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 Latest developments in wearable devices permits un-damageable and 

cheapest way for gathering of medical data such as bio-signals like ECG, 

Respiration, Blood pressure etc. Gathering and analysis of various 

biomarkers are considered to provide anticipatory healthcare through 

customized applications for medical purpose. Wearable devices will rely on 

size, resources and battery capacity; we need a novel algorithm to robustly 

control memory and the energy of the device. The rapid growth of  

the technology has led to numerous auto encoders that guarantee the results 

by extracting feature selection from time and frequency domain in an 

efficient way. The main aim is to train the hidden layer to reconstruct  

the data similar to that of input. In the previous works, to accomplish  

the compression all features were needed but in our proposed framework  

bio-signals compression using auto-encoder (BCAE) will perform task by 

taking only important features and compress it. By doing this it can reduce  

power consumption at the source end and hence increases battery life.  

The performance of the result comparison is done for the 3 parameters 

compression ratio, reconstruction error and power consumption. Our 

proposed work outperforms with respect to the SURF method. 
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1. INTRODUCTION  

IoT technology offers devices to sense the practical surrounding and effortlessly combine  

the collected information into refined applications that permits for significant enhancements of activities of 

the person. The main aim of this paper is sensing the human’s behavior [1] via IoT device that is wearable 

like chest straps, smart watches, wristbands, etc. that can be utilized to point-out the specific health and  

the required fitness of the clients [2]. Wearable devices can be combined into body sensor networks that are 

wirelessly connected to bring reports of the medical up-to-date though internet. Therefore, allowing 

anticipation, early examine and special care. Anyways, as they are needed to be tiny and less weight, they are 

also limited with the resources such as power, capability of the transition and memory. 

In this paper, we implement new solution for data processing for the endurance monitoring of ECG 

signals. These medical records are basically simple to measure, but simultaneously, exceptionally valuable 

for the already mentioned determination. We assume the achievement of those kind of signals via small 

wearable machines [3] are worried about the extending the durability of the battery of those devices via 

compression of lossy signals. We assume the conditions where transmission of ECG signals wirelessly to 

some specific access point is needed, so that the signals can be preserved on the server and can be used by  
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the clinicians throughout the world. The advanced wearable IoT devices where the energy and memory are 

the main issues while collecting the high-dimensional data such as heart-rate, level of the oxygen, and other 

bio-information by the IoT device and those large data are transmitted to the units which are more capable of 

handling and picturing-(representing) those bio-informational data. As the data collected by the IoT devices 

are very large, we need an algorithm, which is very efficient in compressing the data and transmitting to  

the more capable units, which does the execution of handling and picturing of data accurately and efficiently 

as well. Although an auto-encoder and its variants are used to compress the data where the output should be 

almost similar to the input. But, there was a major limitation, it uses most of the high-level features that are 

redundant to use while representing the output in the training data which is not related with the pattern.  

Therefore, to solve this problem, the proposed approach consists of both the parts of the algorithm to 

compress the data where simultaneously the selection of important data is performed to select the data from 

the learned hidden-layers in one group and the data, which are not relevant in another group. Concurrently, 

the execution of encoding is done to the hidden layer’s selected data, which are important. We are proposing 

an algorithm where selection of important data from input is done in the hidden layer, which is correlated to 

each other, and neglecting the remaining data of the input, which are not much useful or non-correlated.  

Here we are taking the bio-signal data by a Wearable IoT device to perform the compression of the data,  

our algorithm has two parts:  

a.  Here, the necessary information (Data) from the overall input data is chosen for the operation of  

the auto-encoding process and the rest all data that are not necessary are ignored by which few of  

the unwanted data can be eliminated. 

b.  On the selected data, the non-linear data is performed with the unsupervised learning using auto-encoder. 

We demonstrate our work as follows: (i) First we convert the sensor data in to a hidden-layers by 

machine-learning process. (ii) Then our algorithm is used to separate the important and relevant data in 

one group and non-relevant data into another group. (iii) In parallel to the above point, encoding of  

the relevant data is performed which is in the hidden-layers.  

The following paper is arranged as mentioned below. In section 2, describes studying about  

the related works based on the selection of features from the input data and performing the compression 

using auto-encoder technique, Section 3 provides an overview of the proposed work and section 4 provides 

the simulated results compared with the other compression approach SURF. Our proposed work and at last 

we will be proving that our results are better than other existing methods. 

