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 Digital video magnification is a computer-based microscope, which is  

useful to detect subtle changes to human eyes in recorded videos.  

This technology can be employed in several areas such as medical, 

biological, mechanical and physical applications. Eulerian is the most 

popular approach in video magnification. However, amplifying the subtle 

changes in video produces amplifying the subtle noise. This paper proposes 

an approach to reduce amplified noise in magnified video for both type of 

changes amplifications, color and motion. The proposed approach processes  

the resulted video from Eulerian algorithm whether linear or phase based  

in order to noise cancellation. The approach utilizes wavelet denoising 

method to localize the frequencies of distributed noise over the different 

frequency bands. Subsequently, the energy of the coefficients under  

localized frequencies are attenuated by attenuating the amplitude of these 

coefficients. The experimental results of the proposed approach show its 

superiority over conventional linear and phase based Eulerian video 

magnification approaches in terms of quality of the resulted magnified 

videos. This allows to amplify the videos by larger amplification factor,  

so that several new applications can be added to the list of Eulerian video 

magnification users. Furthermore, the processing time does not significantly 

increase, the increment is only less than 3% of the overall processing 

compare to conventional Eulerian video magnification. 
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1. INTRODUCTION 

It is difficult to perceive changes with small capacitance in around us by human eye because of our 

limited temporal spatial sensitivity [1]. These changes may contain useful information that can be used in 

many applications, especially in the field of biomedicine. For example, it is difficult for a human to see  

the arterial pulse in different parts of the human body, but the movement can be magnified to measure heart 

rate and pulse length [2]. Another example, the blood circulation causes invisible changes in skin colour that 

can be amplified to measure heart rate [3, 4].  

Because of the important applications which are mentioned above, many studies have been proposed 

to for video magnification. The first study by Liu et al. [5] has proposed a motion magnification technique 

based on the Lagrange perspective to amplify subtle motion in the video sequence in order to detect 

interesting mechanical behavior. However, the algorithm in this study is computationally expensive, because 

of it relies on an optical flow and feature tracking algorithms. Moreover, noise in video sequence is 

significantly amplified. In order to reduce complexity, Hao et al. [6] have proposed an efficient magnification 
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technique based on the Eulerian perspective. The technique has named Eulerian video magnification (EVM) 

and becomes one of the standards that used in video magnification. The method is used to track liquid voxel 

properties such as speed and pressure that evolve over time.  

Two main types EVM are existed depend on the method of multiple scale decomposition, linear 

based and phase based. In linear-based EVM (LB-EVM) [6], Laplacian pyramid decomposition method is 

applied to analyse a source video into multiple-spatial scales, followed by the temporal filter of the specific 

frequency bands. The outputs of the temporal filter are then amplified by increasing the energy using 

magnification factor and added back to the original decomposed. Finally, the processed frames are 

reconstructed by collapse of the Laplacian pyramid. Although LB-EVM succeeds in amplifying motion and 

colour changes in video clips and eliminates the need for a costly optical flow calculation [5], it supports 

small magnification factors at high spatial frequencies and increases the noise level linearly as  

the magnification factor increases. In addition, during a colour is magnify, some unwanted movement also 

magnified. To solve LB-EVM problems, Wadhwa et al. [7] have proposed a new Eulerian method, based  

on complex steerable pyramids [8], which is phase-based optical flow methods [9]. The phase-based  

EVM (PB-EVM) method supports larger magnification factors. However, it is more complex than LB-EVM, 

so that it requires significant longer time to implement than LB-EVM. In general, the acceptable accuracy of 

EVM helps to employing it in several applications such as material engineering, mechanical engineering, 

human health care and so on [10–12]. 

In order to reduce execution time, a new pyramid in [13, 14], which is called the Riesz pyramid  

Liu et al. [15] proposed a way to improve LB-EVM after processing, which is called enhanced EVM 

(E2VM). The efficient motion magnification system (EMMS) method has been developed to improve 

processing speed [16], which depends on wavelet decomposition. This method improves the speed of 

implementation and reduces noise. However, it supports only relatively small magnification factor.  

