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 N-gram based language models are very popular and extensively used 

statistical methods for solving various natural language processing problems 

including grammar checking.  Smoothing is one of the most effective 

techniques used in building a language model to deal with data sparsity 

problem. Kneser-Ney is one of the most prominently used and successful 

smoothing technique for language modelling. In our previous work,  

we presented a Witten-Bell smoothing based language modelling technique 

for checking grammatical correctness of Bangla sentences which showed 

promising results outperforming previous methods. In this work,  

we proposed an improved method using Kneser-Ney smoothing based  

n-gram language model for grammar checking and performed a comparative 

performance analysis between Kneser-Ney and Witten-Bell smoothing 

techniques for the same purpose. We also provided an improved technique 

for calculating the optimum threshold which further enhanced the the results. 

Our experimental results show that, Kneser-Ney outperforms Witten-Bell  

as a smoothing technique when used with n-gram LMs for checking 

grammatical correctness of Bangla sentences. 
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1. INTRODUCTION 

The field of study that deals with processing natural languages is called Natural Language 

Processing (NLP) which investigates how computers can be used to recognize and operate natural  

languages [1]. NLP is an important brach of Artificial Intelligence (AI), which has plenty of applications as 

other branches of AI do like rice grain classification [2], anomalous sound event detection [3], robotic 

navigation [4], recommendation system for buying house [5], and so on. One such application of NLP is 

grammar checking [6]. Though there are a lot of tools and techniques, as described in [7-10], developed for 

grammar checking in recent years, but, grammar checkers have quite a lot of limitations still now. 

There are mainly two approaches to implement a grammar checker, namely rule-based 

approach [11] and statistical approach [12]. In rule-based grammar checkers, a set of manually developed 

grammatical rules are used to decide the correctness of the given text and developing such rules requires time 

and high-level linguistic expertise of the target language. Whereas, in statistics-based approach, the grammar 

rules are built from a text corpus of the target language using statistical methods where common sequences 

that occur often can be considered correct and the uncommon ones incorrect. Language model (LM) is 

a widely used statistical technique that builds a statistical machine from a text corpus of the target language 

that can estimate the distribution of the language as accurately as possible. A central issue in LM estimation 
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is data sparseness, in which case LMs fails to approximate accurate probabilities due to limited training data. 

Smoothing [13] is a technique that resolves this problem by adjusting the maximum likelihood estimator  

to compensate for data sparseness. In practice, LMs are usually implemented in conjunction with  

smoothing techniques for better performance. There are many smoothing techniques available out of which 

Witten-Bell (WB) [14] and Kneser-Ney (KN) [15] are by far the two most effective and widely used 

smoothing techniques. 

A number of good works is done in Bangla in different problem domains of NLP, e.g. 

autocomplete [16], autocorrection of spelling [17], word prediction [18]. Furthermore, there has been much 

development in grammar checking research in many different languages. Nevertheless, being one of the top 

ten spoken languages in the world [19], there has been little development in the Bangla language processing 

specially in grammar checking. Though some efforts have been made, there are still plenty of rooms for 

improvement. In [20] the authors presented an 𝑛-gram LM to design a Bangla grammar checker, where 

the 𝑛-gram probability distributions of parts-of-speech (POS) tags of words are used as feature. A sentence is 

detected as grammatically correct if the product of all the 𝑛-grams in the sentence is greater than zero 

otherwise incorrect. Due to this, their method suffers from the data sparsity problem, which severely 

degrades the performance of the system. Moreover, they used a very small corpus of only 5000 words to 

build the 𝑛-gram model and tested the model on a test set of simple sentences. The authors in [21] presented 

another 𝑛-gram based statistical technique for grammar checking. Rather than using probability of POS tags 

of words this time 𝑛-gram probability distribution of words is used to train and test the system. To deal with 

sparsity problem of 𝑛-gram models, they used WB smoothing with their 𝑛-gram model. They trained their 

statistical 𝑛-gram model with a small experimental corpus of 1 million words with a test set of 1000 correct 

and 1000 incorrect sentences. However, their approach did not clarify how the threshold between correct and 

incorrect sentences is determined which is not a practical approach. Moreover, in our previous work [22],  

a statistical method was proposed which used 𝑛-gram based LM combined with WB smoothing and backoff 

technique to determine the grammatical correctness of simple Bangla sentences, which presented promising 

results. Nevertheless, there are still room for improvement and further analysis are required to find  

an enhanced, robust and well performing statistical grammar checking system for Bangla.  

