriented”, this allows us to investigate the performances of our system with 

diverse queries and varied topics. The details of the five query types are as follows [44]: 

a. Ambiguous: The concepts/objects behind the query are ambiguous (e.g., "Jaguar" -> car, animal, etc.). 

b. Faceted: The information needs behind the query include many facets or aspects (e.g., “harry potter” -> 

movie, book, Wikipedia, etc.). 

c. Very clear: The information need behind the query is very clear so that usually a single relevant 

document can satisfy his information needs. (e.g., “apple.com homepage”) 

d. Task-oriented: The search intent behind the query relates the searcher’s goal (e.g., “lose weight” -> 

exercise, healthy food, medicine, etc.). 

e. Vertical-oriented: The search intent behind the query strongly indicates a specific vertical (e.g., “iPhone 

photo” -> Image vertical). 

We use this dataset as training data from which we construct a validation set by selecting  

10% randomly. The second dataset used in this paper is FedWeb’14 [45] that is used in the TREC FedWeb 

track 2014, the collection contains search result pages from 108 web search engines (e.g. Google, Yahoo!, 

YouTube and Wikipedia). For each engine, 75 test topics were provided, from which 50 will be used for 

vertical selection evaluations. We conduct a prediction task for these 50 test queries and compare the result 

obtained with the real values in the dataset.  

The last dataset is TREC 2009 Million Query Track [46], this collection contains 40000 queries that 

were sampled from two large query logs. To help anonymize and select queries with relatively high volume, 

they were processed by a filter that converted them into queries with roughly equal frequency in a third query 

log. This dataset is used as training data for doc2vec algorithm to improve its performance with large data.  

Moreover, the different queries used in these experiments have different lengths, from short to long queries 

as shown in Figures 4, 5 and 6. The structure of our model allows us to learn both kinds.  

 

 

Table 1. Statistical information of various datasets 
Dataset Description Size (number 

of queries) 

Max Query Length 

(number of words) 

Task 

NTCIR-12 IMINE-2 

English Subtopic 

Mining [44] 

It contains the Query understanding subtask 

and the Vertical Incorporating subtask. 

533 12 90% Training 

10% 

Validation 

FedWeb’14 [45] It is designed to resource selection, results 

merging and vertical selection tasks. 

50 9 Testing 

TREC Million Query 

Track 2009 [46] 

It is an exploration of ad hoc retrieval over a 

large set of queries and a large collection of 

documents, and it investigates questions of 

system evaluation. 

40000 16 doc2vec' 

training data 

 

 

  
 

Figure 4. Query length for NTCIR-12 IMine-2 
 

Figure 5. Query length for FedWeb’14 
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Figure 6. Query length for TREC million query track 2009 

 

 

4.2.   Hyperparameters and training 

Firstly, in order to train and evaluate our proposed system, we need to adjust several 

hyperparameters. Indeed, regarding the first part of our architecture, to use doc2vec for our datasets, we first 

trained doc2vec model (Python gensim library implementation) on TREC 2009 Million Query Track datasets 

using Distributed Memory model. Then we transformed all the queries on both training and testing sets to 

Doc2Vec vectors. The various parameters used for training doc2vec model are shown in Table 2.  

In the second part, the implementation of our network is made using Keras framework with 

TensorFlow backend. For the input layer, we used Gensim's doc2vec embeddings and created input data from 

it, instead of using keras embedding layer. To build our CNN architecture there are many hyperparameters to 

choose from. Therefore, we first consider the performance of a baseline CNN configuration using 

the parameters described in Table 3.  