This paper proposes an enhanced approach for LB-EVM and PB-EVM in order to reduce 

significantly the noise of the magnified video. Also the proposed approaches can attenuate the unwanted 

subtle motion in case of colour magnification. The proposed method superior in terms of magnified video 

quality compare to conventional EVM methods. The proposed work uses a wavelet transform to detect and 

remove noise from the magnified video frames.  

The rest of the paper is organized as: section 2 provides background information about LB-EVM 

and PB-EVM. Also, the principles of denosing based wavelet are described briefly. Section 3 explains  

the proposed approach. The simulation results and discussion are given in Section 4. Finally, conclusions  

are presented in section 5. 

 

 

2. BACKGROUND 

2.1. Linear-based Eulerian video magnification 

The small movement amplification can be achieved through computer processing [5, 17] based 

optical flow by temporal processing using Taylor first-order series extensions [18]. This technique named 

LB-EVM and it is linear processing. In this technique, the input video frames decompose into multiple  

spatial bands using the entire Laplaceian pyramid [6, 19, 20]. The Laplacian pyramid is a data structure 

where the size of the image is downsampled in successive sporadic density, until so there is no additional 

downsampling possible. The temporal filter is then applied to extract the interest frequency bands to be 

amplified and then multiply by the desired magnification factor. Subsequently, the magnified bands are 

combined with the frames that are entered to the temporal filter. Finally, the resulted magnified frames are 

reconstructed by retrieving the original scale from the multiple scales. 

The basic disadvantage of this method is the failing with increasing magnification factor. This is 

because the original noise increases linearly with increasing magnification factor [21]. Thus, this method is 

efficient in magnifying colour changes when the magnification factor is small. Figure 1 shows the working 

mechanism of LB-EVM. 

 

2.2. Phase-based Eulerian video magnification 

LB-EVM supports relatively small magnification factors, which can greatly amplify noise when 

increasing the magnification factor. As a result of these reasons, the method of motion processing was 

developed in [7] and is based on complex steerable technique [8, 9, 22]. PB-EVM is inspired by motion 

without movement [23] and phase-based optical flow [9]. The basic functions of the transform are similar to 

Gabor wavelets [24]. 

This phase-based technique improves the LB-EVM method, it supports larger magnification and has 

much better noise performance. Because the linear method amplifies changes in the temporal brightness,  

the noise amplitude is amplified linearly. In contrast, this method modifies the phase, not the amplitudes, 
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which do not increase the amplitude of spatial noise linearly. This method that it increases the differences in 

phase by the magnification factor that can amplify hidden movements. These pyramids rely on Fourier 

analysis to analyze the image into sub-domains and phase. The main drawback in this method is the long 

processing time [21]. Figure 2 shows the working mechanism of PB-EVM [7]. 

 

 

 
 

Figure 1. Overall structure of the linear-based-EVM [6] 

 

 

 
 

Figure 2. General structure of phase-based EVM 

 

 

2.3. Wavelet denoising methods 

In order to reduce noise of EVM, wavelet base denosing is used in this paper. The process of image 

de-noising by wavelet, consists of the following main stages: 1) wavelet transform, 2) Estimate a threshold, 

3) apply the threshold, and 4) inverse wavelet transform. Figure 3 shows the block diagram of the wavelet 

denoising method. 

 

 

 
 

Figure 3. Block diagram of wavelet denoising transform 

 

 

An image can be decomposed into several frequency bands by wavelet transform. Wavelet 

transform converts frequency signal information that shows coefficients which distributed in horizontal, 
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vertical, and diagonal parts of the image. The original image is divided into four elements: LL, HL, LH, and 

HH through the application of horizontal and vertical filters. The sub-band gives the LL approximately or  

the average of the original image. The other three sub-bands are details representing wavelet coefficients. 

The HL1, HH1, and LH1 subdomains represent the detail coefficients, while the LL1 sub-band denotes  

low-level coefficients [25, 26]. The two-dimensional decomposition of the wavelet transform is achieved  

by additional decomposition of the LL1 sub-band as shown in Figure 4. By determining the thresholding  

of these detailed wavelet coefficients, the image de-noising is accomplished while maintaining its 

fundamental features. 

