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 Time delays are generally unavoidable in the designing frameworks for 

mechanical and electrical systems and so on. In both continuous and discrete 
schemes, the existence of delay creates undesirable impacts on the under-
thought which forces exacting constraints on attainable execution. 
The presence of delay confounds the design structure procedure also.  
It makes continuous systems boundless dimensional and also extends  
the readings in discrete systems fundamentally. As the Proportional-Integral-
Derivative (PID) controller based on internal model control is essential and 
strong to address the vulnerabilities and aggravations of the model. But for 
an real industry process, they are less susceptible to noise than the PID 

controller.It results in just one tuning parameter which is the time constant  
of the closed-loop system λ, the internal model control filter factor. 
It additionally gives a decent answer for the procedure with huge time delays. 
The design of the PID controller based on the internal model control,  
with approximation of time delay using Pade’ and Taylor’s series is depicted 
in this paper. The first order filter used in the design provides good set-point 
tracking along with disturbance rejection. 
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1. INTRODUCTION 

The Controller design is the most indispensable and vital part of the control applications. There are 

many types of controller architectures which are accessible in the literature. The nature of the controller can 

be either of conventional or intelligent type. The performance evaluation part comes into action after  

the design of the controller. The designed controller needs to produce best possibleoutcome inspite of 

non linearities in plant and equipment and saturation of saturation [1-6]. 

Kravaris et al. [7] have used Smith predictor as the dead time compensation method for linear 

systems represented by transfer functions. Gao et al. [8] obtained a PID controller design method based on 

IMC, it is eye-catching to industrial users because of single alteration parameter. The tuining parameter relate 

straight to the closed-loop performance and the robustness. Morari-Zafiriou [9] and Gopi et al. [10, 11] have 

used a first order Pade’ approximation of the delay element in the process model in order to realise  
the closed-loop controller based on IMC principle. This closed-loop controller provides good setpoint 

response. Horn et al. [12] and Gopi et al. [13] have confirmed the widely published IMC-PID tuning rules 

provide deprived load disturbance support for applications where the closed-loop dynamics needed are 

significantly faster than the open loop dynamics. The IMC filter design is tailored to acquire loworder 

controllers that provide efficient disturbance restraint regardless of where the disturbances are entering  
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the closed-loop system.Lee et al. [14] explained PID parameters for general process models by recalling  

the feedback form in the Laplace variable of an IMC controller with a Maclaurin series. The PID parameters 

provide closed-loop results nearer to the required outcomes than those acquired by PID controllers tuned  

by previous methods. A number of PID and predictive controller strategies have been weighed  

by Syder et al. [15] to compensate for processes modeling in first order lag plus time delay form.  

The resulting compensated systems 'performance and robustness are evaluated analytically (if applicable) and 

in simulation. The analytical tuning rules presented by Skogestad et al. [16] they are as easy as possible, 

resulting in excellent closed-loop behaviour. The guiding principle was the IMC-PID tuning rules of Rivera, 

Morari and Skogestad that attained wide industrial acceptance. The integral word has been altered to enhance 

rejection of disturbance in integration systems [17]. 
Mann et al. [18] described the PID analysis of the time domain, which included three types FOPTD 

models: (a) negligible time delay, (b) small to medium delay and (c) prolonged delay. The first part of  

the analysis shows that for plants with negligible time delay, the optimum PID controller is a PI controller.  

A new PID tuning scheme has been developed for low to medium delay problems. The proposed tuning rule 

can accommodate the saturation of the actuator and is therefore capable of selecting an optimal  

PID controller [19]. Chen et al. [20] presented a PID controller design method based on the direct synthesis 

approach and specification of the desired closed-loop transfer function for disturbance. Analytical 

expressions for PID controllers are obtained for several popular kinds of process designs including first order, 

second order plus time delay models and an integer plus time delay model.Skogestad et al. [21] introduced 

IMC-based tuning guidelines for PID controllers that are easy and still result in excellent loop behavior.  