 

 

2. LITERATURE SURVEY 

There is a compression algorithm for the signals of the ECG, which is divided into three important 

methods: Parameter extraction, Transformation and the direct methods. For our algorithm there are two 

important condition: 1) selecting necessary data from the hidden layers that are trained. 2) Processing of  

the selected important data using auto-encoder. 

 

2.1.  Selection of the important data from the trained hidden layers 

Here selection of the important data from the complete trained dataset hidden layers is grouped into 

one set and the data which are non-relevant is grouped into another dataset. We are using the feature 

selection method to group the relevant and non-relevant data in our algorithm. In [1], an “Automatic  

feature extraction (FE) and the selection for related datasets and the condition monitoring.” Whereas,  

the combination of methods for FE and selection has been proposed suitable for extracting the huge related 

features for monitoring the machine condition and the relevant applications from the frequency domain, time 

domain, time-frequency domain and statistical sharing of the dimension values [1]. The approach is fully 

automated and suitable for multiple condition monitoring tasks such as vibration and process sensor-based 

analysis. This adaptability is explained by analyzing the two method of the monitoring datasets from  

the self-examination and the various freely present time series classification operations. Usually the condition 

monitoring is trained in three steps, namely feature extraction (FE) from raw data, feature selection (FS) of 

the most relevant features and fault classification using machine learning. FE and FS thereby represent  

a gradual data dimensionality reduction that is necessary to prevent the classifier to suffer from overfitting 

and the “curse of dimensionality” [2], which makes machine learning ineffective, if the number of features is 

high. Thus, high feature quality is the precondition for good prediction results. In the field of feature 

extraction, algorithms can be grouped into one of the following categories: 

a.  Piecewise approximation [3, 4].  

b.  Time domain transformations PCA [5])  

c.  Frequency domain transformations (e.g. Fourier transformation [6])  

d.  Time-frequency transformations (e.g. Wavelet transformation [7])  
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e.  Statistical features (e.g. [8, 9])  

Each of these approaches works under certain circumstances and can extract information 

unobtainable for the others. This and the impossibility to automatically (i.e. without detailed knowledge of 

the respective system) determine the best method in advance motivates the basic idea of the approach 

presented in this paper. In [10], they have introduced “ A Novel merit for the selection of feature on the basis 

of rough set theory (RST)”, which is motivated by the merit of the correlation-dependent and known as  

the rough set-based merit is implemented under rough set immediate reduces algorithm to choose a important 

subset of the features. In [11], the RST was defined for the analysis of data in the recognition pattern, 

machine learning and the data mining areas. RS is strong tool to identify a related relation amongst the class 

and the attributes under the dataset. Hence, utilization of RS as the FS step to identify a decrement of  

the features for a robust and fast categorization of the datasets. This paper giving attention on FS in DNA of 

the microarrays (also known as gene expression) datasets [12, 13]. The microarray datasets (MDs) had  

the features of real-value same as the real-world datasets. A MDs is a strong example of the large 

dimensionality. MDs consists of the several features and few numbers of the samples. Moreover, sharing of 

the classes in binary MDs is unequal and since they are the datasets of class-imbalanced. 

 

2.2.  Performing the operation of auto encoder on the selected data from the complete data 

In paper [14], they introduced a “semi-supervised-stacked-label-consistent-auto-encoder” for 

reconstruction and investigation of Bio-signals. Old research has given reconstruction and categorizing as 

two different issues. For the purpose of tele-monitoring, the methodology of reconstruction of bio-signals are 

hugely depending on the compressed-sensing (CS); they are designed approaches where the formulation of 

the reconstruction is depended on some prediction about the signal. CS dependent project solutions, a part of 

the gathered signal (such as one second) on a matrix that is random (sparse binary, Gaussian and binomial) so 

that, the projected data’s size is less when compared with the size of samples that was taken in one second 

[15, 16]. As CS needs only a product of matrix-vector, it costs less for computation. There are many research 

studies, which implement effective computation hardware and energy effective for same [17-21]. The data 

that is compressed wirelessly sent to base station. At base station, reconstruction with the help of CS 

methodology is done for later monitoring and examination [22, 23]. There can be many types of general CS 

methodology for re-construction; [17, 24, 25] use types of sparse-bayesian learning (SB) [26, 27, 28]. Many 

of the papers utilize the typical CS methods for recovery in few of the operations, the reconstruction of  

the signals was done with the help of intra and inter-channel correlations [29, 30]. 

In this article, they introduce a new argumentative graph, surrounding structure for data of the graph. 