 

 

Table 2. Different parameters used to train Doc2Vec model 
Parameters alpha min_alpha min_count Vector size Number of epochs Library used 

Value 0.025 0.0025 1 300 100 Gensim 

 

 

Table 3. Parameters of the baseline CNN configuration 
filter region 

sizes 

Feature 

maps 

l2 

regularization 

Dropout 

rate 

Batch 

size 
optimizer 

Activation 

function 
pooling Loss function 

Number 

of epochs 

[3-5] 100 0.01 0.5 64 adam ReLU 
max 

pooling 

Mean squared 

error 
100 

 

 

Then, we evaluated the effect of each of the other parameters by holding all other settings constant 

and vary only the factor of interest. During these experiments, we chose to use ReLU activation function and 

max-pooling strategy for our CNN model with mean squared error loss function, these parameters are mostly 

used in CNN architectures and gives good performances. Finally, we combined all the good variation results 

obtained from these experiments, and used them for our suggested CNN model.  

 

 

5. RESULTS AND DISCUSSION 

In this section, we present and discuss our experimental results obtained by each part of our vertical 

selection system.  

 

5.1.   Semantic representation of the query using Doc2vec 

Starting with the first part of our proposed system, once doc2vec model is trained, we use it to 

generate an embedding vector for each query in our collections (train set and validation set + test set).  

These embedding vectors must capture semantic meanings of each of these queries. In this respect, to make 

sure that this model achieved this goal, we used our doc2vec model to find the most similar queries for two 

sample queries in our dataset, the resulting queries, and corresponding scores are presented in Table 4. As we 

can see in this table, the similarity scores between the first queries and the second ones are significant.  

We figure out that this doc2vec model is a meaningful model and can successfully recognize semantic 

information among queries.  
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Table 4. Similarity score for two sample queries from our collections 
First query Second query Their similarity score 

Mother’s Day gifts shopping site Wallpaper computer 0.24370566066263763 

Make resume online free Make resume free templates 0.9092499447309569 

Apple latest news products home cleaning products 0.8546902948569026 

bananas seeds plant bananas seed inside 0.9979968070983887 

Virginia tourism Iraq war pictures 0.1463257649642163 

wallpaper magazine Asian culture 0.29107128845148067 

 

 

5.2.  Query level feature extraction using CNN 

As we have evaluated the quality of the query vectors obtained in the previous part, we proceed now 

to the evaluation of our model architecture. First of all, we start by assessing the impact of various parameters 

used in order to configure our CNN model and obtain the best possible results.  

 

5.2.1. Impact of filter sizes 

We explored the effect of various filter sizes, while keeping the number of filters for each region 

size fixed at 100. Figure 7 shows that the plot for the filter size of [2-4] was at the top of all the other plots 

throughout the run, and it yielded better accuracy (69.94%) compared to filter sizes [3-5] and [4-6] (66.39% 

and 67.22% respectively) as reported in Table 5.  

 

 

 
 

Figure 7. Accuracy comparison of filter size variations 

 

 

Table 5. Accuracy comparison of filter size variations 
Filter sizes [2-4] [3-5] [4-6] 

Accuracy 69.94% 66.39% 67.22% 

 

 

5.2.2. Impact of feature maps 

The variations of the number of filters per filter sizes don’t help much as shown in Figure 8, but still 

there are a few noticeable accuracy results when the number of filters is 200 (68.48%) as shown in Table 6.  

 

5.2.3. Impact of regularization 

We have used two common regularization strategies for our CNN, that are dropout and l2 norm 

constraints. We explore the effect of these two strategies here. we presented the effect of the l2 norm imposed 

on the weight vectors in Figure 9 and Table 7. We then experimented with varying the dropout rate from 0.1 

to 0.5 as shown in in Figure 10 and Table 8, fixing the l2 norm constraint to 0.01. The variations in 

regularization show that for the l2 norm constraint, the classification performance is higher with value=0 

which produce best results compared to higher values that often hurts performance as shown in Figure 9 and 

Table 7. Separately, we considered the effect of dropout rate. Figure 10 indicate that when setting the dropout 

rate to 0.2 it gives the best accuracy results (69.73%) and this value decrease when we increase the dropout 

rate as reported in Table 8.  