 

 

 
(a) 

 
(b) 

 

Figure 4. Wavelet decomposition for 2D image (a) one-level and (b) two-levels decomposition 

 

 

After decomposition, it is subject to the wavelet threshold that will select and analyze the specific 

wavelet coefficients. Wavelet threshold is a technique for estimating the signal that takes advantage of 

wavelet transform possibilities to de-noising the signal. The basic threshold types are hard and soft 

thresholding. In hard threshold, the wavelet coefficients are reset to zero if they are less than threshold level, 

and remain as it is in otherwise [27]. In this method many artificial noise points are produced at the edges of 

the images, resulting in image distortion. The new wavelet coefficient values (Cn) are determined by (1) that 

set to original coefficient values (C) if these values greater than the threshold (ε) and set to zeros otherwise. 

 

𝐶𝑛 = {
𝐶     𝑖𝑓 |𝐶| > 𝜀

0     𝑖𝑓 |𝐶| < 𝜀
 (1) 

 

In soft threshold, the thresholds produce based on a visually interesting of the image [28]. It can 

overcome the shortcomings of the hard threshold algorithm. So the results processed relatively smoothly. 

Soft threshold function is given by (2): 

 

𝐶𝑛 = {
𝑠𝑔𝑛(𝐶) × (𝐶 − 𝜀)    𝑖𝑓 𝐶 > 𝜀    
0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

 

In our proposed method, the soft threshold method is used to analyze the performance of  

the denoising system for different levels of DWT decomposition, because of the soft threshold leads to a less 

severe distortion of the object of interest than the other thresholds techniques. Finally, the inverse wavelet 

conversion is done to obtain the reconstructed image. 

 

 

3. PROPOSED APPROACH 

This section illustrates the overall proposed approach. The approach utilizes the same algorithm of 

the conventional LB-EVM and PB-EVM. However, an important post-processing stage is added in such  

a way to overcome the problem of noise magnification in the magnified video frames. This is results  

a significant improvement in the quality of the magnified video. The steps of the proposed approach are  

as follows. 

The video file is read as AVI format, then converting all video frames from RGB space into NTSC 

(or YIQ) space. The Y component denotes the information of illumination; I and Q denote the information  

of the chrominance. The YIQ colour system is aim to benefit advantage of human response characteristics to 

the colors. This step is done by applying (3) on all the frame of the video. 

 

[
𝑌
𝐼
𝑄

] = [
0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

] [
𝑅
𝐺
𝐵

] (3) 
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The next step is applying the spatial filter. For LB-EVM method, the Laplacian pyramid 

decomposition is applied on Y-layer for each video frame in order to decompose the source frames in 

different spatial bands. While in PB-EVM the steerable pyramid decomposition is applied on each layer  

(Y, I, and Q) of the video frames individually. The decomposition is used in order to factorize the video 

frames into scalable images for different levels of decomposition. The steerable pyramid [8] is a transform 

that analyzes an image based on spatial scale, orientation, and position.  

The resulted bands from the previous step entered to temporal filter to pass only the interest bands 

of frequencies for amplifying. Subsequently, amplification process is applied on the filtered frames. This is 

attained by multiplying the result frequencies band from the temporal filter by the amplification factor. 

Then, the amplified filtered frames combine with the unfiltered frames. In order to reduce the amplified noise 

in each resulted frame from the previous stage, the denoising process based wavelet is applied. Daubechies 

type 4 is used as a wavelet function with five level of decomposition and soft threshold is applied in denosing 

stage. Finally, Laplacian or Steerable pyramid reconstruction is applied on the denoised frames depending of 

the type LB-EVM or PB-EVM and converted the reconstructed magnified frames from YIQ space into RGB 

space to obtain the original colour of video. This step is done by applying (4) on all the frame of the video. 

 

[
𝑅
𝐺
𝐵

] = [
1 0.956 0.619
1 −0.272 −0.647
1 −1.106 1.703

] [
𝑌
𝐼
𝑄

] (4) 

 

Finally, we get the final video after processing. Figure 5 shows the working mechanism of proposed approach. 