The structure translates the topological framework and content of the node in a graph for compressed 

demonstration, on which the training of the decoder is done to reconstruct the structure of the graph [31, 32]. 

Graphs are important tools to recognize and build complex relations between the data. In different types of 

graph applications consisting protein-protein communication network, citation network and social media 

networks, data of the analyzing graph is essential in different data mining operations consisting classification 

of the nodes, prediction of the links and clustering of the nodes [32, 33]. Anyways, the parallelizability that is 

low, complexity of high computations, and incapability of machine-learning (ML) technique to the data of  

the graph made the operation of analytic of the graph more difficult. Algorithms that are based on 

factorization of the matrix. For example: HOPE, GraRep, M-NMF [15, 29] pre-process the framework of  

the graph into an adjacency matrix and obtain the embedding by disintegrating the adjacency matrix.  

Lately, it is represented that several algorithms of probabilistic are equal to factorization of matrix methods. 

Deep learning methods specifically auto-encoder dependent techniques, are also mainly researched for 

embedding of the graph. The algorithm of MGAE uses a relegated one-layer auto-encoder to learn clustering 

representation [34, 35]. 

An auto-encoder that is standardized by graph was proposed by Yu et al. aiming to select the graph 

to guide the operations of encoding and decoding. Anyways, it is still hard to learn with several non-related 

patterns in data, and present auto-encoder difference is still not included the units, which are hidden into  

2 separate parts, first is work-related and the second one is work non-related. 

 

 

3. PROPOSED WORK 

In this section we will be explaining what is the aim of our algorithm and how will that be 

performed, following by the combined model of selecting important data which are relevant and applying 

auto-encoder in the selected data of hidden layers to compress the data. After that we study about the two 

algorithms on which our proposed algorithm is based. And also, in detail our architecture is explained.  

The main concept of auto-encoder is to arrange the data from the non-linear encoder into the hidden layers 

and the hidden units are utilized as the new data arrangements:  
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𝐻𝐿𝑖 = 𝜎(𝑊𝑖𝑛𝑜𝑖 + 𝑣𝑖𝑛);   𝑜�̂� = 𝜎(𝑊𝑜𝑢𝑡𝐻𝐿𝑖 + 𝑣𝑜𝑢𝑡) (1) 

 

Here, 𝐻𝐿𝑖 ∈  𝕊𝑟𝑠𝑣𝑖𝑛  is the arrangement of the hidden units and  𝑜�̂� ∈ 𝕊𝑟𝑠𝑣𝑜𝑢𝑡  is assumed as a rebuilt of  

the given input 𝑜𝑖 ∈ 𝕊𝑟𝑠𝑣𝑜𝑢𝑡 . The set of the parameters consists of weight matrices𝑊𝑖𝑛 ∈ 𝕊𝑟𝑠𝑣𝑖𝑛×𝑠𝑣𝑜𝑢𝑡, 

𝑊𝑜𝑢𝑡 ∈ 𝕊𝑟𝑠𝑣𝑜𝑢𝑡×𝑠𝑣𝑖𝑛 and the vectors which are offset are 𝑣𝑖𝑛 ∈ 𝕊𝑟𝑠𝑣𝑖𝑛  and 𝑣𝑜𝑢𝑡 ∈ 𝕊𝑟𝑠𝑣𝑜𝑢𝑡 whose sizes are  

𝑠𝑣𝑖𝑛 and 𝑠𝑣𝑜𝑢𝑡  respectively. 𝜎 is defined as non linear activation-function. The Neural Network which has 

same input and target data is nothing but an auto-encoder who consist of only one hidden layer, such that 

 

min
𝑊𝑖𝑛,𝑊𝑜𝑢𝑡,𝑣𝑖𝑛,𝑣𝑜𝑢𝑡

1

2𝑛
∑ ‖𝑜𝑖 −𝑜�̂�‖

𝑛
𝑖=1

2
2

 (2) 

 

Here, n is the data’s size of the sample, 𝑜𝑖  is the result after re-building it and  𝑜�̂� is the target data to which 

the rebuilt data is compared. A better arrangement of the hidden layer data can be gained with  

the skills to rebuild the data. 

As we studied before, all hidden units, which are at high-level, help in finding the essential data 

from the given input data while rebuilding the data or arranging the selected important data. Anyways,  

the importance of these units is not same as the importance of our classification work. For instance,  

some data are used to build the background image in the object image, which is not required. Those type of 

data are known as irrelevant data or less important data, which are unwanted for our features, which have 

been trained newly. In parallel, meanwhile the old method, which is not supervised, had a capacity with some 

limits to reconstruct the input distribution marginally for the aim-supervised processes. On the hidden units, 

few existing works made the label information with the help of Soft-Max Layer by “Socher et al.” in the year 

2011. Making count of the recent approximation regarding process units, which are not relevant, it is not 

okay or also to declare all the hidden units, as they are useless. 

