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Here, the model takes advantage of optic flow technique by re-projecting the flow
vectors from the image space into world space. A pan-tilt (PT) mounting system
is used to verify the performance of our model and maintain the tracked object within
a region of interest (ROI). This system contains two servo motors to enable a webcam
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1. INTRODUCTION

Visual object tracking is one of the interesting fields in computer vision which is intervened in different
applications such as surveillance, traffic monitoring, human computer interaction, and robotics [1-4]. Object
tracking, in essence, seeks to estimate motion trajectory of an object in visual scenario. This research seeks
to address the following questions: how a path for a moving object can be estimated in world plane? and
how this estimation can be analyzed to generate a feedback signals to enable a PT system tracking an object?
A considerable amount of literature has been published on object tracking (for more discussion, see the review
in [5]). The related studies to our work will be reviewed. In [2], the authors used raw pixel representation
for object tracking in which colors and intensity values of an image are used to represent the object regions.
Such representation is simple and effect, however, raw pixel information alone is not sufficient for robust
tracking [6]. This issue led some researchers [7, 8] to include other visual features such as shape, edge and
texture into the raw pixel representation.

Other studies such in [9, 10], on the other hand, used histogram representation to track an object in
the visual scenario. In general, histogram extracts features based on object distribution in the visual field.
Thus, the use of histogram representation might result in the loss of spatial information [6]. Several studies
(see, [11, 12]) used optical flow representation for object tracking. In principle, optic flow represents displace-
ment vectors of each pixel in the image. This representation is commonly used to capture the spatio-temporal
motion information of an object in the visual scene [11]. PT cameras are widely used as a part of surveillance
systems. PT camera is mounted and adjusted to certain viewing configurations. For an effective application
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of object tracking, accurate calibration is required [13]. A number of authors (see, e.g., [14—17]) estimated
parameters of a calibration model for PT cameras by computing both focal length and radial distortion at many
different zoom settings. L. Diogo in [18], on the other hand, introduced a method for PTZ camera calibration
over the camera’s zoom range by minimizing re-projection errors of feature points detected in images which
are captured by the camera at different orientations and zoom levels. Recently, [19] presented a method to
calibrate the rotation angles of a PT camera by using only one control point and assuming that the intrinsic
parameters and position of the camera are known in advance.

In the field of object recognition based on human visual system, group of studies (see [20-24])
demonstrate the importance of motion information for object recognition. The studies showed that the
visual perception can detect and focus on an object based on motion features. In essence, when an object
is moving across the visual field, our eyes follow the object movement. The use of PT cameras in autonomous
surveillance systems is still a challenge in spite of their great potential for real applications. There is still a need
for an easy and accurate technique to estimate the rotation angles of a PT system. In this paper we suggest a
new model for estimating PT rotation angles. We used a reverse projection from an image space to a world
space in order to calculate the PT angles. In keeping with the importance of the motion information, our model
takes advantage of optic flow technique by re-projecting the flow vectors from the image space into world
space. Here, PT rotation angles are estimated based on Pinhole camera model and the rigid transformation
of flow vectors in which an idealized translation matrix followed by two rotational matrices around PT axis
are used. Our model was evaluated using rigid motions of different objects that have different shapes such as
circular, square and silhouette objects. Such objects were moved with various directions to show the robustness
of the model to track and focus on the object. The results reveal that when the object moves out of the region
of interest, the reverse projection of the motion vectors from the camera plane to the real-world plane can be
transformed to two values that represent the required rotational angles along pan and tilt axes to keep the object
within a certain view. The paper is organized along the following structure and content. Section 2, demon-
strates the methodology of the tracking model using PT system. The methodology has three main stages: (i)
motion detection, (ii) object tracking, and (iii) PT rotational angles calculation. Section 3, shows system set up
and results. Section 4, summarizes the discussion and the proposed perspectives of this work.

2. METHODOLOGY
2.1. Re-projection camera model

Our model proposes that the camera is rotated around Y, and X, axes as shown in Figure 1. These
axes demonstrates the coordinate system of the camera model. From the previous figure, (p,,) represents
the position of a 3D point in the world plane {w} and (p.) represents its projection in the camera plane {c}.
Assume that (p,,) has moved to (p,,) in the {w} plane and (p.) defined its projection in the {c} plane.