 

 

 
 

Figure 5. The proposed approach based-EVM 

 

 

4. RESULTS AND DISCUSSION 

This section presents the experimental results of the proposed approach to enhance noise 

performance for both LB-EVM and PB-EVM approach and compares them to the results of the conventional 

LB-EVM and PB-EVM approaches. These experiments are achieved in Matlab software version 2017-b. 

Five source videos are used in our tests that are shown in Figure 5. All the used videos in our tests have  

an AVI format. The tested videos that are shown in Figure 5 include: the baby with dimension 960×544×3, 

number of frames is 301 frame, and a frame rate of 30 fps, the eye with dimension 1152×896×3, number of 

frames is 120 frame, and a frame rate of 500 fps, the camera with a dimension 512×384×3, number of frames 

is 1001 frame, and a frame rate of 300 fps, the face with dimension 528×592×3, number of frames is  

301 frame, and a frame rate of 30 fps and finally, the guitar with dimension 432×192×3 , number of frames is 

300 frame, and a frame rate of 600 fps. In order to verify the superiority of the proposed approach over  

the conventional approaches in terms of video quality, we measure the measure the magnified video quality 

and execution time for both of the proposed and conventional approaches using the same computer and  

the input videos. In order to measure the video quality, several evaluated functions are used, which include 

the following. 

a. Peak signal-to-noise ratio (PSNR): The measurement is achieved according to (5) by dividing the square 

of maximum pixel intensity over the mean square error of each video frame. Subsequently, the average 

value of the PSNR of the entire video frames is calculated to get the final required PSNR: 
 

𝑃𝑁𝑆𝑅 = 10 log (
2552

𝑀𝑆𝐸
) 

 

𝑀𝑆𝐸 =
1

𝑁 × 𝑀
∑ ∑(𝐼𝑖,𝑗 − 𝐼𝑎𝑖,𝑗)

2
𝑀

𝑗

𝑁

𝑖

 

(5) 
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where MSE is the mean square error, I and Ia are the original and the amplified frames respectively,  

M and N are the frame dimensions.  

b. MAXERR: is the absolute maximum squared deviation of the input video to the output video. 

c. L2RAT: is the ratio of the squared base of the output video to the input video.  

d. BRISQUE: The BRISQUE algorithm allows for the assessment of perceived quality using a model based 

on natural images with self-ratings instead of a reference image.  

We have achieved the tests by applying octave-bandwidth pyramid for PB-EVM, and IIR, FIR, 

Butterworth, and Ideal band-pass as temporal filters. Several tests have been attained for the five videos as 

shown in Figure 6. 

a. For the first video (baby that is shown in Figure 6(a)), IIR is used as a temporal filter, the magnification 

factor α with values {10, 30, 60, and 100} for LB-EVM and {60, 100, 200} for PB-EVM. While,  

the values of boundary frequencies for the band-pass temporal filter are 0.4 Hz for the lowest frequency 

and 4 Hz for the highest frequency for LB-EVM and {0.2-0.31 Hz} for PB-EVM. The value of sigma has 

been chosen 5 for all the tests. Figure 7 shows sample frames (frames with orders 1, 20, 45, and 60) of the 

source, magnified frames using conventional LB-EVM and magnified frames using the proposed 

approach based LB-EVM at magnification factor α=20. Also, Figure 8 shows sample frames (frames with 

orders 1, 20, 45, and 60) of the source, magnified frames using conventional PB-EVM and magnified 

frames using the proposed approach based PB-EVM at magnification factor α=200. It is clear  

the superiority of the proposed over the conventional ones in noise reduction. The proposed overcomes 

the problem of linear noise magnification in conventional LB-EVM, also reduces noise significantly 

compare to conventional PB_EVM for large magnification factor. Table 1 shows the experimental results 

of both LB-EVM and PB-EVM methods for the proposed and conventional ones. 