So we have two outcomes: 1) one is to select the important data required out of irrelevant data with 

the help of Feature selection approach, and 2) the selected important data only has to combined and sent by 

the auto-encoder. With the above study, we implement our combined selection of important data and 

compressing the selected data using auto-encoder algorithm in an integrated structure. 

 

3.1.  Bio-signals compression using auto-encoder (BCAE) 

In this part, we implement our algorithm by combining both the concept of feature selection to select 

the important data and auto-encoder to compress the data within a single algorithm. Explicitly, we apply 

feature selection approach on the units of hidden layer data. Assume 𝑃 ∈ 𝕊𝑟𝑠𝑣2×𝑛is the set of training 

elements, where 𝑠𝑣2 is the size of the visual descriptor and n is the amount of samples of the data. 

 

min
𝑊𝑖𝑛,𝑊𝑜𝑢𝑡,𝑣𝑖𝑛,𝑣𝑜𝑢𝑡,𝑄

1

2
‖𝑃 − 𝑔(𝑓(𝑃)) ‖

2
𝐹

+
10𝜆

5
𝒞(𝑄, 𝑓(𝑃)) (3) 

 

Where 𝜎(𝑊𝑖𝑛𝑃 + 𝑉𝑜𝑢𝑡) is assigned as 𝑓(𝑃) and 𝜎(𝑊𝑖𝑛𝑓(𝑃) + 𝑉𝑜𝑢𝑡) is assigned as 𝑔(𝑓(𝑃))and 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡 

are each iteration’s data reproduction of column of 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡respectively. The standardized form of 

selection of important data is given as 𝒞(𝑄, 𝑓(𝑃)), along with 𝑄 i.e. matrix consisting trained feature 

selection data performing on 𝑓(𝑃) which is represented as hidden units. Explicitly, in 𝑄, the vector of 𝑖𝑡ℎ 

column is represented as 𝑞𝑖 ∈  𝕊𝑟𝑠𝑣𝑖𝑛 which is represented as, 

 

𝑞𝑖 =  [0, … ,0, 1, 0, … ,0]’ (4) 

 

Here, the hidden units’ amount is denoted as 𝑠𝑣𝑖𝑛  and 𝑗 represents which column vector chooses the 𝑗-th unit 

from the sub collections of the features selected 𝑛𝑝 ∈  𝕊𝑟𝑒𝑆. Then the method of feature selecting can be 

represented as the real set of features 𝑓(𝑃), looking for the Q-matrix to choose the new features and collect 

into a set 𝑁𝑃 = 𝑄′𝑓(𝑃) that optimizes the relatable criterion 𝒞(𝑄, 𝑓(𝑃)). 

Generally, operation for selection of data that are necessary can be takes place in 3 ways: 

unsupervised, supervised, semi-supervised. Coming to supervised methods, most of the times it consist of 

irrelevant information while selecting the necessary features such as fisher score that was introduced in  

the year of 2012, by Han, Li and Gu. In the year of 2005, Niyogi, He and Cai introduced laplacian score for 

unsupervised method. Unsupervised methods is assembles only the relevant and needed data while selecting 

main features. Trying to work with various cases in the actual world, we simplify the 𝒞(𝑄, 𝑓(𝑃)) in simplest 

method. Explicitly, we introduce the regularizer for the selection of features in general as: 
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𝒞(𝑄, 𝑓(𝑃)) =
𝑇𝑟(𝑄′𝑓(𝑃)𝑀𝑙𝑤𝑓′(𝑃)𝑄)

𝑇𝑟(𝑄′𝑓(𝑃)𝑀𝑙𝑏𝑓′(𝑃)𝑄)
 (5) 

 