Figure 1. Point projection from real-world plane {w} to camera plane {c}. (p,,) shows a 3D point in the world
plane {w} and (p.) represents the point projection in the camera plane {c}. (py,) represents the next location
of the point in the {w} plane and (p.) defined its projection in the {c} plane
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We used Pinhole camera model and rigid transformation of parallelogram in the {w} plane. The ideal
Pinhole camera model transcribes the relationship between a point in 3D space {w} and its projection in
2D space {c} (for underlying principle of Pinhole camera model see [25]). To simplify further derivation,
we define this relationship using homogeneous coordinate:

P.=M.Py, (D

where P [x. 3. f 1]T represents the projection of the 3D point Py, [¥ ¥w 2w 1]7 on the image
plane {c} in which f denotes focal length. M represents a tomography matrix operation which defines two
types of parameters: intrinsic and extrinsic parameters. Since most cameras have overcame the distortion and
skew problems, our model focuses on the extrinsic parameters. Given that the coordinate systems of the camera
reference frame is simply set at the object centroid in the world reference frame, the tomography matrix is then

M = TEe + Py,. 2

where Tpe = [t, t, t¢. 1] represents the translation vector from the center of the world space {w}
to the center of the image plane {c}. In order to keep the camera model tracking an object moves away
from the center of the plane (i.e. the object moves from py, to Py, a rotation operation R is incorporated.
The rotation matrix R is here addresses the rotation around pan-axis, Rpan(c) and tilt-axis, R (5).
Thus, the tomography matrix is defined as a sequence of matrices operations that include translation T
and rotation R.. The tomography matrix is then define by the following equation:

M = TB: + P, R. 3)
R = Rpan (a)Rtilt (ﬁ) 4)
cos(a) 0 sin(a)
Rpan(a) = 0 1 0 (5)
—sin(a) 0 cosa
1 0 0
Rie(B8) = |0 cos(B) —sin(p) (6)

0 sin(B)  cosp)

As a consequence, the object tracking model can be written as an idealized translation matrix followed
by two rotational matrices around pan and tilt axes. The camera tracking model is defined by

P, = T8 + Rpan(a).Reite(5) Py (7)

where P, = (2. ¥ f 1) represents the homogeneous coordinates of the moving object.

2.2. Motion detection

In order to detect the motion of an object in the visual scene, an optical flow algorithm is used.
The optical flow depicts the motion of an object in the visual scene by two dimensional velocity vectors.
These two vectors describe the velocity of pixels in a time sequence of two consequent images [26]. For the
sake of simplicity, the 3D object in real time world plan is transfer into 2D object in the image plane in which the
image can be defined by means of 2D dynamic brightness function I(x, y, t). Given that the brightness between
two consecutive image frames is constant within small space-time step (brightness constancy constraint) [27],
the brightness constancy equation can be defined by

I(z,y,t) = I(z + Az, y + Ay, t + At) (8)

where (Az, Ay) represents the motion displacement for an object in x, and y directions, respectively, within
short time (At). Given the assumption of small object motion, the brightness constancy equation 8 can be
developed using Taylor series to get I (z+ Az, y+ Ay, t+ At) = I(z,y,t)+ %Am + %Ay + %At—k HO.T.
By neglecting higher order (HOT) term and rearranging the series [26], we get
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Viv=-I, (€))

where (AI) represents the spatial gradient of brightness intensity and v denotes the optical flow
vectors (v, vy) and I; defines the derivative of the image intensity along time (t). Since equation 9 has two
unknown parameters (aperture problem), another set of equations is needed. Several studies have been
conducted to solve this equation (see for examples [27-29]). In this article, we solved equation 2 and
estimated the optic flow following to the work in [30].

2.3. Calculate pan and tilt rotational angles

The rotation angle increments, dcv and 3, are calculated relative to the current camera coordinate
frame. These increments keep the object within a region of interest (ROI) in the image frame {c} . In order
to account the effect of different units (points in image plane are expressed in pixels, while points in word
space are represented in physical measurements (centimeters)), we introduce scale parameters k and [ with unit

of pi;’;l where these parameters correspond to the change of units along x and y axis respectively. Thus, we

adjust equation 7 by adding the scale parameters {k, [} € s, as defined by

s.Pe = TS, + Rpan(a). Reite (8) Puw- (10)

With the knowledge of the object movement in the image plane, it is possible to track the object in

the word space by back-projecting the 2D point in the image plane to a 3D point in the world plane. Here, we

calculate the increments in two parts, the pan angle increment dar € [0°,180°] and then tilt angle increment

05 € [—90°,90°] , where they are derived from equation 10. For simplicity, we utilize camera projection with
plane world z=0 rather than a general 3D case. The rotational angles is defined by

a=cosT (k.2 — tg)/Ty (11)
B =cos” 1(L.y. — ty)/Yuw (12)

3.  SYSTEM SET UP AND RESULTS

In the following, we demonstrate the capability of the suggested model for object tracking by using a
set of test motions. The camera was mounted on a pan-tilt system in which camera surface is aligned parallel
and centred to the object. The block diagram of the suggeted model can be shown in Figure 2. The system
was placed 27 cm away from the moving object. The object motions were recorded using webcam camera
with a resolution of (480 x 640) in which real world view {w} is about (16.5 x 12) cm. Due to the low
resolution of the camera, it is challenging to estimate object motion in the visual scene. As mention in sec.(2.3.),
the rotational range of the motor along pan is [0°, 180°] and [—90°, 90°] along tilt axes.

