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 This project presents a strategy of field control then sliding mode control put 

in to the conversion process of wind energy containing an asynchronous 

generator with double fed (DFAG; DFIG). A model was developed for each 

component of the wind turbine (turbine, DFAG and cascade rectifier-

inverter). MPPT device must be introduced in order to obtain maximum 

energy efficiency so that PI-MPPT method is made. The objective is to apply 

this command to control independently the active and reactive powers 

generated by the asynchronous generator uncoupled by orientation from  

the flow. The results of digital simulations obtained show the improvement of 

the performances of the sliding control compared to the field control, also it 

has provided information on the commands available techniques as reference 

tracking and robustness. 
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1. INTRODUCTION 

Wind energy is one of the rapid growth renewable energy in the world. This energy is inexhaustible, 

clean and do not create greenhouse gases [1, 2]. Conventional techniques were used to adjust the wind, 

but assuming the wind operation in balanced conditions [3]. Advances in technology of wind led to 

the design of a more powerful drive to improve their behaviors and make it more robust and reliable [4]. 

The generation of electrical energy by means of double-fed asynchronous machine is one of the current areas 

of research, using driving means such as wind power incorporated into a wind energy system, the function 

can DFIG on wide range of wind speed and get the maximum possible power for each wind speed [5]. 

In this article we demonstrate the modeling, the simulation and the comparison of the wind turbine 

driven doubly-fed induction generator performances of using at the same time the command of the PI control 

and sliding mode control [6, 7]. A strategy for controlling the sliding mode has been put in place to control 

two powers and also achieve maximum wind energy [8, 9]. The results of simulation show that this strategy 

has rapid dynamic response also a good robustness and low dependence parameters on the model [10]. 

 

 

2. MODELING AND CONTROL OF THE WIND TURBINE 

The device, which is studied here, consists of a wind turbine including of the blades length R 

actuating a generator through a speed-increasing gear of profit G. Figure 1 describes a chain of conversion of 

wind energy [5, 11]. 
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Figure1. Diagram of chain of energy transformation wind 

 

 

2.1.  Model of the wind turbine 

Mechanical power available on the shaft of a wind turbine is expressed by [6, 7, 12]: 
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The torque of aerodynamic is directly determined by [1]: 
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The mathematical modeling of the multiplier is given by the following equations: 
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The aerodynamic efficiency of the wind turbine is represented by the power factor ),( pC . The wind 

turbine is a complex model, however simple mathematical models are often used aerodynamic system.  

The expression of power coefficient that we will use in our study is given by [3, 13, 14]: 
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The Figure 2 represent the characteristic of the power coefficient: 
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Figure 2. The characteristic of the power coefficient 
 
 

We determine the evolution of the mechanical speed by the fundamental equation of dynamics [6]: 
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The diagram block related to this modeling of the turbine is represented on Figure 3. 

 

 

 
 

Figure 3. Block diagram of the model turbine 
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2.2.  Control of the wind turbine 

An electromagnetic torque control strategy adjusting to the mechanical speed to be presented in this part 

in order to maximize the electrical power generated [15-18]. This principle is known as terminology (MPPT).  

We are interested in controlling the electromagnetic torque servo mechanical speed using a conventional PI 

controller [19]. For this study, we assume that the electric machine and its drive are ideal and therefore,  

the electromagnetic torque develops at all times equal to its reference value, regardless of the power 

generated. For this study, we assume that the electric machine and its drive are ideal and therefore,  

the electromagnetic torque develops at all times equal to its reference value, regardless of the power 

generated. The maximum power extraction techniques include determining the speed of the turbine, which 

provides maximum power generated [17, 18]. 

 

)..(
1

mecemg
mec fCC

Jdt

d


  (13) 

 

The structure of control consists in regulating the couple appearing on the turbine shaft so as to fix its speed 

at a reference. Therefore, we obtain the following relation [5]: 
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3. MODEL OF DFIG 

The double fed asynchronous generator DFIG is modeled in the reference mark of park, under its 

equations [3] and are represented by the Figure 4. 

 

 

 

 

Figure 4. Park’s transformation and two reference model of the DFIG 
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Electromagnetic torque is expressed in terms of currents and flux: 
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3.1.  Power control 

By putting the equations which connect the values, we can easily control the production of the wind 

and also realize an independent control of the active and reactive power [20]. A referential d-q; related to  

the rotating field and a stator flow aligned on the axis were adopted, For obvious reasons of simplification. 

Therefore: 
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In the biphasic landmark, statoric powers of DFIG are written: 
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For controlling the generator, expressions are set, showing the relationship between current and 

rotor voltages which will apply to it. 
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It should be noted that the powers and tensions are linked by a transfer function of the first order. 

Due to the low value of the slip, it is possible to establish vector control because the influences of  

the couplings remain weak and the d and q axes can be ordered separately with their own regulators.  