The issues mentioned above and facts motivated this work where a comprehensive comparative 

study on the performance of WB and KN smoothing based LMs for the purpose of grammar checking of 

Bangla sentences has been performed to find the best possible LM, settings and methods for the development 

of a more accurate and robust grammar checker for Bangla. The presented technique was trained on a large 

Bangla corpus of 20 million words collected from various online newspapers. An improved strategy is 

proposed to determine appropriate threshold to distinguish between grammatical and ungrammatical 

sentences. The threshold was finalized by performing cross validation on the training set and testing on  

a separate validation set in two stages to ensure maximum optimality. The proposed method was tested on  

an updated realistic and challenging test set of 15000 correct and 15000 incorrect sentences consisting of all 

kinds of simple & complex sentences with varying lengths. The rest of the paper is organized as follows; 

section 2 presents some theoretical background on 𝑛-gram based sentence probability calculation. Whereas 

section 3 describes the methodology used for developing the system. Section 4 presents the experimental 

results while section 5 concludes the paper. 

 

 

2. STATISTICAL LANGUAGE MODELING 

N-gram statistical LMs are very popularly used statistical methods for solving various NLP 

problems. 

 

2.1.  N-gram language models 
A language model (LM) is a probability distribution over all possible sentences or strings in  

a language. Let’s assume that S denotes a sentence consisting of a specified sequence of words such that  

S = w1 w2 w3… wk. An n-gram LM considers the word sequence or sentence to be a Markov process [23].  

Its probability is calculated as, 

 

𝑃(𝑆) = ∏ 𝑃(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1)𝑘
𝑖=1   (1) 

 

where 𝑛 refers to the order of the Markov process. When 𝑛 = 3 we call it a trigram LM which is estimated 

using information about the co-occurrence of 3-tuples of words. The probability of 𝑃(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1) can 

be calculated as, 

 

𝑃(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1) =
𝐶(𝑤𝑖−𝑛+1…𝑤𝑖)

∑ 𝐶(𝑤𝑖−𝑛+1…𝑤𝑖−1𝑤𝑖)𝑤
 (2) 
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where, 𝐶(𝑤𝑖−𝑛+1 … 𝑤𝑖) is the count of occurrences of word sequence 𝑤𝑖−𝑛+1 … 𝑤𝑖 and 
∑ 𝐶(𝑤𝑖−𝑛+1 … 𝑤𝑖−1𝑤𝑖)𝑤   indicates the sum of counts of all the 𝑛-grams that starts with 𝑤𝑖−𝑛+1 … 𝑤𝑖−1. 

For example, let us consider the following Bangla sentence, 

 

কাদের একটি আম খেদেদে [english] Kader ate a mango 

(Kader ekti aam kheychey)  

 

The probability of this sentence can be calculated using bigram LM with (1) as, 

 

P(কাদের একটি আম খেদেদে) = P(কাদের|<s>) 

* P(একটি|কাদের) * P(আম|একটি) * 

P(খেদেদে|আম) * P(</s>| খেদেদে)  

For the same English sentence, 

P(Kader ate a mango) = P(Kader |<s>) * P(ate | 

Kader) * P(a| ate) * P(mango |a) * P(</s>| mango) 

 

In practice, to calculate the probability of a sentence a start token <s> and an end token </s> are used to 

indicate the start and end of the sentence respectively. 