To obtain this model form Simple model reduction analytical rules are provided, for effective time delay 
incorporating the' half rule'. Wang et al. [22] explained recently developed control methods for unstable 

processes with time delays. The evaluation was carried out using seven existing controller design methods 

relating to their applicability, control performance and robustness.  

Shamsuzzoha et al. [23] proved the IMC-PID tuning laws for excellent set-point monitoring but 

slow disturbance, which becomes serious when a process has a slight continual delay/time ratio. In this 

research, an ideal IMC filter structure is suggested for several representative process models to design a PID 

controller that generates an enhanced reaction to disturbance rejection. A closed-loop guideline is also 

suggested to cover a broad variety of process models with different time dealy time constant ratio (  ).  

 

 

2. TUNING RULES FOR FIRSTORDER PROCESS WITH DEAD TIME 
To display the desired property on the control system, controller parameters need to be adjusted.  

It's known as tuning. In many industries, PID controllers are used. Most of these controllers were analog,  

but digital signals and computers are used by today's controllers. The controller's parameters can be 

determined explicitly when a system's mathematical model is available. The parameters are determined 

experimentally when a mathematical model is not accessible. The parameters of the controller produce  

the desired controller output. Controller tuning enables a process to be optimised and minimizes the error 

between the process variable and its set point [1, 6, 24-26].  

The different types of methods for controller tuning include methods for testing and error and 
methods for process reaction curve. Ziegler-Nichols and Cohen-Coon methods are the most common 

classical controller tuning methods. These techniques are often used when the mathematical model of  

the system is not accessible. The Ziegler-Nichols technique can be used for both closed and open loop 

schemes, whereas Cohen-Coon is typically used for open loop schemes. Closed-loop control system is  

a scheme that utilizes feedback control. The output in an open-loop scheme is not compared to  

the input [1, 6, 11, 24, 26]. The equation of the PID controller is represented in (1). 

 

1
( ) ( ) ( ) ( )

d
u t K e t e t dt T e tP dT dti

 
   

 
 (1) 

 

There are three tuning parameters for a PID controller. If these are adjusted in an adhoc fashion,  

a satisfactory controller performance may take a while. Thus, in 1942 Ziegler and Nichols proposed the two 

tuning methods [1] and were widely used either in the original form or in modified forms [5]. First method is 

called the ultimate method of sensitivity by Ziegler–Nichols. The second method is called the step response 

method of Ziegler–Nichols [1, 5, 6, 24].  

The prior tuning rules were based on experiments that compelled a process to continuously oscillate. 

As a consequence, the system is compelled to the brink of instability and it may take some time to 

alliteratively adjust the controller for constant oscillation. The tuning rules explained below are based on  
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the process models which are represented as FOPDT process of (2) or (3), which are obtained through open 

loop step tests. 

 

( ) s
PG s Ke   (2) 

 

The first order plus time delay processes have a maximum slope of  /  P PK at t qK    these guidelines can 

be used in the first order plus time delay processes for a unit step input. 

 

 ( ) / 1s
P pG s Ke s    (3) 

 

 

3. PROPORTIONAL INTEGRAL DERIVATIVE CONTROLLER TUNING WITH INTERNAL 

MODEL CONTROL  

A model-based control method is used in Internal Model Control (IMC). It is also possible to use  

the IMC method as a PIDcontroller tuning method [7, 11 25, 27]. The method is generally applicable to 

systems with constant delays, but the IMC method is also applied to systems with varying time delays.  

Photograph Figure 1 is the IMC principle representation. 