That offers a basic method to adjust with various cases by selecting 𝑀𝑙𝑏 and 𝑀𝑙𝑤 in various 

methods. Our proposed system follows the fisher score supervised approach in order to collect  

the information in supervised manner. For fisher score, two graphs 𝐺𝑏 and 𝐺𝑤 which are undirected are built 

using provided data (here, we take help of the input data P from the original one to keep the geometrical 

framework safe while selecting the features), which correspondingly effects the affinity relationship of  

the between-class and inside-class (introduced by- Yan et al. in the year-2007). In the same manner,  

two weighted matrices 𝑀𝑤𝑏  and 𝑀𝑤𝑤 are generated to categories both the graphs. Thus, we get  

the Laplacian matrices denoted as𝑀𝑙𝑤 = 𝑀𝑑𝑤 − 𝑀𝑤𝑤, here 𝑀𝑑𝑤 is the 𝑀𝑤𝑤′𝑠 diagonal matrices,  

in the same way for 𝑀𝑙𝑏 and𝑀𝑤𝑏 . By equating below issue of optimization, we can get the selection of 

feature matrix Q that generates the subset of the features with the low criterion score:  

 

𝑄 = 𝑎𝑟𝑔 min
𝑄

𝑇𝑟(𝑄′𝑓(𝑃)𝑀𝑙𝑤𝑓′(𝑃)𝑄)

𝑇𝑟(𝑄′𝑓(𝑃)𝑀𝑙𝑏𝑓′(𝑃)𝑄)
 (6) 

 

Unwantedly, there has not been a direct problem to resolve the given above trace-ratio issues, 

because of the absence of closed-form resolutions. Therefore, in place of straightforwardly dealing with 

trace-ratio issues. Many jobs desires to change to similar trace-various issues to gain a global resolution for 

optimization (Proposed by Nie et al. in year-2008). Assume standard score for subset-level is 𝒞(𝑄, 𝑓(𝑃)) in 

the (5) goes up to the global lowest 𝜆∗satisfying, 

 

𝜆∗ = 𝑎𝑟𝑔 min
𝑇𝑟(𝑄′𝑓(𝑃)𝑀𝑙𝑤𝑓′(𝑃)𝑄)

𝑇𝑟(𝑄′𝑓(𝑃)𝑀𝑙𝑏𝑓′(𝑃)𝑄)
 (7) 

 

This is to show that, 

 

⟹
𝑇𝑟(𝑄′𝑓(𝑃)𝑀𝑙𝑤𝑓′(𝑃)𝑄)

𝑇𝑟(𝑄′𝑓(𝑃)𝑀𝑙𝑏𝑓′(𝑃)𝑄)
 ≥  𝜆∗, ∀ 𝑄                   

⟹ 𝑇𝑟(𝑄′𝑓(𝑃)(𝑀𝑙𝑤 − 𝜆∗𝑀𝑙𝑏)𝑓′(𝑃)𝑄) ≥ 0, ∀𝑄  

⟹ min
𝑄

𝑇𝑟(𝑄′𝑓(𝑃)(𝑀𝑙𝑤 − 𝜆∗𝑀𝑙𝑏)𝑓′(𝑃)𝑄) = 0  

 

To this stage, we can represent the function of 𝜆 while using others as constant as:  

 

𝑅(𝜆) = 𝑎𝑟𝑔 min
𝑄

𝑇𝑟(𝑄′𝑓(𝑃)(𝑀𝑙𝑤 − 𝜆𝑀𝑙𝑏)𝑓′(𝑃)𝑄) (8) 

 

Thus, looking for the global optimal 𝜆 can be transformed into equating the equation’s root 

𝑅(𝜆) = 0, which is trace-variance issue. See that 𝑅(𝜆) is a function, which increases monotonically.  

By proposing the trace variance optimization issue, which is illustrated above in the (8) within  

the auto-encoder’s hidden layer updating, we equate our final aim function as:  

 

min
𝑊𝑖𝑛,𝑊𝑜𝑢𝑡,𝑣𝑖𝑛,𝑣𝑜𝑢𝑡,𝑄,𝜆

𝔪 =
1

2
‖𝑃 − 𝑔(𝑓(𝑃))‖

2
𝐹

+
𝛾

2
𝑇𝑟(𝑄′𝑓(𝑃)(𝑀𝑙𝑤 − 𝜆𝑀𝑙𝑏)𝑓′(𝑃)𝑄) (9) 

 

Here, 𝛾 is the parameter used to balance which is placed between the selection of the feature and auto-

encoder term. 𝜆 Denotes the ratio of trace’s score after gaining the optimization Q and here Q is  

the trace ratio of optimization of recent issue. 