 

2.2.  Data sparsity problem 

For any 𝑛-gram that appeared an adequate number of times, we might have a good estimate of its 

probability. But because any corpus is limited, some perfectly acceptable word sequences are bound to be 

missing from it. That means, there will be many cases in which correct 𝑛-gram sequences will be assigned 

zero probability. For example, suppose in the training set the bigram একটি(ekti) আম(aam) occurs 5 times 

but although correct there is zero occurrence of the similar bigram একটি(ekti) আদেল(apple). Now suppose 

we have the following sentence in the test set, 

 

কাদের একটি আদেল খেদেদে [english] Kader ate an apple 

(Kader ekti apple kheychey)  

 

Since the bigram একটি(ekti) আদেল(apple) has zero count in the training corpus, in the bigram 

model the probability will be zero as P(আদেল(apple)|একটি(ekti)) = 0. Consequently, the probability of  

the sentence will be, P(কাদের একটি আদেল  খেদেদে) = 0. This probability will be zero since according  

to (1) the sentence probability is calculated by multiplying the constituent 𝑛-gram probabilities and if one of 

them is zero then total probability will be zero. Therefore, these zero-frequency 𝑛-gram sequences that do not 

occur in the training data but appear in the test set poses great problem for simple 𝑛-gram models in accurate 

probability estimation of the sentences.  

 

2.3.  Smoothing 

Smoothing techniques are used to keep a LM from assigning zero probability to unseen word 

sequences, and has become an indispensable part of any LM. In this work, we utilized the two most widely 

used smoothing algorithms for language modelling namely Witten-Bell (WB) smoothing and Kneser-Ney 

(KN) smoothing. Smoothing techniques are often implemented in conjunction with two useful strategies that 

take advantage of the lower order 𝑛-grams for the calculation of higher order 𝑛-grams that yields zero or low 

probabilities. These are backoff [24] and interpolation [25] strategies. 

 

2.4.  Witten-bell smoothing 

Witten Bell (WB) smoothing compensates the counts of word sequences occurring once to estimate 

the counts of zero frequency word sequences. Originally, WB smoothing algorithm was implemented as  

a linear interpolation instance taking advantage of lower order 𝑛-gram counts. 

 

𝑃𝑊𝐵−𝑖𝑛𝑝(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1) = 𝜆(𝑤𝑖−𝑛+1 … 𝑤𝑖−1)𝑃(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1) 

              + [1 − 𝜆(𝑤𝑖−𝑛+1 … 𝑤𝑖−1)]𝑝𝑊𝐵−𝑖𝑛𝑡𝑒𝑟𝑝(𝑤𝑖|𝑤𝑖−𝑛+2 … 𝑤𝑖−1) (3) 

 

Here, 1 − 𝜆(𝑤𝑖−𝑛+1 … 𝑤𝑖−1) is the total probability mass that is discounted to all the zero 𝑛-grams 

and 𝜆(𝑤𝑖−𝑛+1 … 𝑤𝑖−1) is the the leftover probability mass of for all non-zero count 𝑛-grams. With a little 

adjustment the WB smoothing can be implemented as an instance of backoff language model. The backoff 

version of WB smoothing can be written as: 

 

𝑃𝑊𝐵−𝑏𝑜(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1) = 
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{
       𝜆(𝑤𝑖−𝑛+1 … 𝑤𝑖−1) 𝑃(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1), 𝑖𝑓 𝑐(𝑤𝑖−𝑛+1 … 𝑤𝑖) > 0 

[1 − 𝜆(𝑤𝑖−𝑛+1 … 𝑤𝑖−1)]𝑃𝑊𝐵−𝑏𝑜(𝑤𝑖|𝑤𝑖−𝑛+2 … 𝑤𝑖−1),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (4) 

 

2.5.  Kneser-ney smoothing 

In Kneser-Ney (KN) smoothing the lower-order distribution that one combines with a higher-order 

distribution is built on the intuition that rather than calculating the probability of a word proportional to its 

number of occurences, it should be calculated based on the number of different words it follows. In its 

original definition, Kneser and Ney defined KN smoothing as a backoff language model combining lower 

order models with higher order model using backoff strategy as: 

 

𝑝𝐾𝑁−𝑏𝑜(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1) = 

{

𝑚𝑎𝑥 {𝐶(𝑤𝑖−𝑛+1…𝑤𝑖)−𝑑,0}

𝐶(𝑤𝑖−𝑛+1…𝑤𝑖−1)
, 𝑖𝑓 𝑐(𝑤𝑖−𝑛+1 … 𝑤𝑖) > 0 

𝜆(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1)𝑝𝐾𝑁−𝑏𝑜(𝑤𝑖|𝑤𝑖−𝑛+2 … 𝑤𝑖−1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (5) 