 

5.2.4. Impact of batch size 

We next investigated the effect of the Batch size. Figure 11 and Table 9 show that varying the batch 

size also helps little, and the best accuracy result obtained was 67.01% with a batch size of value 60.  
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Figure 8. Impact of the number of filters per filter 

size 

 

 

 

Figure 9. Accuracy comparison with various 

variations of l2 norm constraint 

Table 6. Impact of the number of 

filters per filter size 
Number of filters Accuracy (%) 

N=50 66.39% 

N=100 66.81% 

N=130 65.97% 

N=150 66.60% 

N=200 68.48% 

 

 

Table 7. Accuracy comparison with various 

variations of l2 norm constraint 
l2 norm constraint value Accuracy 

0 75.37% 

0.01 65.97% 

0.1 65.14% 

0.25 65.34% 

0.4 64.93% 
 

  
 

Figure 10. Accuracy comparison with various 

variations of dropout rate 

 

 

 

Figure 11. Accuracy comparison with various batch 

sizes 

 

Table 8. Accuracy comparison with various 

variations of dropout rate 
Dropout rate Accuracy 

0.1 67.64% 

0.2 69.73% 

0.3 67.43% 

0.4 65.97% 

0.5 65.34% 
 

Table 9. Accuracy comparison 

with various batch sizes 
Batch sizes Accuracy 

30 65.34% 

60 67.01% 

120 64.72% 

240 66.64% 
 

 

 

5.2.5. Impact of optimizers 

Regarding the optimizers, we can see clearly from Figure 12 that only the curves of “adam” and 

“adadelta” optimizers were at the top. Thus, they produce best accuracy results (66.81% and 65.97%) 

compared to “sgd” (56.16%) as shown in Table 10. Next, we exploited the observations given above to 

configure our CNN model with the best variations of parameters. We summarize the suggested parameters in 

Table 11.  
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Figure 12. Accuracy comparison with various optimizers 

 

 

Table 10. Accuracy comparison with various optimizers 
Optimizers adam sgd adadelta 

Accuracy 66.81% 56.16% 65.97% 

 

 

Table 11. Various parameters used for the suggested CNN model 
Filter sizes Number of filters per filter size l2 regularization Dropout rate Batch size optimizer 

[2-4] 200 0 0.2 60 adam 

 

 

Now, we can evaluate our model with the suggested values. In this respect, we choose to assess  

the CNN architecture using the accuracy and the Mean Square Error (MSE) loss, that represent the most 

important and intuitive metrics for classification performance. They are defined as follows: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (1) 

 

𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑦 − �̂�)2 (2) 

 

where (𝑦 − �̂�)2 present the square of the difference between the actual and the predicted result. Figures 13 

and 14 show respectively the values of the loss and the accuracy obtained on both training and validation 

sets. After training for 100 epochs we have obtained the results shown in Table 12. These results show that 

an accuracy up to 80% seems to be the best value that can be obtained in this experiment.  

 

 

  
 

Figure 13. Loss of the proposed model for  

the training and the validation sets 

 

Figure 14. Accuracy of the proposed model for  

the training and the validation sets 
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Table 12. Classification accuracy and loss results of the proposed approach 
 Training accuracy Validation accuracy Training loss Validation loss 

Baseline model 65.34% 70.37% 3.87% 4.48% 

Suggested model 79.75% 72.22% 1.56% 3.73% 

 

 

The difference between the results obtained from the baseline model and the suggested model show 

clearly the impact of the suggested values chosen. Since there is a noticeable increase in the accuracy value 

between the two models. Moreover, Figure 14 shows that the classification accuracy is varied, however, 

after 20 epochs, we obtain the higher value. There is also a difference in accuracy between training and 

validation sets.  