 

3.2.  Enhancement 

Formula (9) is bit difficult to resolve because of its complex and non-linearity of the decoders and 

the encoders, therefore another way for enhancing is used to renew the parameters of the auto-encoder 

𝑊𝑖𝑛 , 𝑊𝑜𝑢𝑡 , 𝑣𝑖𝑛 , 𝑣𝑜𝑢𝑡  and variable of selection of the feature Q and also 𝜆 each time. Explicitly, we resolve  

the optimization with 2 sub-issues. First is learning the score of the selection of the feature and the second 

one is the optimization of the auto-encoder which is regularized. 
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3.3.  Learning the score of the selection of the features 

When the auto-encoder’s parameters are made constant, we can enhance the selection of the features 

score 𝜆 and matrix of selection of the feature Q in an old method of trace ratio. Explicitly, we use trace 

variance equation 

 

𝑄 = 𝑎𝑟𝑔 min
𝑄

𝑇𝑟(𝑄′𝑓(𝑃)(𝑀𝑙𝑤 − 𝜆𝑀𝑙𝑏)𝑓′(𝑃)𝑄) (10) 

 

Assume 𝑄𝑘 is the outcome after optimization in the k-th iteration of optimization, therefore 𝜆𝑘 is 

evaluated by  

 

𝜆𝑘 =
𝑇𝑟(𝑄𝑘

′ 𝑓(𝑃)𝑀𝑙𝑤𝑓′(𝑃)𝑄𝑘)

𝑇𝑟(𝑄𝑘
′ 𝑓(𝑃)𝑀𝑙𝑏𝑓′(𝑃)𝑄𝑘)

 (11) 

 

Thus, we can get 𝑅(𝜆𝑘) as  

 

𝑅(𝜆𝑘) = 𝑇𝑟(𝑄𝑘+1
′ 𝑓(𝑃)(𝑀𝑙𝑤 − 𝜆𝑘𝑀𝑙𝑏)𝑓′(𝑃)𝑄𝑘+1) (12) 

 

where 𝑄𝑘+1 maybe evaluated proficiently with respect to score rank of every single feature. The equation’s 

root 𝑅(𝜆) = 0 and the enhanced solution for (6) can be gained via its repeating process. See that 𝜆 is renewed 

as the enhanced score which is global for the criterion of the selection of the feature, and operates as  

a parameter in succeeding iteration of auto-encoder. Algorithm 1 explains the solution of enhancement.  

 

Algorithm 1: Enhancement for the issue of Trace-Ratio. 
Input: Trained features of the hidden layer 𝑓(𝑃), relevant data selected from the given 

input data 𝑒𝑆, matrices 𝑀𝑙𝑤 and 𝑀𝑙𝑏. 

Initialize: assign Q with I, where I presents the identical matrix and it belongs to 

𝕊𝑟𝑒𝑆×𝑠𝑣𝑖𝑛, 𝜆 with Equation (11), 𝑒𝑥𝑝𝑜 = 10−9, 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0, 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 103 

IF𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and non-converge do 

 Calculate score of every single feature of 𝑗-th iteration with the help of Equation(11) 

by assigning 𝑄 = [0, … ,0, 1, 0, … ,0]’ 

 Arrange the features according to their score in incremental order. 

 Choose the highest 𝑒𝑆 feature to renew 𝑄 ∈ 𝕊𝑟𝑠𝑣𝑖𝑛×𝑒𝑆 

 Evaluate 𝜆 with the help of Equation (11) 

 Convergence constrains is checked: ‖𝜆𝑜𝑙𝑑 − 𝜆‖ < 𝑒𝑥𝑝𝑜 

 Start again from IF condition. 

End of IF 

Output: 𝑄 is the matrix of selection of the feature and 𝜆 is the enhancement score 

globally. 

 

3.4.  Enhancement of the auto-encoder which is regularized 

When Q and 𝜆 are made constant, we can use stochastic-sub-gradient-descent technique to get 

𝑊𝑖𝑛 , 𝑊𝑜𝑢𝑡 , 𝑣𝑖𝑛 , 𝑎𝑛𝑑 𝑣𝑜𝑢𝑡. The slopes of the aiming function 𝔪 in (9) according to the parameters of  

the decoding is calculated as given below: 

 
𝜕𝔪

𝜕𝑊𝑜𝑢𝑡
= (𝑃 − 𝑔(𝑓(𝑃))) ⨀

𝜕𝑔(𝑓(𝑃))

𝜕𝑊𝑜𝑢𝑡
𝑓′(𝑃),  

 
𝜕𝔪

𝜕𝐵𝑜𝑢𝑡
= (𝑃 − 𝑔(𝑓(𝑃))) ⨀

𝜕𝑔(𝑓(𝑃))