 

where 𝜆(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1) represent the backoff weights assigned to the lower order 𝑛-grams which 

determine the impact of the lower order value on the result. The discount 𝑑 represents the amount of counts 

that are discounted from each higher order 𝑛-grams. 𝑑 can be estimated based on the total number of 𝑛-grams 

occurring exactly once (𝑛1) and twice (𝑛2) as 𝑑 =
𝑛1

𝑛1+2𝑛2
. The probability for the lower order 𝑛-grams can be 

calculated as 

 

𝑝𝐾𝑁−𝑏𝑜(𝑤𝑖|𝑤𝑖−𝑛+2 … 𝑤𝑖−1) =
𝑇1+(𝑤𝑖−𝑛+2…𝑤𝑖)

𝑇1+(𝑤𝑖−𝑛+2…𝑤𝑖−1)
 (6) 

 

where, 𝑇1+ (𝑤𝑖−𝑛+2 … 𝑤𝑖)  = | {𝑤𝑖−𝑛+1 : 𝐶 (𝑤𝑖−𝑛+1 … 𝑤𝑖) > 0} | and 𝑇1 + (𝑤𝑖−𝑛+2 …  𝑤𝑖−1) =
∑ 𝑇1+(𝑤𝑖−𝑛+2 … 𝑤𝑖)𝑤𝑖

. With a little modification the interpolated version KN of can be defined as follows: 

 

𝑃𝐾𝑁−𝑖𝑛𝑝(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1) =   
𝑚𝑎𝑥 {𝐶(𝑤𝑖−𝑛+1…𝑤𝑖)−𝑑,0}

𝐶(𝑤𝑖−𝑛+1…𝑤𝑖−1)
+

 𝜆(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1)𝑃𝐾𝑁−𝑖𝑛𝑝(𝑤𝑖|𝑤𝑖−𝑛+2 … 𝑤𝑖−1) (7) 

 

 

3. PROPOSED GRAMMAR CHEKCING METHODOLOGY 

In this section we present the grammar checking methodology that we used to evaluate and analyse 

the performances of smoothing algorithms. It is an updated version of the grammar checker we presented and 

described in our previous work. The overall framework or workflow of the system is depicted in Figure 1. 

The working procedure of the grammar checker consists of three main phases: Training phase, validation 

phase and testing phase. 

 

 

 
 

Figure 1. Work flow diagram for proposed the grammar checker 
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The training process in the proposed system starts by accepting the training corpus and the 𝑛 value 

as input. After accepting the input text and the 𝑛 value, possible 𝑛-gram patterns of words are extracted and 

frequencies of 𝑛-grams are then calculated. Using these 𝑛-gram frequencies LMs are trained based on  

the algorithms discussed in the previous sections. In the validation phase, a best possible threshold is 

calculated for separting the correct or incorrect sentences. The validation process starts by accepting 

a validation or heldout set consisting of a set of correct and incorrect test sentences. Then the probabilities of 

these test sentences are calculated and a threshold value is determined that best separates the grammatical and 

ungrammatical sentences. To do so first we need to define a method to calculate the sentence probability 

properly which is discussed next. 

 

3.1.  Calculation of sentence probability 

The sentence probability in 𝑛-gram LMs is usually calculated using (1) by first finding  

the constituent 𝑛-grams in the sentence as shown in section 2.1. Since probabilities are by definition less than 

or equal to 1, the more probabilities we multiply together, the smaller the product becomes. Due to that 

sentence length (i.e. the number of word tokens in the sentence) has a negative effect on the probability of  

a sentence. With larger length a sentence tends to have smaller probabilities even though having higher 

probability constituent 𝑛-grams. So, a larger length correct sentence might have smaller probability than  

a smaller length incorrect sentence because of this effect. To deal with this impact of sentence length on 

sentence probability calculation a new sentence probability scoring function is introduced in this work 

defined in (8) by normalizing the sentence probability in (1). 
 