Personal computer

pan-tilt servo motors Microcontroller

Figure 2. The block diagram of suggested model. The microcontroller (arduino MEGA) controls two servo
motors (S3300). The servo motors drive the camera motion along pan-tilt axes
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The tracking model keeps the object within the camera fovea which represents the region of interest
ROIL. Here, we select a window with (252, 233) that is placed in the center of the camera view. In order to
keep the target object within ROI, the camera is moved along pan-tilt axes via the PT system. In our model,
the pan-tilt angles are calculated based on equations 11 and 12 respectively. Since x,, = t.sin(«) and
#. = u, equation 11 can be defined by @ = tan~!(ku/t.). Equation 12, on the other hand, can be
written as 3 = tan~'(Ilv/t.) due to the fact that y,, = t,sin(3) and 9. = v. Based on camera resolution and
view dimensions along x and y directions, the values of the scale parameters k and [ are 16.5(cm)/480(pixel)
and 12(cm)/480(pixel), respectively. In order to calculate the optic flow vectors (u, v), we utilized the algorithm
that introduced by [30].

Our model was tested and evaluated using rigid motions of different directions. Such motions are
generated from different shapes of objects that moved with different directions. With no loss of generality,
we used simplified objects to keep the computational complexity and the preprocessing as simple as possible.
Figure 3 shows moving objects (circle, square, tiger, bird) with four directions, down, up, right and diagonal
(up-left), respectively. As a consequence to these motions, the objects become outside the ROI as shown in the
second column of Figure 3. The third column of the figure shows the camera view {c} after camera moving
along pan and tilt axes. As an extended results, our model was tested with silhouette motion for a human that
moves to the left direction, see Figure 4.The results reveal that when the object moves out of the ROI, the
reverse projection of the motion vectors from the camera plane to the real world plane can be transformed to
two values that represent the required rotational angles along pan and tilt axes to keep the object within ROI.

Figure 3. The first column, shows the target object in which the camera fovea is surrounded by dashed line.
The second column, demonstrates the object movement in a particular direction, while the third column,
shows the optic flow of the object motion and the camera view after the pan-tilt rotation
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Figure 4. The first column shows the object moves out of the ROI demonstrates the man movement to the left
direction. Second column shows the camera view after the pan-tilt rotation

4. DISCUSSION

In this paper, we introduce a model for object tracking using motion vectors and PT system.
The model utilizes the pinhole camera algorithm and rigid transformation from camera plane to the world
plane. Our tracking model keeps the target object within the fovea of the camera view, i.e., ROI. Here, we used
pan-tilt system that controls the rotation of the camera view. The angles of the pan-tilt axes are derived from
the reverse projection of the optic flow.

In order to account the different units (pixels in the camera plane and centimeter in real world plane)
we incorporate a scale parameter k£ and / in the mathematical expression of a and /5 along pan and tilt axes,
respectively. Optical flow technique is found to be more robust and efficient for object tracking due to higher
detection accuracy (see a recent review in [31]). This prompted several researchers (see for e.g., [12, 32]) to
use optic flow for object tracking. Our model differs from others approaches in term of using reverse projection
from the camera plane {c} to the world plane {w} for estimating the pan-tilt rotational angles. These estimated
angles are fed to two motors that control camera moving along PT axes. In our model, the camera keeps the
target object within the fovea of the camera view which we called it region of interest (ROI). Here, we utilized
the the rigid transformation of flow vectors in which an idealized translation matrix followed by two rotational
matrices around PT axis are used.

To evaluate the performance of our model, we performed a set of rigid motions using different
objects. These motions are generated from different shapes of objects in which circular and square objects
are used. Such objects are moved to upward and downward directions, respectively. In addition, our model was
probed with silhouette objects which are bird, tiger and human that move in diagonal,right and left directions,
respectively. The results reveal that our model can keep tracking the object within a certain view.

Our model can be extended and improved by adding additional preprocessing techniques that enrich
the model to deal with more sophisticated biological motions. The biological motions represent a complex
and articulated motions which consist different speeds and directions. The model could be boosted with an
algorithm that segregates the body motion from the limbs motion (see [33] for a discussion underling the limbs
and body motions). As a consequence the tracking model could be depended on the body motion without taking
into account the movement of the limbs.

5. CONCLUSION

We introduce a new model of PT configuration to control the movement of the surveillance camera.
The PT angles of the camera movement are estimated using Pinhole camera model and the projection of the
motion vectors in which these vectors are transformed from the image space into a world space. The motion
vectors are estimated using the optic flow technique in which these vectors are transformed from the camera
plane into the real-world plane using an idealized translation matrix followed by two rotational matrices around
PT axis. Our model was tested and evaluated using different objects that have different shapes (such as circular,
square and silhouette objects) where these objects are moved in different directions. This work has shown that
when an object moves out of the region of interest, the projection of the motion vectors can transcribe into
two values. These values are transform into PT angles that control the movement of the surveillance camera.
Building upon, The transformation of the motion vectors enables the surveillance camera moving relative to
the movement of the target object. As a consequence, the camera preserves the target object within the fovea
of the camera view.
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