𝜕𝑊𝑜𝑢𝑡
= 𝔪𝑜𝑢𝑡 ,  

 
𝜕𝔪

𝜕𝑊𝑖𝑛
= (𝑊𝑜𝑢𝑡

′ 𝔪𝑜𝑢𝑡 + 𝛾𝑄𝑄′𝑓(𝑃)(𝔪𝑤 − 𝜆𝔪𝑏)) ⊙
𝜕𝑓(𝑃)

𝜕𝑊𝑜𝑢𝑡
𝑃′,  

 
𝜕𝔪

𝜕𝑉𝑖𝑛
= (𝑊𝑜𝑢𝑡

′ 𝔪𝑜𝑢𝑡 + 𝛾𝑄𝑄′𝑓(𝑃)(𝔪𝑤 − 𝜆𝔪𝑏)) ⊙
𝜕𝑓(𝑃)

𝜕𝑊𝑜𝑢𝑡
.  

 

Then, 𝑣𝑖𝑛 , 𝑣𝑜𝑢𝑡 , 𝑎𝑛𝑑 𝑊𝑖𝑛, 𝑊𝑜𝑢𝑡 can be renewed with the help of the algorithm of gradient descent as 

given below: 

 

𝑊𝑖𝑛 = 𝑊𝑖𝑛 − 𝜃
𝜕𝔪

𝜕𝑊𝑖𝑛
, 𝑣𝑖𝑛 = 𝑣𝑖𝑛 − 𝜃

𝜕𝔪

𝜕𝑣𝑖𝑛
,  

𝑊𝑜𝑢𝑡 = 𝑊𝑜𝑢𝑡 − 𝜃
𝜕𝔪

𝜕𝑊𝑜𝑢𝑡
, 𝑣𝑜𝑢𝑡 = 𝑣𝑜𝑢𝑡 − 𝜃

𝜕𝔪

𝜕𝑣𝑜𝑢𝑡
,  
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Here, the rate of learning is denoted as 𝜃.
𝜕𝔪

𝜕𝑣𝑖𝑛
 and 

𝜕𝔪

𝜕𝑣𝑜𝑢𝑡
 are the column mean of 

𝜕𝔪

𝜕𝑉𝑖𝑛
 and 

𝜕𝔪

𝜕𝑉𝑜𝑢𝑡
 respectively.  

To add, the two part of the issues given above could be renewed recursively. Algorithm 2 explains  

the enhancement in detail. 

 

Algorithm 2: Resolving the Issue in (9) 
Input: parameters 𝛾, Learning Data P, Layer_size, number of features selected 𝑒𝑆 < 𝑠𝑣𝑖𝑛. 

Initialize:𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 50, 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0, 𝑒𝑥𝑝𝑜 = 10−7. 

While𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and non-converge do 

 Keep others constant and renew 𝑄 and 𝜆 with the help of Equation (10). 

 Make 𝑄 as constant and renew 𝑣1, 𝑣2 𝑎𝑛𝑑 𝑊1, 𝑊2 with the help of Equation (13). 

 Check for the constraints of convergence: ‖𝔪𝑙𝑎𝑡𝑒𝑠𝑡 − 𝔪𝑟𝑒𝑐𝑒𝑛𝑡‖∞ < 𝑒𝑥𝑝𝑜. 
End 

Output: 𝑄, 𝑣𝑖𝑛 , 𝑣𝑜𝑢𝑡, 𝑊𝑖𝑛 , 𝑊𝑜𝑢𝑡 

(𝑁𝑃 = 𝑄′𝜎(𝑊𝑖𝑛𝑃 + 𝑉𝑖𝑛))Can be utilized as an input next for our algorithm, to form the framework 
of stack. 

Examine: the representation of the new features can be done as: 

𝑁𝑃𝑒𝑥𝑎𝑚𝑖𝑛𝑒 = 𝑄′𝜎(𝑊𝑖𝑛𝑃𝑒𝑥𝑎𝑚𝑖𝑛𝑒 + 𝑉𝑜𝑢𝑡)  

 

 

4. EXPERIMENTAL RESULT AND ANALYSIS 

We represent the quantitative outcomes to estimate the efficiency of modified auto-encoders in  

the biomedical signal compression. MIMIC-II [21], the database can be available in 2 forms. In 1st form,  

the interested researchers can get the text version of flat-file of medical database and also the scheme of 

associated database which permits to recreate the database utilizing their technique of choice. In 2nd form, 

attentive researchers can obtain access to database via secure with password web services. The database 

researchers need the consumers to explain themselves with the help of database layout to the queries of 

program database utilizing the SQL (Query output can be exported to comma-separated files to be analyzed 

offline). The query output is transported to the files as comma-separated to be examined offline utilizing 

statistical or another software. The data is processing and accessing from the MIMIC-II, which is very 

complex. It can be highly suggested that the studies are based on the MIMIC-II database that can be directed 

as collaborative efforts, which contain statistical, relational and clinical database expertise. At the end,  

we utilized Physio net MIMIC II database [21] that consists information traces for the ECG. Additionally,  

we assumed our ECG traces, which developed via the Zephyr’s Bio, harness 3 heart rate monitor.  