𝑃(𝑆) = √∏ 𝑃(𝑤𝑖|𝑤𝑖−𝑛+1 … 𝑤𝑖−1)𝑘
𝑖=1

𝑘
 (8) 

 

3.2.  Optimal threshold calculation 

In the validation phase, optimal threshold for the 𝑛-gram based classfier is calculated in two stages. 

In the first stage, we used 10-fold cross validation on the training set which consists of only grammatically 

correct senetcnes. Since, a correct sentence typically has a higher probability than an incorrect one, in each 

fold we selected the lowest probability score among the sentences of training part as the threshold and used 

that threshold to classify the test sentences and find the misclassification error with that threshold.  

The threshold that has the minimum misclassifcaton error is finally chosen as the final threshold. The process 

is an improved version to the process we used in our previous work. The process is explained in Algorithm 1. 
 

Algorithm 1. Priliminary threshold selection from training set in stage 1 

 Input: S= training data set; 

L = corresponding true labels of positive and negative sentences in VS 

LM = language model to be used  

1. Divide the data set into 10 equal sized subsets as S = {S1, S2,…., S10}  

2. Set MCRmin= 1 //the minimum misclassification rate and 

Set T = final threshold  

3. For i = 1 to 10 Do, 

4.    Set Stest = Si and Strain = S - Si  

5.    Train the LM on Strain. 

6.     t = Find the minimum probability in Strain and set it as current threshold 

7.     probs = Test the LM on Stest using t as threshold.. 

8.  mcr = Find the misclassification rate for the current threshold. 

9.   If mcr < MCRmin then Set MCRmin = mcr and T= t 

10. End For        

11. return T //T is the final threshold selected 
 

Though methods in the first stage work well but they introduce a lot of false positives in the final 

classification. Since we are using the minimum probability score of correct or positive sentences as threshold 

it ensures high true positives but it adversely overlaps with a substantial number of incorrect sentences in  

the probability distribution. Hence, the high false positive rates. To reduce the unwanted high number of false 

positives and to improve the classification performance overall in the second stage we used a method that 

gradually increases the threshold to reduce the number of false positives but also ensures the balance between 

false positives and false negatives. This method is applied on a separate validation set consisting of equal 

number of positive and negative sentences to finalize the optimal threshold. This process is explained in 

Algorithm 2.  
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In the testing phase, the classification LMs are tested on a separate test set consisting of grammatical 

and ungrammatical sentences using the optimum threshold calculated in the validation phase. If any 

senetence has a probability less than the optimum threshold then it is classified as ungrammatical otherwise 

grammatical. 

 

Algorithm 2. Optimal threshold selection from validation set in stage 2 

 Input: t0 = preliminary threshold calculated from the training set using Algorithm 1; 

VS = validation set 

L = corresponding true labels of positive and negative sentences in VS 

LM = language model to be used  

1. Calculate [TP,FP,TN,FN] using t0 as threshold testing on VS where TP = no. of true positives, FP = 

no. of false positives, TN = no. of true negatives, FN = no. of true positives  

 Calculate FPR = FP/(TN+FP), FNR =FN/(TP+FN) and MCR=FPR+FNR where FPR = false 

positive rate, FNR = false negative rate and MCR = overall misclassification rate    

2. Set th = t0 // th is the final threshold  

 Divide the range [t0, 1] into k equal sized thresholds in THS = { t1, t2,…., tk}  

3. For each threshold t in THS Do, 

4.     Calculate [TP,FP,TN,FN] using t as threshold on VS and hence calculate the fprt and fnrt for t.  

5.     If fprt ≤ fnrt and MCR ≥ fprt + fnrt then, 

6.      Set th = t, FPR = fprt, FNR = fnrt and MCR = FPR+FNR 

7.  End If 

8. End For 

9 return th //th is the final threshold selected    

 

 