In the other hand, by using mean square error (MSE) as a classification loss, we optimize by 

reducing the average squared distance between our predictions and the true values. In Figure 13, we can see 

that the validation loss is synchronized with the training loss, and the validation loss is decreasing. All these 

observations prove that our system achieves significant results (accuracy and loss) which demonstrate its 

performance even if our data isn't that big. In most cases, the size of the data is not very important, what is 

important is the variations in the samples we have, which is the case of our training dataset that includes 

a variety of samples.  

 

5.3.  The effectiveness of our vertical intent prediction system 

5.3.1. Predictions on unseen data 

To complete our experiments, we evaluate the performance of our model on the prediction task of 

vertical intents on new unseen data. Now that we have trained our model and evaluated its accuracy on  

the validation set, we can use it to make predictions, this step is done using the test dataset (FedWeb 14) that 

has not been used for any training or validation operations. This is an estimate of the efficiency of  

the algorithm trained on the problem when making predictions on unseen data.  

As mentioned previously, we have already generated query vectors for the test dataset using 

doc2vec in the first part of this experimentation. Thus, we have fed these vectors to our CNN model  

for predictions, which allows us to obtain a vertical intent score for each query. Evaluating the quality  

of these predictions using mean squared error gives us 1.31% which prove that our model achieves  

accurate predictions.  

 

 

6. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a vertical intent prediction architecture to improve the vertical selection 

task. This approach outperforms the traditional vertical selection approaches by the fact that it considers 

satisfying the user vertical intent automatically and without any feature engineering, unlike the others that 

addressed this problem by training a machine-learned model based on the features that are supposed to detect 

the vertical relevance to the query, which is very expensive and takes more time. Our experimental findings 

show that our model can achieve acceptable accuracy. The research can be continued in future work in order 

to increase accuracy. In addition, this work represents an advancement in the context of vertical selection, 

which will renew the research in this field where there is no huge literature.  

 

 

REFERENCES 
[1] S. Mustajab, Mohd. Kashif Adhami, and R. Ali, “An Overview of Aggregating Vertical Results into Web Search 

Results,” Int. J. Comput. Appl., vol. 69, no. 17, pp. 21-28, May 2013. Doi: 10.5120/12063-8107.  

[2] Jaime Arguello, “Aggregated search,” Found. Trends Inf. Retr., vol. 10, no. 5, pp. 365-502, 2017.  

[3] S. Achsas and E. H. Nfaoui, “An Analysis Study of Vertical Selection Task in Aggregated Search,” Procedia 

Computer Science, Elsevier, vol. 148, pp. 171-180, Jan. 2019. Doi: 10.1016/j.procs.2019.01.021.  

[4] X. Li, Y.-Y. Wang, and A. Acero, “Learning query intent from regularized click graphs,” in Proceedings of the 31st 

annual international ACM SIGIR conference on Research and development in information retrieval-SIGIR ’08, 

Singapore, Singapore, pp. 339, 2008. Doi: 10.1145/1390334.1390393.  

[5] Fernando Diaz, “Integration of news content into web results,” in Proceedings of the Second ACM International 

Conference on Web Search and Data Mining-WSDM ’09, Barcelona, Spain, pp. 182, 2009.  

[6] G. Tsur, Y. Pinter, I. Szpektor, and D. Carmel, “Identifying Web Queries with Question Intent,” in Proceedings of 

the 25th International Conference on World Wide Web-WWW ’16, Montr&#233;al, Qu&#233;bec, Canada,  

pp. 783-793, 2016, doi: 10.1145/2872427.2883058.  

[7] J. Arguello, F. Diaz, J. Callan, and J.-F. Crespo, “Sources of evidence for vertical selection,” in Proceedings of  

the 32nd international ACM SIGIR conference on Research and development in information retrieval-SIGIR ’09, 

Boston, MA, USA, pp. 315, 2009. Doi: 10.1145/1571941.1571997.  



