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ABSTRACT

Leap motion controller (LMC) is a gesture sensor consists of three infrared light
emitters and two infrared stereo cameras as tracking sensors. LMC translates hand
movements into graphical data that are used in a variety of applications such as vir-
tual/augmented reality and object movements control. In this work, we intend to con-
trol the movements of a prosthetic hand via (LMC) in which fingers are flexed or
extended in response to hand movements. This will be carried out by passing in the
data from the Leap Motion to a processing unit that processes the raw data by an open-
source package (Processing i3) in order to control five servo motors using a micro-
controller board. In addition, haptic setup is proposed using force sensors (FSR) and
vibro-motors in which the speed of these motors is proportional to the amount of the
grasp force exerted by the prosthetic hand. Investigation for optimal placement of the
FSRs on a prosthetic hand to obtain convenient haptic feedback has been carried out.
The results show the effect of object shape and weight on the obtained response of the
FSR and how they influence the locations of the sensors.
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1. INTRODUCTION
Capturing of human body motion is an increasing research area due to potential applications in

robotics and informatics areas. Motion capture of the human hand is complex task because each finger, and even
each phalanx, has distinct and independent movements that yield in return higher degrees of
freedom [1-4]. Some techniques have been developed to capture hand motions, see [3-6]. However, accu-
racy is a major setback to track hand motion. A leap motion controller is a motion sensor that was developed
for hand motion tracking with high detection accuracy that reached 0.01 mm [7]. It consists of three parts, two
cameras, LEDs, and a microcontroller in which the cameras capture successive images of the hand and then
they are passed to the controller to process the images and extract spatial information of the hand and fingers.
Leap Motion has been used in several projects to recognize hand gestures [8-13]. Although approaching the
dexterity of a human hand to control robotic arm is difficult, LM was used to do this task in [14-16], where
hand gestures have been translated to joint angles to perform a specific task. A potential application for LM is
in robotic surgery, in which a surgeon could control surgical instruments from a console located in the operat-
ing room [17-19]. Touchless interaction has been investigated in many works. Such studies can improve user
performance in different applications such as wheelchair control and maneuvering and browsing of medical im-
ages using leap motion [20-23]. Additional works have been carried out to investigate the haptic feedback with
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implantation of leap motion, see [24-26]. However, locations of the sensors that are responsible for generating
appropriate control signals for haptic actuators need further investigation.

The aim of this work is to investigate the robustness of a modified haptic-prosthetic system for
telemedicine applications, where, we suggest using the leap motion controller to control the movements of
a prosthetic hand and create haptic sensation for the subjects. The haptic system consists of three FSRs and
two vibro-motors which are attached to a glove. A microcontroller is used to synchronize the movement of the
actuators with FSRs signals. In addition, we investigate the response of FSRs at different spatial locations and
using different objects. The paper is organized as follows, section 2 presents the adopted methodology while
section 3 shows the used experimental setup. Experimental results and discussion are described in section 4.
Our conclusions are drawn in the final section.

2. METHODOLOGY
For the sake of clarity, the proposed methodology is divided into three parts, leap motion, prosthetic

hand, and haptic feedback system. Figure 1 shows a block diagram of the suggested control system. In the
following, we will explain each part in detail.
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Figure 1. Block diagram of the suggested system for controlling InMoov hand and creating haptic sensation.
The solid arrows refer to control signals while empty arrows refer to feedback signals.

The touchless interaction between haptic glove and prosthetic hand is expressed by two arrows, the filled
arrow to control the prosthetic hand while the empty arrow for haptic feedback

2.1. Leap motion
Leap Motion Controller is human-hand tracking device equipped with infrared sensors that enable the

LMC to respond swiftly to the fingers and hand movements. It intends to revolutionize the way that we are
using our computers in favor of utilizing the touchless interaction concept. The leap motion has a compact size
which makes it suitable for different control applications. In addition, the height of the interaction space is 60
cm above the LMC where the field of the interaction is similar to an inverted pyramid. This pyramidal shape
increases the cameras field of view till 150 degrees with area detection capability ranging from 25 mm to 600
mm above the LMC [1]. The first phase of the work methodology is to acquire the joint angles of the human-
fingers’ movements from LMC using Processing software which is an open source framework for visual art
programming. Then, the angles values are converted to appropriate control signals that are fed to actuators for
driving prosthetic hand fingers