 

 

 
 

Figure 1. IMC structure [3] 

 

 

The model output error is removed from the reference signal and fed into the control  
signal calculating IMC. Calculating the IMC controller Q(s) first divides the process model into two  

parts as follows:  

 

( ) ( ) ( )M M M
G s G s G s   (4) 

 

( )G s
M Is the model's non-invertible part, Includes all unstable zeroes and delays. Included in  

the rest of the model ( )G s
M . The IMC controller ( )Q s is given by (5): 

 

 
1

( ) ( ) ( )Q s G s f sM


   (5) 

 

where ( )f s  the transfer function of low-pass with order n (6): 

 

 

1
( )

1

f s n
sIMC





 (6) 

 

To have a causal controller, the low-pass filter is required. The IMC is the IMC method's tuning 

parameter. The value IMC of the controlled system has a important impact on efficiency and robustness. 
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It is difficult to achieve robust tuning and fast response simultanesouly, thus thieis a trade-off. Robustness 

plays a vital role in different time-delay systems, and it turns out that tuning IMC is crucial. 

Recognizing the dependence between the IMC controller Q in Figure 1 is useful when implementing 

the IMC controller with the controller of traditional feedback loop in Figure 2. The (7) gives the IMC law in  

the classic control loop.  
 

( )
( )

1 ( ) ( )
C

M

Q s
G s

G s Q s



 (7) 

 

 

 
 

Figure 2. IMC modified structure for closed-loop [3] 

 

 

The process delays must be approximated with linear transfer function to design the controller.  

The delay can be approximated to the expansion of the Taylor series or the approximation of the first  

order Padé [10]. 

 

 
 

1 / 2

1 / 2

s s
e

s

 



 



 (8) 

 

Under certain assumptions, the IMC design often yields high-order controllers. The proportional integral (PI) 

control structure can be obtained from the IMC design and the tuning parameters can therefore be obtained 

for a regular proportional internal control controller. Consider the model for the FOPTD process.  

Using the IMC design and the first order Taylor series expansion  1
s

e s





  and with first order 

(n=1) low-pass filter the controller C becomes [5, 10]. 

 

 

 

1
( )

s
C sPI

Ks IMC



 





 (9) 

 

The PI controller with parameters is given as: 

 

( )
 ;P

IMC
iK

K
T










  (10) 

 

When using the delay approximation padé, controller C becomes [10]. 

 

 
  ( ) 1 1/ 1 / 2

1
PID

IMC

C s s s
Ks


 


  


 (11) 

 

 1 / 2
( )

P
IMC

K
K


 

 
 


; / 2iT    ; 

2
dT



 



 (12) 

 

The PI Controller form is in fact the interacting controller [6, 10, 11]. 
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4. THE IMC BASED PID CONTROL DESIGN PROCEDURE  

In the design of the IMC based PID control system, the following steps are used [11, 24]: 

- First, it is necessary to determine the transfer function of the IMC controller ( )Q s , including a low  

pass filter ( )f s for semi-proper or derivative action. The numerator’s order is one order larger than  

the denominator and this is required to find a PID controller equivalent. It's a big difference from  

the process of IMC. A filter of the form (13) is often used for integration or unstable processes or to 

achieve better disruption rejection [11, 12]. 
 

 (s) 1 1
n

f sIMC   (13) 

 

- Using the transformation, the equivalent standard feedback controller is given  
 

 ( ) ( ) 1 ( ) ( )C PG s Q s G s Q s   (14) 

 

- The (14) must be displayed in PID form and evaluated in KP, Ti, Td. This process sometimes results in 

an optimal PID controller cascaded with a filter with a steady filter period (τf). 
 

 2
( ) 1 1 1C s K T T s T s si iP d f     

   
 (15) 

 

- The ideal model situation and instances with closed-loop model mismatch simulations need to be 

performed. Adjust λIMC to model error based on a tradeoff amid performance and robustness sensitivity. 
The initial values for λIMC are between 1/3 and 1/2 of the dominant time constant [24].  

 

 

4.1.  First order plus dead time process 

The most common representation of chemical process dynamics is the first-order plus dead time. 