4. RESULTS AND ANALYSIS 

The main focus of this section is to investigate the performance of the grammar checking system 

based on certain factors such as the smoothing algorithm used, 𝑛-gram orders, length of the target  

sentences etc. To train and test the LMs we used a large corpus of 20 million words containing 181820 

grammatically correct sentences. Around 80% of the corpus is used for training purpose. The validation set 

consists of 20000 correct sentences and 20000 incorrect sentences. The grammatically incorrect sentences are 

artificially created by inseting, deleting or replacing words in the correct sentences in the set. The test set 

contains 15000 correct and 15000 incorrect sentences. In our previous work, we only tested the methods on  

a test set containing only simple senetnces of length of 5-10 words. This time we tested the techniques on  

a more difficult and practical test set consisting of all kinds of simple, complex and compound sentences with 

lengths ranging from 5 to 20 words. The experiments have been tested on a machine with 2.40GHz Intel  

Core i3 processor and 12 GB of RAM, running on Microsoft Windows 8. The experimental system has been 

developed using python programming language. The comparative performances of the LMs were evaluated 

by precision, recall and f-scores. The overall performances of the different LMs based on the smooting 

techniques and 𝑛-gram order used are presented in Table 1. 

Table 1 represents the results of different LMs for each metric (precision, recall & f-score) in two 

columns. The gray shaded column represents the results obtained using the threshold selection method used 

in our previous work [22] and the other column represents the results attained using our two stage threshold 

selection procedure explained in Algorithm 1 and Algorithm 2, which is proposed in this work. Our newly 

proposed two stage optimum threshold selection approach clearly provides significantly improved results for 

all the LMs compared to the previous approach. It significantly increases the precision and hence the overall 

f-score for all the LMs with the cost of small or insignificant reduction in recall values for grammatical 

sentences. Similarly, for ungrammatical sentences the recall scores are significantly improved resulting in 

much improved f-score with the negligible loss of precision values. This improved performance is due to  

the reduction in false positives and also keeping a balance between false positives and false negatives. These 

results prove the superiority of our proposed method compared to the previous one. From the newly found 

results in Table 1 it is evident that, KN-interp with its 5-gram model clearly outperforms all the other LMs in 

terms of precision, recall and f-score for both grammatical and ungrammatical sentences achieving highest  

f-scores of 72.92% and 68.51% respectively. In terms of f-score as we can see from the Table 1, WB-backoff 

produces the second best results for both grammatical and ungrammatical sentences with KN-backoff model 

providing the third best performance. The models rank similiarly in terms of precision and recall with one or 

two exceptions such as for recall metric KN-backoff performs slightly better than WB-backoff. 
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Table 1. Performances of different LMs 
Models N-gram 

Order 

Performances with Grammatical Data Performances with Ungrammatical Data 

Precision Recall F-score Precision Recall F-score 

With T1 With T2 With T1 With T2 With T1 With T2 With T1 With T2 With T1 With T2 With T1 With T2 

WB-

backoff 

2 34.56% 42.10% 52.67% 51.54% 41.74% 46.35% 38.69% 37.53% 24.89% 29.11% 30.29% 32.79% 

3 52.31% 61.81% 73.36% 71.57% 61.07% 66.33% 68.29% 66.24% 50.76% 55.78% 58.24% 60.56% 

4 55.43% 66.48% 75.76% 73.55% 64.02% 69.84% 72.58% 70.40% 56.32% 62.91% 63.43% 66.45% 

5 56.31% 66.42% 75.29% 74.25% 64.43% 70.12% 73.01% 70.81% 55.89% 62.46% 63.31% 66.37% 

WB-

interp 

2 31.87% 40.45% 51.51% 50.55% 39.38% 44.94% 35.15% 34.09% 20.32% 25.58% 25.75% 29.23% 

3 52.12% 60.70% 69.47% 67.91% 59.56% 64.10% 65.55% 63.58% 47.98% 56.02% 55.41% 59.56% 

4 53.11% 64.38% 73.85% 72.26% 61.79% 68.10% 70.52% 68.40% 50.21% 60.03% 58.66% 63.94% 

5 55.02% 64.70% 75.34% 73.36% 63.60% 68.76% 71.39% 69.24% 53.41% 59.97% 61.10% 64.27% 

KN-

backoff 

2 32.12% 38.81% 50.12% 48.61% 39.15% 43.16% 32.22% 31.25% 19.97% 23.36% 24.66% 26.73% 