b. For the second video (camera that is shown in Figure 6(b)), Butterworth is used as a temporal  

filter, α values are: {100, 150, 160} for LB-EVM and {100, 160, 250} for PB-EVM. The boundary of 

temporal filter frequencies are {45-100 Hz} for LB-EVM and {36-62 Hz} for PB-EVM. The value of 

sigma has been selected 5 for all the tests. Table 2 shows the experimental results of both LB-EVM and 

PB-EVM methods for the proposed and conventional ones.  

c. In the third video (guitar that is shown in Figure 6(c)), FIR is used as a temporal filter, α has values  

{40, 50, 60} for LB-EVM and {40, 60, 120} for PB-EVM. The boundary of temporal filter frequencies 

are {72-92 Hz} for the both LB-EVM and PB-EVM. The sigma has been selected 2 for all the tests. 

Table 3 shows the experimental results of both LB-EVM and PB-EVM methods for the proposed and 

conventional ones.  

d. For the fourth video (face that is shown in Figure 6(d)), ideal band-pass is used as a temporal filter,  

α with values {50, 60, 100, 150, and 200} using LB-EVM. The boundary frequencies for the band-pass 

temporal filter are {0.83333-1 Hz}. This video is used in experimental tests in order to examine ability of 

the proposed approach to detect and magnified the colour variation, also to detect and attenuate 

movement variation. This is done based LB-EVM by increasing number of decomposition in spatial 

domain to 7 levels. In our experiments, we see increasing number of decomposition lead to increase  

the detection of colour variations, while decreasing the movement that we want to attenuate it because it 

is not our interesting. Based our experimental tests, we conclude that for the videos with colour variations 

linear-based method is better in order to reduce the unwanted motion in magnification process. Figure 9 

shows sample frames of the source, magnified frames using conventional LB-EVM and magnified frames 

using the proposed approach based LB-EVM at magnification factor α=200. From the figure, we can see 

clearly the frame quality of the proposed approach better than the conventional one. Table 4 shows  

the experimental results of for the proposed and conventional LB-EVM methods. 

e. For the fifth video (eye that is shown in Figure 6(e)), FIR is used as a temporal filter, α with values  

{65, 75, 85, 120, and 200} using PB-EVM method. The boundary of temporal filter frequencies is  

{30–50 Hz}. The value of sigma has been selected 4 for all the tests. Table 5 shows the experimental 

results of PB-EVM method for the proposed and conventional approaches.  

In all the tests of the tables we see obviously superiority of the proposed approach in terms of 

magnified video quality. Furthermore, in high magnification factors, the proposed approach resists the noise, 

while the noise in conventional LB-EVM linearly increases and that’s lead to fail of the conventional one 

with increasing α. Although high improvement in the magnified videos in terms of quality for the proposed 

approach is verified, the processing time does not increase significantly, where the increment in processing 

time less than 3% from the entire execution time using same software resources. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 6. The videos used in experimental results: (a) baby source video, (b) camera source video,  

(c) guitar source video, (d) face source video, and (e) eye source video 

 

 

1  20  45  60  

(a) 

 

1  20  45  60  

(b) 

 

1  20  45  60  

(c) 

 

Figure 7. Samples of the results using conventional and proposed LB-EVM  

approaches at α=20: (a) the source frames; and amplified frames based on  

(b) conventional and (c) proposed LB-EVM approach 

 

 

1  20  45  60  

(a) 

 

1  20  45  60  

(b) 

 

1  20  45  60  

(c) 

 

Figure 8. Samples of the results using conventional and proposed PB-EVM  

approaches at α=200: (a) the source frames; and amplified frames based on  

(b) conventional and (c) proposed PB-EVM approach 
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(a) 

 

    
(b) 

 

    
(c) 

 

Figure 9. Samples of the results using conventional and proposed LB-EVM  

approaches at α=200: (a) the source frames; and amplified frames based on  

(b) conventional and (c) proposed LB-EVM approach 

 

 

Table 1.The comparison results of the proposed and conventional,  

LB-EVM and PB-EVM respectively, for the baby video 
Input Video: Baby α = 10 α = 30 α = 60 α = 100  Input Video: Baby  α = 60 α = 100 α = 200 