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Vertical intent prediction approach based on Doc2vec and convolutional neural networks… (Sanae Achsas) 

3881 

[8] J. Arguello, F. Diaz, and J.-F. Paiement, “Vertical selection in the presence of unlabeled verticals,” in Proceeding 

of the 33rd international ACM SIGIR conference on Research and development in information retrieval-SIGIR ’10, 

Geneva, Switzerland, pp. 691, 2010. Doi: 10.1145/1835449.1835564.  

[9] F. Diaz and J. Arguello, “Adaptation of offline vertical selection predictions in the presence of user feedback,”  

in Proceedings of the 32nd international ACM SIGIR conference on Research and development in information 

retrieval-SIGIR ’09, Boston, MA, USA, pp. 323, 2009. Doi: 10.1145/1571941.1571998.  

[10] D. Bakrola and S. Gandhi, “Enhancing Web Search Results Using Aggregated Search,” in Proceedings of 

International Conference on ICT for Sustainable Development, S. C. Satapathy, A. Joshi, N. Modi, and N. Pathak, 

Eds. Singapore: Springer Singapore, vol. 409, pp. 675-688, 2016.  

[11] M. Shokouhi and L. Si, “Federated Search,” Found. Trends Inf. Retr., vol. 5, no. 1, pp. 1-102, 2011.  

[12] J. P. Callan, Z. Lu, and W. B. Croft, “Searching Distributed Collections with Inference Networks,” pp. 8.  

[13] R. Aly, D. Hiemstra, and T. Demeester, “Taily: shard selection using the tail of score distributions,” in Proceedings 

of the 36th international ACM SIGIR conference on Research and development in information retrieval-SIGIR ’13, 

Dublin, Ireland, pp. 673, 2013, doi: 10.1145/2484028.2484033.  

[14] L. Si and J. Callan, “Relevant Document Distribution Estimation Method for Resource Selection,” pp. 8.  

[15] P. Thomas and M. Shokouhi, “SUSHI: scoring scaled samples for server selection,” in Proceedings of the 32nd 

international ACM SIGIR conference on Research and development in information retrieval-SIGIR ’09, Boston, 

MA, USA, pp. 419, 2009, doi: 10.1145/1571941.1572014.  

[16] J. Zamora, M. Mendoza, and H. Allende, “Query Intent Detection Based on Query Log Mining,” Journal of Web 

Engineering, vol. 13, no. 1&2, pp. 30, 2014.  

[17] D. Jiang and L. Yang, “Query intent inference via search engine log,” Knowl. Inf. Syst., vol. 49, no. 2, pp. 661-685, 

Nov. 2016. Doi: 10.1007/s10115-015-0915-7.  

[18] J. Gu, C. Feng, X. Gao, Y. Wang, and H. Huang, “Query Intent Detection Based on Clustering of Phrase 

Embedding,” in Social Media Processing, Y. Li, G. Xiang, H. Lin, and M. Wang, Eds. Singapore: Springer 

Singapore, vol. 669, pp. 110-122, 2016.  

[19] J.-K. Kim, G. Tur, A. Celikyilmaz, B. Cao, and Y.-Y. Wang, “Intent detection using semantically enriched word 

embeddings,” in 2016 IEEE Spoken Language Technology Workshop (SLT), San Diego, CA, pp. 414-419, 2016. 

Doi: 10.1109/SLT.2016.7846297.  

[20] H. B. Hashemi, A. Asiaee, R. Kraft, “Query Intent Detection using Convolutional Neural Networks,” pp. 5, 2016.  

[21] S. Makeev, A. Plakhov, and P. Serdyukov, “Personalizing Aggregated Search,” in Advances in Information 

Retrieval, M. de Rijke, T. Kenter, A. P. de Vries, C. Zhai, F. de Jong, K. Radinsky, and K. Hofmann, Eds. Cham: 

Springer International Publishing, vol. 8416, pp. 197-209, 2014.  

[22] Kopliku, K. Pinel-Sauvagnat, and M. Boughanem, “Aggregated search: A new information retrieval paradigm,” 

ACM Comput. Surv., vol. 46, no. 3, pp. 1-31, Jan. 2014. Doi: 10.1145/2523817.  