3 49.18% 59.64% 69.92% 68.02% 57.75% 63.56% 64.75% 62.80% 47.65% 53.97% 54.90% 58.05% 

4 51.55% 62.61% 76.56% 74.84% 61.61% 68.18% 70.86% 68.73% 50.33% 55.31% 58.86% 61.29% 

5 52.44% 64.01% 78.93% 77.00% 63.01% 69.91% 73.35% 71.14% 50.91% 56.71% 60.10% 63.11% 

KN-

interp 

2 35.76% 44.79% 56.30% 55.36% 43.74% 49.52% 42.86% 41.57% 25.87% 31.76% 32.26% 36.01% 

3 52.89% 62.61% 74.60% 72.99% 61.90% 67.40% 69.72% 67.62% 48.79% 56.42% 57.41% 61.52% 

4 57.09% 67.18% 77.38% 76.46% 65.70% 71.52% 73.63% 72.69% 55.88% 62.64% 63.54% 67.29% 

5 58.71% 68.15% 79.51% 78.41% 67.54% 72.92% 75.70% 74.58% 56.10% 63.35% 64.44% 68.51% 

*Here, T1 is the threshold calculated using the threshold selection algorithm defined in our previous work [22]. T2 is the threshold 

calculated using the two-stage threshold selection technique introduced in this work. 

 

 

Performances of the LMs inprove with the growing order of 𝑛-gram and the performance 

improvement gets lesser with each higher order. Though the performances of most of the LMs tend to 

increase from 4-gram order to 5-gram order, the performance differences are very insignificant. Figure 2 and 

Figure 3 depict this effect where the f-scores of the LMs varied by the 𝑛-gram order are presented for both 

grammatical and ungrammatical sentences. Though not presented here, similar effects can be observed in 

terms of precision and recall. 

Since we are using a data set consisting of varied length of sentences, next we try to find out 

whether sentence length has any effect on the performances of LMs. Figures 4 and 5 present the f-scores of 

two of our best performing LMs, KN-interp and WB-backoff varied by the length of sentences tested for both 

grammatical and ungrammatical data respectively. From Figures 4 and 5, we find that the performances of 

the LMs gradually decrease with the increasing sentence length for the sentences. This is understandable 

since sentences with more words or higher length will tend to be more complex in structure and difficult to 

be judged. But this degradation in performance is linear not exponential and changes are very small. 

This shows the robustness of our sentence probability calculation function defined in (8). Though not 

presented here, performances of other LMs (KN-backoff and WB-interp) and on other metrics shows similar 

characteristics for the dependency of the method on sentence length. So, we can conclude that KN LM with 

its interpolated version i.e. KN-interp outperforms all the other LMs in terms of all performance metrics. 

With higher 𝑛-gram order the performances of the LMs improve with 4-gram and 5-gram models showing 

similar performances with negligible diffrences and the length of the sentence does not affect 

the performance of the LMs significantly. 

 

 

  
 

Figure 2. Effect of 𝑛-gram order on the performances 

of LMs for grammatical data 

 

Figure 3. Effect of 𝑛-gram order on the performances 

of LMs for ungrammatical data 
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Figure 4. Effect of sentence length on the 

performances of LMs for grammatical data 

 

Figure 5. Effect of sentence length on the 

performances of LMs for ungrammatical data 

 

 

5. CONCLUSION 

The goal of this research was to design and develop a robust grammar checking system for Bangla 

language which can accurately judge realistic, simple and complex sentences for grammaticality. To attain 

that extent, a statistical grammar checking system based on 𝑛-gram language modelling has been designed 

and developed. To achieve robust performance with 𝑛-gram models two most widely used smoothing 

techniques namely Kneser-ney and Witten-bell were used and compared to find best performing system. 

Furthermore, the LMs’ performances were tested on a newly developed challenging test set containing 30000 

all types of simple, complex and compound sentences to attain realistic performance results. 

Our experimental results show that Kneser-ney interpolated smoothing based 5-gram LM outperforms others 

in terms of all the metrics achieving f-scores of 72.92% and 68.51% for grammatical and ungrammatical data 

respectively. For further this research work, more features such as parts of speech tags and other linguistic 

features can be added to improve the performance of the system. 
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