The method used in the power control is to neglect the coupling terms and to set up an independent regulator 

in each axis to control the active and reactive power independently. This method is called the direct method 

because the power controllers directly control the rotor tensions [2]. The block diagram representation is 

shown on the Figure 5. 

 

 

 
 

Figure 5. Control scheme of the system 

 

 

4. CONTROL ACTIVE AND REACTIVE POWERS 

This section as objective to introduce control algorithms based on two regulators PI and Sliding 

mode controllers to regulate a statoric powers to a DFIG system for a wind energy production [21-23]. 

 

4.1.  PI controller design 

The Figure 6 shows a closed loop system corrected by a PI regulator with a transfer function. 

The gains of the controllers are voluntarily chosen to be symmetrical, in order to preserve the property of 

symmetry of the open-loop: 
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And the values of A and B are obtained from: 
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The transfer function of the open loop including the regulator is: 
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To cancel the pole, we added a zero at the same location as the pole, (40) gives a pole value. 
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The transfer function of the open loop becomes: 
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The closed loop is expressed by this function transfer: 
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Figure 6. Equivalent PI control block 
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4.2.  Sliding mode control 

The sliding Mode Control, is well known for its robustness against internal uncertainties (variations 

in machine parameters), and external (disturbance due to load), and phenomena having been omitted in  

the modeling, while having a very good response dynamic [24, 25]. In summary, a sliding mode control is 

divided into three parts. 

 

4.3.  Control active power 

The surface of the control of the active power is given by: 
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By replacing the expression of Vqr by Vqreq+Vqr n the command appears clearly in the following equation: 
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During the sliding mode and in permanent mode, we have 
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Consequently, the term of commutation is given by: 
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To check the stability condition of the system, the parameter K must be positive.   

 

4.4.  Control of the reactive power 

The surface of control of reactive power is: 
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The derivative of surface is: 
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We replace the expression of the power becomes: 
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In permanent mode, we have: 
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To verify the stability condition of the system, the parameter K must be positive.   

The Figures 7 and 8 represent the block diagram of the control structure. 
 

 

 
 

Figure 7. Sliding mode control structure for active power control 
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Figure 8. Sliding mode control structure for reactive power control 

 

 

5. RESULTS AND DISCUSSION 

In order to show and compare efficiently the two proposed controllers, a set of simulation tests have 

been carried using Matlab/Simulink. The both regulaters performances are tested and compared using two 

different specifications, the tracking of the references representing the robustness and the tracking based on 

changes of the system’s parameters. The parameters of the wind turbine and DFIG are mentioned on  

the Table 1. Figure 9 shows the wind speed, Figure 10 shows the average output power as a function of  

wind speed.  

 

 

Table1. Parameters of wind turbine and DFIG 
Name Symbol Value 

Rated power P 1.5 MW 

The length of blade R 35.25 m 

Rated wind speed Vwrated 12 m/s 

Rated stator voltage Vs 690 V 

Rated stator frequency F 50 Hz 

Number of pole pairs pn 2 p.u 

Rotor winding resistance Rr 0.19Ω 

Stator winding inductance Ls 0.084 H 

Rotor winding inductance Lr 0.0 213H 

Magnetizing inductance Lm 0.051H 

Inertia of system J 1000 Kg.m2 

 

 

  
 

Figure 9. Variation of wind speed (m/s) 
 

Figure 10. Speed of turbine 
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5.1.  Reference tracking 

Different step inputs for an active and a reactive power were applied and we observed the response 

obtained with both PI control and Sliding mode control. Results are presented in the following Figures 11 and 12. 

 

5.2.  Robustness 

In order to test the robustness of the two controllers, the nominal value of Rr is doubled value, and 

the value of mutual inductance Lm is decreased by 10% of its nominal value. Figures 13-16 shows the effect 

of parameters variation on the active and reactive power response for the two controllers. 

 

 

  
 

Figure 11. Dynamic responses of PI controller for a step change of active and reactive power 
 

 

 

  
 

Figure 12. Dynamic responses of sliding mode control for a step change of active and reactive power 

 

 

  
 

Figure 13. Active and reactive power behavior using PI controller with 50% variation of Rr 
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Figure 14. Active and reactive power behavior using Sliding Mode control with 50% variation of Rr 

 

 

  
 

Figure 15. Active and reactive power behavior with Lm variation Using PI Controller 

 

 

  
 

Figure 16. Active and reactive power behavior with Lm variation using sliding mode control 
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6. CONCLUSION 

This article presented a wind energy conversion system based on the wound rotor induction 

generator. Direct vector control of the active and reactive power of the stator was performed using 

Matlab/Simulink. The results shown illustrate that mathematical modeling based on knowledge of voltages 

and currents can be used to control powers. The comparative study of active and reactive power control 

reveals that the PI and Sliding Mode controllers work fairly well under ideal conditions when there is no 

disturbance or variation of parameters. 
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