[23] Mounia Lalmas, “Aggregated Search,” in Advanced Topics in Information Retrieval, M. Melucci and R. Baeza-Y., 

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, vol. 33, pp. 109-123, 2011.  

[24] S. Achsas and E. H. Nfaoui, “Intelligent layer for relational aggregated search based on deep neural networks,”  

in 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), Agadir, 

Morocco, pp. 1-2, 2016. Doi: 10.1109/AICCSA.2016.7945754.  

[25] K. Zhou, R. Cummins, M. Halvey, M. Lalmas, and J. M. Jose, “Assessing and Predicting Vertical Intent for Web 

Queries,” in Advances in Information Retrieval, R. Baeza-Yates, A. P. de Vries, H. Zaragoza, B. B. Cambazoglu, 

V. Murdock, R. Lempel, and F. Silvestri, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, vol. 7224,  

pp. 499-502, 2012.  

[26] Q. V. Le and T. Mikolov, “Distributed Representations of Sentences and Documents,” ArXiv14054053 Cs, 2014.  

[27] M. Campr and K. Ježek, “Comparing Semantic Models for Evaluating Automatic Document Summarization,”  

in Text, Speech, and Dialogue, P. Král and V. Matoušek, Eds. Cham: Springer International Publishing, vol. 9302,  

pp. 252-260, 2015.  

[28] S. Lee, X. Jin, and W. Kim, “Sentiment classification for unlabeled dataset using Doc2Vec with JST,”  

in Proceedings of the 18th Annual International Conference on Electronic Commerce e-Commerce in Smart 

connected World-ICEC ’16, Suwon, Republic of Korea, pp. 1-5, 2016. Doi: 10.1145/2971603.2971631.  

[29] K. Hashimoto, G. Kontonatsios, M. Miwa, and S. Ananiadou, “Topic detection using paragraph vectors to support 

active learning in systematic reviews,” J. Biomed. Inform., vol. 62, pp. 59-65, Aug. 2016.  

[30] H. Palangi, et al., “Deep Sentence Embedding Using Long Short-Term Memory Networks: Analysis and 

Application to Information Retrieval,” IEEEACM Trans. Audio Speech Lang. Process., vol. 24, no. 4, pp. 694-707, 

Apr. 2016. Doi: 10.1109/TASLP.2016.2520371.  

[31] S. Achsas and E. H. Nfaoui, “Improving relational aggregated search from big data sources using stacked 

autoencoders,” Cognitive Systems Research, Elsevier, vol. 51, pp. 61-71, Oct. 2018.  

[32] Q. Wu, P. Wang, C. Shen, A. Dick, and A. van den Hengel, “Ask Me Anything: Free-Form Visual Question 

Answering Based on Knowledge from External Sources,” in 2016 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 4622-4630, 2016. Doi: 10.1109/CVPR.2016.500.  

[33] S. Achsas and E. H. Nfaoui, “Improving relational aggregated search from big data sources using deep learning,”  

in 2017 Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, pp. 1-6, 2017.  

[34] N. Ben-Lhachemi and E. H. Nfaoui, “Using Tweets Embeddings for Hashtag Recommendation in Twitter,” 

Procedia Computer Science, ELSEVIER, vol. 127, pp. 7-15, 2018. Doi: 10.1016/j.procs.2018.01.092.  



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 4, August 2020 :  3869 - 3882 

3882 

[35] F. Kalloubi, N. El Habib, and O. El Beqqali, “Graph based tweet entity linking using DBpedia,” in 2014 IEEE/ACS 

11th International Conference on Computer Systems and Applications (AICCSA), Doha, pp. 501-506, 2014.  

Doi: 10.1109/AICCSA.2014.7073240.  