For a large number of process control loops, the PID equivalent form developed is useful. The following 

steps are used for first order with dead time processes in the IMC-based PID design. The process is given by: 
 

 
( )

1

s
e

G s KP
s










 (16) 

 

- The approximation of the first order for the dead time is provided by [10] 
 

   1 0.5 1 0.5se s s       (17) 

 

  
(1 0.5 )

( )
1 1 0.5

K s
G sM

s s



 




 
 (18) 

 

- To avoid the predictive part, factor the non-invertible elements 
 

  ( ) 1 1 0.5G s K s sM         (19) 

 

 ( ) 1 0.5MG s s    (20) 

 

- Then the idealized controller is given 

 

  ( ) 1 0.5 1 / KQ s s s     (21) 

 

- To make the Q(s) proper, filter f(s) is added. But to get the PID controller, Q(s) will besemi-proper.  

The derivative option is used to allow Q(s) numerator to be higher than the denominator in one order. 

 
1

( ) ( ) ( ) ( ) ( )Q s Q s f s G s f sM


    (22) 
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The PID equivalent is obtained as: 

 

 
( )

( )
1 ( ) ( )

Q s
G sC

G s Q sM




 (23) 

 

  
 

1 1 0.51
( )

0.5

s s
G sC

K s s s

 

 

 



 (24) 

 

 
 

2
0.5 0.5 11

( )
0.5

s s
G sC

K s s

  

 

  



 (25) 

 
PID parameters evaluated from the above equation are shown below: 

 

 0.5

( 0.5 )
KP

K

 

 





 (26) 

 

0.5Ti   
 (27)

 

 

2
Td



 



 (28) 

 
When the process is first order plus dead time, the IMC-based PID controller design procedure has 

resulted in a PID controller. In this development, a Padé approximation for dead time was used which means 
that the filter constant (λ) can not be randomly reduced. The IMC-based PID strategy will therefore have 
performance limitations that do not occur in the IMC strategy. Because of the model uncertainty owing to  
the approximation of thePadé, Rivera et al. (1986) [28] suggest that λ>0.8 be used owing to the uncertainty of 
the model. Morari and Zafiriou (1989) suggest λ > 0.25 [9] for the PID plus lag system. 

 

4.2.  Integratorplus deadtime process 
For processes in which the time constant is dominant, the step response behavior can be 

approximated as an integrator plus dead time as the following transfer function characterizes [17, 29-34]. 

 

( )

s
Ke

G sM
s



  (29) 

 
Approximating it as FOPTD model [17, 29-34] 

 

        Large   constant( ) ,
1

where arb

s

i
K

t
e

G sM
s

rary












 (30) 

 

Applying the First Pade’ expansion approximate to the delay term se   results in 

 

1 0.5

1 0.5

ss
e

s










 
 
 

 (31) 

 

  
 ( ) , ( ) 1 0.5

1 1 0.5

K
G s G s sM M

s s




 

 
  

 
 (32) 

 

IMC controller ( )Q s is: 

 

  1 1 0.5 1
( )

( 1)

s s
Q s

K s

 

 

 



 (33) 
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The closed-loop feedback controller, equal to IMC controller Q(s) is: 

 

( )
( )

1 ( ) ( )

Q s
G sC

Q s G sM




 (34) 

 

  
    

1 1 0.5
( )

1 1 0.5 1 0.5

s s
G sC

K s s s

 

   

 


     
 (35) 

 

A proportional integral controller results with the following parameters for integral process. 

 

 
 

0.5

0.5
PK

K

 

  





; 0.5iT    ;

0.5

0.5
dT



 



 (36) 

 

 

5. RESULTS AND ANALYSIS 
Design with time delay is implemented using MATLAB in the IMC-based PID controller.  

The actual function of process transfer is never accurately known. It is therefore necessary to use two process 
representations of the transfer function. Thus, one is regarded as a process or plant that is never accurately 

known, and the other is considered as a process model that is accurately known. In the IMC process model, 

the actual process is maintained in parallel. The ideal PID controller based on IMC means that the model is 

perfect and there is no disturbance or delay. So there's no feedback either. 

 

5.1.  Case 1: FOPDT 

An IMC based PID controller's transfer function is given in (37) for a first order with time delay 

plus first order disturbance. The function of transfer is taken from [25]. The approximation of a first order 

Pade' is used for time delay. A first-order disturbance Gd(s) (38) together with the process model  

is considered.  
 