T
h

e 
co

n
v

en
ti

o
n
al

 

L
B

-E
V

M
 [

6
] 

Execution time 117.79 118.78 135.74 135.47  

T
h

e 
co

n
v

en
ti

o
n
al

 

P
B

-E
V

M
 [

7
] 

 Execution time 228.14 231.73 231.33 

PSNR 35.07 30.68 28.06 26.96  PSNR 29.40 27.25 25.08 

MSE 20.23 55.60 101.64 130.94  MSE 74.66 122.48 201.87 

MAXEER 65.67 134.83 175.41 200.40  MAXEER 133.48 145.17 155.99 

L2RAT 0.9995 1.0033 1.0150 1.0411  L2RAT 0.9984 0.9962 0.9891 

BRISQUE 46.79 50.23 51.97 52.46  BRISQUE 44.18 44.51 44.53 

            

T
h

e 
p

ro
p
o

se
d

 

L
B

-E
V

M
  

Execution time 121.32 122.34 139.81 139.53  

T
h

e 
p

ro
p
o

se
d

 

P
B

-E
V

M
  

Execution time 233.85 238.68 238.11 

PSNR 41.91 36.50 33.23 31.09  PSNR 38.78 36.09 33.53 

MSE 4.19 14.56 30.91 50.59  MSE 8.61 15.99 28.85 

MAXEER 42.03 114.09 164.38 188.06  MAXEER 112.83 123.96 138.62 

L2RAT 0.9989 0.9961 0.9948 0.9942  L2RAT 0.9991 0.9990 0.9986 

BRISQUE 44.02 45.05 46.11 46.89  BRISQUE 41.18 42.62 43.18 

 

 

Table 2.The comparison results of the proposed and conventional,  

LB-EVM and PB-EVM respectively, for the camera video 
Input Video: Camera  α =100 α =150 α =160  Input Video: Camera α = 100 α = 160 α =250 

T
h

e 
co

n
v

en
ti

o
n
al

 

L
B

-E
V

M
 [

6
] 

Execution time 125.30 132.28 135.05  

T
h

e 
C

o
n

v
en

ti
o
n

al
 

P
B

-E
V

M
 [

7
] 

 Execution time 262.95 264.85 266.44 

PSNR 29.13 27.52 27.31  PSNR 32.54 30.33 28.37 

MSE 79.44 115.10 120.80  MSE 36.23 60.28 94.64 

MAXEER 52.14 81.63 87.22  MAXEER 180.13 192.12 298.26 

L2RAT 1.0007 1.0067 1.0083  L2RAT 0.9935 0.9892 0.9852 

BRISQUE 24.19 37.02 38.81  BRISQUE 30.99 31.82 32.93 

           

T
h

e 
p

ro
p
o

se
d
 

L
B

-E
V

M
 

Execution time 129.05 136.25 139.10  

T
h

e 
p

ro
p
o

se
d
 

P
B

-E
V

M
  

Execution time 270.84 272.79 274.43 

PSNR 37.16 34.89 33.93  PSNR 37.26 35.80 33.24 

MSE 12.50 21.09 26.31  MSE 12.22 17.10 30.84 

MAXEER 24.63 40.33 43.61  MAXEER 124.10 152.11 184.86 

L2RAT 0.9979 0.9991 0.9994  L2RAT 0.9811 0.9799 0.9771 

BRISQUE 15.61 16.67 18.58  BRISQUE 28.40 28.89 29.01 
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Table 3. The comparison among the proposed and conventional,  

LB-EVM and PB-EVM respectively, for the guitar video 

Input Video: Guitar  α = 40 α = 50 α = 60  Input Video: Guitar α = 40 α = 60 α = 120 

T
h

e 
co

n
v

en
ti

o
n
al

 

L
B

-E
V

M
 [

6
] 

Execution time 27.29  28.17 29.58  

T
h

e 
co

n
v

en
ti

o
n
al

 

P
B

-E
V

M
 [

7
] 