[36] Y. Chen, L. Xu, K. Liu, D. Zeng, and J. Zhao, “Event Extraction via Dynamic Multi-Pooling Convolutional Neural 

Networks,” in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 

7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Beijing, China,  

pp. 167–176, 2015. Doi: 10.3115/v1/P15-1017.  

[37] M. Denil, A. Demiraj, N. Kalchbrenner, P. Blunsom, and N. de Freitas, “Modelling, Visualising and Summarising 

Documents with a Single Convolutional Neural Network,” ArXiv14063830 Cs Stat, Jun. 2014.  

[38] F. Meng, Z. Lu, M. Wang, H. Li, W. Jiang, and Q. Liu, “Encoding Source Language with Convolutional Neural 

Network for Machine Translation,” ArXiv150301838 Cs, Mar. 2015.  

[39] Y. Kim, “Convolutional Neural Networks for Sentence Classification,” ArXiv14085882 Cs, Aug. 2014.  

[40] Severyn and A. Moschitti, “Modeling Relational Information in Question-Answer Pairs with Convolutional Neural 

Networks,” ArXiv160401178 Cs, Apr. 2016.  

[41] E. Grefenstette, P. Blunsom, N. de Freitas, and K. M. Hermann, “A Deep Architecture for Semantic Parsing,” 

ArXiv14047296 Cs, Apr. 2014.  

[42] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A Convolutional Neural Network for Modelling Sentences,” 

ArXiv14042188 Cs, Apr. 2014.  

[43] C. Zhu, X. Qiu, X. Chen, and X. Huang, “A Re-ranking Model for Dependency Parser with Recursive 

Convolutional Neural Network,” ArXiv150505667 Cs, May 2015.  

[44] T. Yamamoto, et al., “Overview of the NTCIR-12 IMine-2 Task,” Proceedings of the 12th NTCIR Conference on 

Evaluation of Information Access Technologies, June 7-10, 2016 Tokyo Japan, pp. 19, 2016.  

[45] T. Demeester, D. Trieschnigg, D. Nguyen, K. Zhou, and D. Hiemstra, “Overview of the TREC 2014 federated Web 

search track,” Ghent Univ. (Belgium), 2014.  

[46] B. Carterette, V. Pavlu, H. Fang, and E. Kanoulas, “Million Query Track 2009 Overview,” pp. 21, 2009.  

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Sanae Achsas is a PhD student at the University of Sidi Mohammed Ben Abdellah in Fez, 

Morocco. Her thesis is concerned with the improvement of the Aggregated Search with  

the newest Machine Learning techniques such as Deep Learning. She has published  

several papers in reputed journals and international conferences. She is a member of  

the International Neural Network Society Morocco regional chapter. Sanae can be contacted 

at sanae.achsas@usmba.ac.ma. 

  

 

El Habib Nfaoui is currently a Professor of Computer Science at the University of Sidi 

Mohamed Ben Abdellah, Fez, Morocco. He received his PhD in Computer Science from  

the University of Sidi Mohamed Ben Abdellah, Morocco, and the University of Lyon, 

France, under a Cotutelle agreement (doctorate in joint-supervision), in 2008, and then his 

HU Diploma (accreditation to supervise research) in Computer Science, in 2013, from  

the University of Sidi Mohamed Ben Abdellah. His current research interests include 

Information Retrieval, Language Representation Learning, Web mining and Text mining, 

Semantic Web, Web services, Social networks, Machine learning and Multi-Agent Systems. 

Dr. El Habib Nfaoui has published in international reputed journals, books, and conferences, 

and has edited six conference proceedings and special issue books. He has served as  

a reviewer for scientific journals and as program committee of several conferences. He is  

a co-founder and an executive member of the International Neural Network Society Morocco 

regional chapter. He co-founded the International Conference on Intelligent Computing in 

Data Sciences (ICSD2017) and the International Conference on Intelligent Systems and 

Computer Vision (ISCV2015). 

 

mailto:sanae.achsas@usmba.ac.ma