 

1
100

( )
100 1

s
e

G sP
s






 (37) 

 

 
1

( )
30 1

G sd
s




 (38) 

 

The time delay is approximated with first order Pade’ approximation and the value of IMC filter 

 
2

( ) 1 1f s s  to make the controller semi-proper. The value of λ=20 is chosen, which is having range 

λ>0.2τ. But practically the initial values of λ should lie in the range of 1/3 to 1/5 of the time constant of  

the process. Substituting the value of λ in the IMC controller Q(s) of (21) along with (36), (37), (17), (18) and 

(19) results in (39). 
 

 
 

50 ²  100.5   1

400 ²  40  
( )

 1

s s

s s
Q s









 (39) 

 

For obtaining the closed-loop feedback controller with PID controller, substitution and 

simplification with the procedure defined earlier the parameters of the PID controller are : 
 

.5   100.50.049; ;   0T Ti dKP    (40) 

 

IMC-based PID controller's Simulink block diagram for a first order with time delay plus first order 

disruption is shown in Figures 3 and 4. The IMC based PID controller's unit step response is shown in 

Figure 5 for a first order with time delay plus first order disturbance. Photograph. Figures 6 and 7 illustrate 

the disturbance response of IMC–PID and IMC, and Table 1 encapsulates the integral performance criteria 

for FOPTD plus disturbance of the first order. From Figures 5, 6, 7 and Table 1 it can be inferred, in contrast 

to the IMC controller, the IMC-PID provides improved set point tracking and disturbance rejection. Rising 

time is improved, settling time is reduced, and disturbance recovery is rapid. 
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Figure 3. Simulink implementation of IMC for FOPTD 

 

 

 
 

Figure 4. Simulink implementation of IMC-PID for FOPTD 

 
 

  
  

Figure 5. Setpoint Response of FOPTD for step input Figure 6. Disturbance response of IMC-PID  

for FOPTD 
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Figure 7. Disturbance response of IMC for FOPTD 
 

 

Table 1. Performance comparison of FOPTD 
 Disturbance Setpoint 

Controller IAE ISE ITAE IAE ISE ITAE 

IMC 55 12.81 758.8 249 249 3125 

IMC-PI/PID (Proposed) 5.122 0.266 255.5 20.51 10.54 439.7 

 

 

5.2.  Case 2: Integrating process 
The process model of integrating process with time delay is considered [17],  

 

7.40.2
( )

s

M

e
G s

s



  (41) 

 

For obtaining the closed-loop feedback controller with PID controller, substitution and simplification with 

the procedure defined earlier in the section IV, the parameters of the PID controller are: 
 

   1000. .5049; ;   0.5dP iT TK    (42) 

 

The disturbance response of the IMC-PID controller for integrating process is represented in Figure 8. 

The IMC-PID provides less overshoot and fast recovery from disturbance along with good set point tracking. 

Figure 9 is the representation of the controller response for disturbance and it is a smooth action thus 

enhancing the life of process equipment. Table 2 encapsulates the integral performance criterion which 

demonstrates the performance of the designed IMC-PI/PID controller. 
 

 

  
  

Figure 8. Disturbance response of IMC-PID for 
integrating process 

Figure 9. Controller behaviour for integrating process 
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Table 2. Performance comparison of integrating process 
 Disturbance Setpoint 

Controller IAE ISE ITAE IAE ISE ITAE 

IMC 16.34 6.158 505.4 26.95 15.66 679.4 

IMC-PI/PID 

(Proposed) 
12.29 4.123 342.8 24.01 15.49 493.2 

 

 

6. CONCLUSION 

The IMC provides a transparent framework for the design and tuning of control systems. The design 

of the IMC-based PID controller is simple and robust to handle model uncertainties and disturbances and less 

noise-sensitive than conventional PID controller for an actual industry process. The design of the IMC based 

PID controllers results in only one tuning parameter that is the closed-loop time constant λ which is the factor 

of the IMC filter. The parameters of the IMC based PID tuning are then a function of the time constant of  
the closed-loop. Closed-loop time constant selection is directly related to the closed-loop system's robustness 

sensitivity to model error. The PID design procedure based on IMC can be implemented using existing PID 

control equipment in industrial processes. It also provides a good process solution with significant time 

delays, which is actually the case with real-time work. 