 Execution time 42.02  44.84 45.07 

PSNR 34.20 33.32 32.48  PSNR 30.45 29.97 28.98 

MSE 24.72 30.27 36.74  MSE 58.62 65.47 82.24 

MAXEER 60.92 69.74 78.74  MAXEER 157.79 175.28 327.24 

L2RAT 1.0015 1.0018 1.0021  L2RAT 0.9838 0.9824 0.9732 

BRISQUE 22.27 23.80 23.92  BRISQUE 40.92 33.62 35.45 

           

T
h

e 
p

ro
p
o

se
d

 

L
B

-E
V

M
  

Execution time 28.11  29.02 30.47  

T
h

e 
p

ro
p
o

se
d

 

P
B

-E
V

M
  

Execution time 43.28 46.18 46.42 

PSNR 38.90 38.16 37.82  PSNR 37.52 36.24 35.17 

MSE 8.38 9.93 10.74  MSE 11.51 15.46 19.77 

MAXEER 34.69 37.65 40.83  MAXEER 113.71 127.59 154.16 

L2RAT 1.0004 1.0004 1.0004  L2RAT 0.9685 0.9680 0.9598 

BRISQUE 20.59 20.61 20.67  BRISQUE 29.89 30.59 31.87 

 

 

Table 4. The comparison results of the proposed and conventional using LB-EVM for the face video 

Input Video: Face  α = 50 α = 60 α = 100 α = 150 α = 200 

The conventional 
LB-EVM [6] 

Execution time 42.42 43.28 44.58 45.06 46.61 

PSNR  35.77 34.77 31.78 29.70 28.46 

MSE 17.22 21.68 43.16 69.68 92.70 

MAXEER 24.78 26.74 35.83 50.21 64.77 

L2RAT 0.9993 0.9994 1.0006 1.0037 1.0086 

BRISQUE 23.54 23.56 23.67 23.73 23.77 

       

The proposed 

LB-EVM   

Execution time 43.69 44.58 45.92 46.41 48.00 

PSNR 40.04 39.68 37.05 35.19 34.02 

MSE 6.44 6.99 12.83 19.68 25.77 

MAXEER 20.53 21.06 23.66 27.88 32.83 

L2RAT 0.9986 0.9984 0.9977 0.9971 0.9970 

BRISQUE 21.52 21.55 21.64 21.74 21.78 

 

 

Table 5. The comparison results of the proposed and conventional using PB-EVM for the eye video 
Input Video: Eye  α = 65 α = 75 α = 85 α = 120 α = 200 

The conventional 

PB-EVM [7]  

Execution Time 210.82 211.94 211.88 215.72 216.64 

PSNR 32.85 32.53 32.25 31.49 30.12 

MSE 33.73 36.31 38.73 46.14 63.25 

MAXEER 201.38 206.73 209.30 217.59 223.58 

L2RAT 0.9933 0.9925 0.9917 0.9892 0.9837 

BRISQUE 35.67 37.45 39.08 42.53 46.13 

       

The proposed 

PB-EVM  

Execution Time 217.14 218.29 218.24 222.19 222.71 

PSNR 35.93 35.63 35.37 34.65 33.57 

MSE 16.59 17.79 18.88 22.29 28.58 

MAXEER 133.93 139.64 141.99 208.10 214.12 

L2RAT 0.9906 0.9900 0.9897 0.9893 0.9854 

BRISQUE 33.58 34.98 36.11 38.99 42.89 

 

 

5. CONCLUSION  

This paper has presented an efficient approach to reduce noise of magnified videos based EVM.  

The proposed method employs wavelet transforms as a denoising tool and adds a pos-processing stage for 

conventional LB-EVM and PB-EVM. The experimental results show the superiority of the proposed 

approach over conventional linear and phase based Eulerian video magnification approaches in terms of 

quality of the magnified videos. This allows amplifying the videos by larger amplification factor, so that new 
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important hidden movements or colour variations can be detected. The processing time does not significantly 

increase; the increment is only less than 3% of the overall execution time compare to conventional EVM. 

Furthermore, the increasing levels of spatial decomposition in the proposed approach eliminate unwanted 

movement in colour variation magnification, which causes a distortion in the magnified videos. 
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