2.2. Prosthetic hand
We suggest to use five-finger prosthetic hand in which each finger can be controlled individually

according to the obtained information from the LMC. There are many open-source 3D printable models of
five-finger prosthetic hand available in the internet. A reliable, anthropomorphic, and low-cost design to be
produced is InMoov hand [27]. This model has been adopted in this work since it is based on sharing and
enhancing policy. Some amendments on the fingers should be made to ensure full integration between the
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model and the proposed haptic system. These modifications related to the rounded finger geometry where we
modify the shape of the fingers to allow the feedback sensors fixed on the finger’s tip easily. Figure 2 shows
the InMoov model and the modified printed design.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

 

 

 

 

0 

(d) 

 

 

 

 

0 

(c) 

 

 

 

 

0 

Figure 2. InMoov prosthetic hand, (a) Shows the 3D printed model while, (b) shows the modified model,
(c) presents the original finger model, (d) presents the modified index finger to allow FSR fixed at index tip.

All models have been printed using Makerbot replicator

2.3. Haptic system
There are different configurations to create a haptic sensation. The one that we proposed in this work

is based on the feedback obtained from reaction forces on the grasped object. These reactions will trigger haptic
actuators where a vibro-motor is used for this purpose. Adding haptic feedback to the touchless interaction has
the potential for many applications such as gaming and rehabilitation.

3. EXPERIMENTAL SETUP
To demonstrate the proposed methodology, practical part of this work has been divided into two

subsections.

3.1. LMC and haptic system
LMC has been placed before the user to acquire images of the user’s hands which they should be set

within 150 degrees from LM and from 25 mm to 600mm directly above the device. The captured information
is then transferred to personal computer to extract information related to figures movements and directions.
Processing software is used for that purpose in which proper libraries should be added to the Processing to be
able to read and interpret the incoming information from LMC. A setback is detected due to large amount of
data acquired by LMC that Processing software cannot handle smoothly. This lagging problem has been min-
imized by reducing the frames to be processed and use a personal computer with higher processing capability.
A haptic setup is proposed using three force-sensing-resistive (FSR), type Interlink 402, and two vibro-motors,
model 1027. The FSRs are laid out at different locations on the modified InMoov hand. As mentioned earlier,
these sensors are used to generate the signals that trigger the haptic actuators in which the mean value of the
incoming signals is used to activate the haptic actuators, vibrating motors. To mimic a realistic grasp feeling,
the speed of the haptic actuators is proportional to the mean value.

3.2. Prosthetic hand and sensor calibrations
The prosthetic hand used in this work was InMoov where the fingers’ shape has been modified to

be capable of holding the FSR, see Figure 2. The hand was printed using 3D MakerBot Replicator and PLA
filament. The movement of each finger is actuated by a servomotor type TowerProMG995. Five servo motors
for all fingers were used. Servo horn and fishing line are attached with each servomotor to control the motion
direction of the fingers where they can be flexed or relaxed relative to the motor rotational direction. A micro-
controller type Arduino MEGA is utilized to control the servomotors, vibrating motors and FSRs. The FSRs
have been calibrated using different range of weight values and a best fitting polynomial function between the
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output voltage from each FSR and the used weights was obtained for the used FSRs. These polynomial func-
tions were used to obtain FSRs responses for selective locations on the InMoov. A schematic diagram of the
used components and their wiring is shown in Figure 3.
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Figure 3. Schematic diagram of the haptic–hand system, (1) vibrating motor (2) FSR (3) MEGA Arduino
(4) servo motor (5) battery

4. RESULTS AND DISCUSSION
In this work, LMC is used to control the motion of a modified version of InMoov hand and return

haptic feedback. In addition, locations of feedback sensors for the suggested haptic system are investigated to
provide a more realistic touch experience. To validate the obtained results, five subjects were volunteered to
carry out the prosthetic hand control experiments, in which the tests have been carried out for all participants.
Table 1 shows the age and gender of the subjects. Although the angles and directions gathered from leap
motion functions are different for each participant, the hand response is perfectly matched for all subjects’
hands movements. Rarely, response lagging is occurred due to limitation in Processing software ability for
images acquiring and processing.