 

 

REFERENCES 
[1] J. G. Ziegler, N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the ASME, 

 pp. 759-768, 1942. 
[2] G. H. Cohen, G. A. Coon, “Theoretical Consideration of Retarded Control,” Transactions of the ASME, vol. 65,  

pp. 827-834, 1953. 
[3] C. E. Garcia, M. Morari, “Internal Model Control. A Unifying Review and Some New Results, Industrial & 

Engineering Chemistry Process Design and Development,” vol. 21, pp. 308-323, 1982. 

[4] John Doyle, Bruce Francis, Allen Tannenbaum, “Feedback Control Theory,” Macmillan Publishing Co,  
pp. 31-34, 1990. 

[5] K. J. Aström, and T. Hagglund, “PID Controllers: Theory, Design, and Tuning,” 2nd ed, Instrument Society of 
America, 1995. 

[6] A. O’Dwyer, Handbook of PI and PID Controller Tuning Rules, Imperial College Press, London, pp. 37, 2003. 
[7] Costas Kravaris, Raymond A. Wright, “Deadtime Compensation for Nonlinear Processes,” AIChE Journal, 

vol. 35, no. 9, pp. 1535-1542, 1989. 
[8] Gao Jinchang, Zhou Chunhui, Gong Xiaofeng, “Extension of IMC tuning to improve controller performance, 

Systems, Man, and Cybernetics,” IEEE International Conference, vol. 3, pp. 1770-1775, 1996. 
[9] Manfred Morari and Evanghelos Zafiriou, Robust Process Control, Prentice Hall, 1989. 
[10] Gopi Krishna Rao, P. V., Subramanyam, M. V., and Satyaprasad, K., “Time delay approximation: Its influence on 

the structure and performance of IMC-PI/PID controller. Intelligent Computing, Communication and Devices, 
Advances in Intelligent Systems and Computing,” Springer India, vol. 308, pp. 561–569, 2015. 

[11] Gopi Krishna Rao, P. V., Subramanyam, M. V., and Satyaprasad, K., “Model based tuning of PID controller,” 
Journal of Control & Instrumentation, vol. 4, no. 1, pp. 16–22, 2013. 

[12] Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and Richard D. Braatz, 
“Improved filter design in internal model control,” Industrial Engineering Chemical Resources, vol. 35, no. 10,  

pp. 3437-3441, 1996. 
[13] Gopi Krishna Rao, P. V., Subramanyam, M. V., and Satyaprasad, K., “Design of cascaded IMC-PID controller with 

improved filter for disturbance rejection,”International Journal of Applied Science and Engineering, vol. 12,  
no. 2, pp. 127-141, 2014. 

[14] Lee, Y., Park, S., Lee, M., Brosilow, C., “PID controller tuning for desired closed-loop responses for SI/SO 
systems,” AIChE J., vol. 44, no. 1, pp. 106-115, 1998. 

[15] Syder J, T Heeg, and A O’Dwyer, “Dead-time Compensators: Performance and Robustness Issues,” European 
Journal of Control, pp. 166-171, 2000. 

[16] Sigurd Skogestad, “Probably the best simple PID tuning rules in the world,” Journal of Process Control,  
pp. 1-27, 2001. 

[17] P. V. Gopi Krishna Rao, M. V. Subramanyam, K. Satyaprasad, “Robust Design of PID Controller Using IMC 
Technique for Integrating Process Based on Maximum Sensitivity,” Journal of Control Automation and Electrical 
Systems, SPRINGER, vol. 26, no. 05, pp. 466-475, 2015. 