We represent the chosen outcomes which is gotten from the total of 16985 like sequences from 3 various 

Physio net of patients as well as 1400 for our method of ECG measurements and the test is picked so as to 

cover the important range of situations.  

Figure 1 represents the actual signal graphs and recreated the waveform of ECG signal with trace 

100. As we can see the graph, the actual signal was recreated successfully with the help of proposed model 

compression. The modified auto encoder (MAE) was worked in recreating all R in actual signal with  

the help of amplitude difference. 17 fragments with trace 100 were utilized in test phase. 

Figure 2 represents the actual signal graph and recreated the ECG signal waveform with trace 100.  

Whereas, we can cee that the graph, that actual signal was recreated successfully at receiver with the help of 

proposed model compression. The MAE was successful in recreating the actual signal with the help of little 

difference and as the hidden nodes were maximizing the reconstruction accuracy also increases. 

Figure 3 represents the actual signal graph and recreated the ECG signal waveform with trace 100.  

From the graph, we can see the development in the reconstructed signal with the actual signal.  

With maximizes the hidden nodes the accuracy of reconstructing has improved when compared with hidden 

nodes 2 and 4. Figure 4 shows the improvement in the reconstructed signal of ECG signal at receiver with 

that of actual signal. In the above figure uses 24 hidden nodes for training and reconstructing the signal.  

The reconstructed signal is having negligible amplitude difference with respect to original signal.  

Figure 5 represents the actual signal graph and the recreated the waveform of an ECG signal with 

trace 100. As we can see from the graph, the actual signal was successfully recreated with the proposed 

model of compression for hidden nodes 48. The modified auto encoder model succeeded in reconstructing 

with that of actual signal with zero amplitude difference. 
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Figure 1. Feature graph at hidden nodes = 2 

 
 

Figure 2. Feature graph at hidden nodes = 4 

 

 

 
 

Figure 3. Feature graph at hidden nodes = 12 

 
 

Figure 4. Feature graph at hidden nodes = 24 

 

 

 
 

Figure 5. Feature graph at hidden nodes = 48 

 

 

Figure 6 shows the root mean square error vs energy consumption (joule per bit) using our proposed 

model and SURF [24], where our modified auto-encoder got less RMSE w.r.t SURF [24] approach. Figure 7 

shows the RMSE (%) with respect to Compression Efficiency where our model has performed significantly 

well w.r.t SURF [24] approach. Figure 8 represents the RMSE with regards to the various number of  

the Hidden Nodes, where our model has performed significantly well w.r.t SURF [24] approach. 
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Figure 6. RMSE vs energy consumption 

 
 

Figure 7. RMSE vs compression efficiency 

 

 

 
 

Figure 8. RMSE with respect to different number of hidden nodes 

 

 

5. CONCLUSION  

In this research work, we have presented Bio signal compression using auto encoders (BCAE) 

compression algorithm for wearable fitness monitors using IoT. We proposed the ECG-based biometric 

system whereas the lesser dimensional of non-linear representations of the heartbeat templates are learned 

through the deep modified Auto encoder. This study also represents the efficient signal of ECG compression 

method which is utilized in biomedical field i.e. e-health applications, Holter systems and telemetry.   

The proposed method of compression integrates the architecture of MAE, which have recently become very 

popular in the machine learning (ML) field. Therefore, it can be possible to get the data in the deep layers 

about the actual input signal, consisting lower level to higher level of features. In this study, the deep 

structure of MAE is proposed, 2000×1 ECG signals were recreated successfully by showing only  

62 × 1 dimension. The application of comprehensive was made on the 4800 fragments of 2000 samples from 

the 48 patients in the dataset of MIT-BIH arrhythmia. With the help of proposed model, the important 

compression outcomes were gained with the rate of CR 32.25 and an average rate of PRD 2.73%.  

The proposed methodology also has the structure which can be utilized safely to transfer the biomedical 

information to remote locations securely. 
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