Table 1. The participants gender and age. Maximum and minimum angles values for each finger recorded by
the LMC (full straight and straight-fist).

Index Middle Ring Pinky Thumb
Gender Age Min

value
Max
value

Min
value

Max
value

Min
value

Max
value

Min
value

Max
value

Min
value

Max
value

Male 60 -82 22 -87 42 -80 35 -52 20 -60 39
Male 20 -61 23 -80 39 -84 42 -66 35 -98 31

Female 50 -67 15 -82 22 -75 24 -51 19 -88 38
Female 25 -72 32 -81 51 -82 57 -75 20 -68 30
Female 17 -65 23 -82 40 -75 33 -53 30 -80 24

An investigation has been carried out for optimal placement of the FSRs such that these FSRs can
return a convenient haptic feedback. Since the cylindrical objects are widely utilized to examine the grasping
reactions [28] , three cylindrical objects with different diameters and 12 locations on the prosthetic hand have
been selected for this investigation. Figure 4 shows the layout of the FSR sensors in which the 12 locations
are disseminate along the prosthetic hand and the output responses from FSRs were recoded and presented in
Figure 5. It can be noticed that the grasping reactions at locations 3 till 6 are, in general, tend to decrease
compared with other locations. Such performance is linked to the cylindrical shape of the grasped object in
which line contact between the grasped object and the upper part of the prosthetic palm is occurred. Inter-
estingly, a wide variance in the value of the reactions at locations 7, 8 and 9 are detected when the objects’
diameters are changed. This finding is related to the object and modified fingers geometry where the object is
surrounded by the fingers and this encircling let FSRs generate electric voltage proportional to the size of the
grasped object. However, increasing the object size up to a critical value, which needs further investigating,
can cause a superficial result due to missing the contact between the sensors and the grasped object. A similar
response for FSRs is occurred when the sensors are positioned at locations 10 and 11 while location 12 returns
a less reaction value compared with previous locations. The reason for this rather contradictory result is still
not completely clear, but we refer that to palm shape of InMoov. Our findings would seem to show that the

A haptic feedback system based on leap motion controller for... (Hussam K. Abdul-Ameer)



5776 r ISSN: 2088-8708

FSRs locate in the index and middle fingers’ tips give better reactions than other locations assuming that the
grasped objects have a cylindrical shape. However, different shapes for tests objects need to be investigated
to obtain a comprehensive understanding of relation between the grasped objects and the modified prosthetic
hand. Partially captured objects can also affect the grasping reactions that may decrease the reaction value and
also may case slipping of the grasped objects. Thus, the applied grasped force from the real hand should be
proportional to the object diameter to prevent object sliding. This requires a further study which is beyond
the scope of this work. The weight of the object affects the reaction depending on the prosthetic hand layout.
In the case of a horizontal layout, the FSR is influenced by the object weight while in a vertical layout, the
weight does not contribute to the grasping reactions. Instead, it has a slipping effect which should be balanced
by increasing the applied grasping force.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Test locations on the InMoov to investigate the FSRs responses when a cylindrical object is used

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. FSRs responses at different locations on the InMoove hand,

Cylindrical objects are used to investigated the cylindrical grasp

5. CONCLUSION
In this work LMC is utilized to control anthropomorphic hand with haptic feedback to perform

cylindrical grasping tasks. The proposed system worked fine and smooth response in general was obtained.
Although, the LMC enables decent touchless interaction between the user and the prosthetic hand, geometry of
the prosthetic hand requires additional modifications and dynamic analysis to ensure full integration with the
haptic system. Such investigations will improve the potential of using LMC in telesurgery and tele examination
since accuracy and interaction are utmost key factors. We investigated the locations of the feedback sensors for
the proposed haptic system where 12 locations distributed along the prosthetic hand were selected. The tip of
the middle finger yields a good grasping reaction despite varying in object’s shape. Placing the FSR on the hand
palm can give acceptable reaction, however, object size can decrease the contact area and return less effective
contact reaction. We recommend a further analysis for optimal sensors placement preventing object slipping.
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This may be achieved by fusion the date obtained from FSRs and a proximity sensor, where the return signal
from the last sensor can detect the occurrence of object slipping while the FSRs maintain the haptic feedback.
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