[18] G. K .I. Mann, B.-G.Hu and R. G. Gosine, “Time-domain based design and analysis of new PID tuning rules,”  
IEE Proceedings.-Control Theory Application, vol. 148, no. 3, pp. 251-261, 2001. 

[19] Tony Hong, Peter C Hughes, “Effect of Time Delay on the Stability of Flexible Structures with Rate Feedback 

Control,” journal of vibration and control, vol. 7, no. 1, pp. 33-49, 2001. 
[20] Chen, D., Seborg, D. E., “PI/PID controller design based on direct synthesis and disturbance rejection,”  

Industrial Engineering Chemical Resources, vol. 41, no. 19, pp. 4807-4822, 2002. 
[21] Sigurd Skogestad, “Simple Analytic Rules for Model Reduction and PID Cotroller tuning,” Journal of Process 

Control, vol. 13, no. 4, pp. 291-309, 2003. 



          ISSN: 2088-8708 

Int J Elec& Comp Eng, Vol. 10, No. 3, June 2020 :  2452 - 2462 

2462 

[22] Qing-Guo Wang, Han-Qin Zhou, Yu Zhangt and Yong Zhang, “A Comparative Study on Control of Unstable 
Processes with Time Delay,” 5th Asian Control Conference, pp. 1996-2004, 2004. 

[23] B Wayne Bequette, Process Control: Modelling, Design, and Simulation, Prentice Hall, pp. 198-206, 

294-297, 262-264,  2003 
[24] Gopi Krishna Rao, P. V., Subramanyam, M. V., and Satyaprasad, K., “Design of IMC-PID controller with 

improved filter for disturbance rejection,” Systems Science & Control Engineering: An Open Access Journal,  
vol. 2, no. 1, pp. 583-592, 2014. 

[25] K. J. Aström, and T. Hagglund, “Revisiting the Ziegler-Nichols step response method for PID control,” Journal of 
Process Control, vol. 14, pp. 635-650, 2004. 

[26] G. Madhu Kumar, V. Suma Deepthi, “Design and Development of IMC Tuned PID Controller for Disturbance 
Rejection of Pure Integrating Process,” International Journal of Innovative Technologies, vol. 04, no. 06,  
pp. 1117-1121, Jun. 2016. 

[27] Rivera DE, Morari M, Skogestad S., “Internal model control. 4. PID controller design,” Ind Eng Chem Process 
DesDev., vol. 25, pp. 252–265, 1986. 

[28] Anusha, A. V. N. L., and Rao, A. S., “Design and analysis of IMC based PID controller for unstable systems for 
enhanced closed loop performance,” Proceedings of the IFAC Conference Advances in PID control (PID‟12),  
vol. 45, no. 3, pp. 41-46, 2012. 

[29] Arbogast, J. E., and Cooper, D. J., “Extension of IMC tuning correlations for non-self regulating (integrating) 
processes,” ISA Transactions, vol. 46, no. 3, pp. 303–311, 2007. 

[30] Chia, T. L., and Lefkowitz, I., “Internal model-based control for integrating processes,” ISA Transactions, vol. 49, 

no. 4, pp. 519–527, 2010. 
[31] Chien, I. L., and Fruehauf, P. S. “Consider IMC tuning to improve performance,” Chemical Engineering Progress, 

vol. 86, pp. 33–41, 1990. 
[32] Eris, O., and Kurtulan, S., “A new PI tuning rule for first order plus dead-time systems,” IEEE Africon, vol. 11,  

pp. 1–4, 2011 
[33] Panyam Vuppu, G. K. R., Makam Venkata, S., Kodati, S., “Robust Design of PID Controller Using IMC Technique 

for Integrating Process Based on Maximum Sensitivity,” Journal of Control, Automation and Electrical Systems, 
vol. 26, no. 5, pp. 466–475, 2015. 

[34] Hanuma Naik, R., Kumar, D. V. A., Gopikrishna Rao, P. V., “Improved centralised control system for rejection of 
loop interaction in coupled tank system,” Indian Chemical Engineer, vol. 1–20, 2019. 

 

 


