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 The digital images made with the wireless capsule endoscopy (WCE) from 

the patient's gastrointestinal tract are used to forecast abnormalities. The big 

amount of information from WCE pictures could take 2 hours to review GI 

tract illnesses per patient to research the digestive system and evaluate them. 

It is highly time consuming and increases healthcare costs considerably.  

In order to overcome this problem, the center symmetric local binary pattern 

(CS-LBP) and the auto color correlogram (ACC) were proposed to use  

a novel method based on a visual bag of features (VBOF). In order to solve 

this issue, we suggested a visual bag of features (VBOF) method by 

incorporating scale invariant feature transform (SIFT), CS-LBP and ACC. 

This combination of features is able to detect the interest point, texture and 

color information in an image. Features for each image are calculated to 

create a descriptor with a large dimension. The proposed feature descriptors 

are clustered by K- means referred to as visual words, and the support vector 

machine (SVM) method is used to automatically classify multiple disease 

abnormalities from the GI tract. Finally, post-processing scheme is applied  

to deal with final classification results i.e. validated the performance of  

multi-abnormal disease frame detection. 
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1. INTRODUCTION 

Wireless capsule endoscope (WCE) [1] has considered as diagnostic tool for gastrointestinal (GI) 

tract [1]. It offers a non-invasive direct option in contrast to conventional endoscope and empowers doctors 

to investigate the GI tract which is generally not open [2]. Compared with conventional endoscopy systems, 

WCE not just gets full access to the small digestive system [3, 4], yet in addition offers the patients an 

effortless strategy. WCE is a pill shaped gadget consisting of a brief core length complementary metal oxide 

semiconductor (CMOS) sensor consisting of four light sources, a battery, radio transmitter and other  

small-scale segments as appeared in Figure 1. The container is gulped by patient, taking pictures for every 

second (fps) at a speed of two images. The endoscopic container travel through the GI tract, catching and 

remotely transmitting in excess of 55000 frames to the recorder attached to the patient's midriff. Whereas 

WCE catches color images of the GI tract for roughly 8 hours and transmits them remotely to an outside 

information recording gadget worn by the patient around the midsection. These images are then downloaded 

to a computer workstation, and assessed by clinicians to settle on restorative analytic choice. 

In spite of the fact that WCE is a specialized achievement, the looking into of video and elucidation 

of the entire inexact 50,000 images for every patient take around two hours for an accomplished clinician [5]. 
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The abnormal images for the most part possess just under 5% of the entire ones. Besides, spatial qualities of 

anomalous images, the shape, surface, estimate, and the diverge from their encompassing change are hard for 

clinicians to recognize variation from the images in all circumstances [6]. At this point, planning an 

automatic computer-aided system is essential to help clinicians investigate abnormal images. More work has 

as of now been embraced on automatic abnormal images detection in WCE videos. Several works are used to 

carried out to define a particular disease. 

 

 

 
 

Figure 1. Diagram for components of WCE, 1) optical dome, 2) focal point holder, 3) focal point,  

4) lighting up source, 5) CMOS pictures, 6) battery, 7) transmitter, 8) reception apparatus 

 

 

The manuscript is arranged according to the following. Section 2, we discussed the associated 

works. The manuscript has been organized in this way. In section 3, deals about the feature extraction where 

we introduced the SIFT algorithm, CS-LBP and ACC features. Then the computation of feature vector by 

combining these three features were also discussed in section 3. The visual bag of words depiction using  

K-means is discussed in section 4. We briefly discuss the classification algorithm in section 5. Section 6 has 

experimental results where we have a brief description about the dataset with discussions about the results 

and comparison with the existing systems. Finally, section 7 is where the conclusion is provided. 

 

 

2. RELATED WORKS 

In many works in WCE videos, automatic identification of multi-anomalies disease has been 

suggested. The most common diseases in the GI tract are bleeding [7], colon [8], polyp [9], tumor [10], 

stomach [11] and ulcer [12] disease. The existing system for the detection of WCE image considers only one 

abnormality like bleeding or ulcer or tumor and also multi-abnormality detection is far from satisfactory. 

However, much work related to GI abnormality detection has done in WCE videos [13, 14]. A single WCE 

frame or picture includes distinct problems including distinct colours, poor contrast, fuzzy areas, complicated 

background, form of lesions, data on texture, etc. [15]. Bleeding is a prevalent symptom of many 

gastrointestinal (GI) diseases, and the identification of bleeding is therefore of excellent clinical significance 

in the diagnosis of appropriate diseases. Li and Meng [16] describe chrominance time as a color 

characteristic and periodic Local binary pattern (LBP) as a texture characteristic for identifying the bleeding 

areas within a WCE frame. The techniques were evaluated using support vector machine (SVM), liner 

discriminant analysis (LDA) and k-nearest neighbor (KNN) classifier were utilized. A small group of cells 

that develops on the colon's lining are called as polyps due to unusual cell growth. For image processing 

based on linear data, polyp identification using the Log Gabor filters and the SUSAN edge detection 

algorithm is done in karargyris et al., [17]. In [18], a method called global geometric constraints of polyp and 

local patterns of intensity variation across polyp boundaries is suggested for classifying digestive organs,  

the deep CNN is used for WCE images. 

For ulcer identification in WCE images, neural networks can be used for the removal of 

characteristics by Gabor filters and colors and texture characteristics. for classifying images. The authors  

of [19] proposed to detect the ulcer abnormality using AdaBoost learning method. Despite the efficacy of 

AdaBoost, a straightforward RGB value as a hint for the assignment of ulcer discrimination is used to obtain 

the specific local and global visual features [19]. In [20], characteristics such as probability of bit plane and 

wavelet-based characteristics were removed from the recognized fields and used to characterize ulcer. 

Hoghan et al., [21] discussed, the Hookworm present in the stomach related tract of the human from WCE 

images using color model-based recognition were the shading models actualized here are the RGB and HSV 

models. Yuan et al., [22] suggested an enhanced bag of features (BoF) technique to help classify polyps in 
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WCE images. Instead of using a single scale-invariant function transform (SIFT) in the traditional  

BoF method, different textural features such as LBP, uniLBP, CLBP and HOG from the key points 

neighborhoods are integrated as synthetic descriptors to perform classification. The associated works show 

that several works are carried out to define the particular disease. Color and LBP [16] characteristics are used 

for the identification of bleeding. For the ulcer the Gabor filter [17], color and texture are used and for  

the detection of polyp. In fact, the classification precision of the above-mentioned schemes is not yet well 

achieved and there were no SIFT characteristics that are linear in scale, rotation and illumination,  

except polyp.  

To overcome this problem and to address the multiclass disease classification of WCE images and 

to considerably increase the accuracy of disease prediction, we proposed a system using the combination of 

SIFT, CS-LBP and ACC is compared with color, LBP and BOF for bleeding and polyp respectively.  

The proposed combination is also tested against the aforementioned systems for tumor, colon, stomach and 

ulcer diseases. Figure 2 shows the proposed work for the classification of multi-abnormalities in GI tract 

using WCE images. In this proposed work, a range of anomalies disease images is drawn from GI tract using 

WCE and a novel method is proposed based on BOF by integrating SIFT, CS-LBP and ACC. These features 

are able to detect the interest point, texture and color information in an image more effectively. Features are 

calculated to create a high-dimensional descriptor for each picture and this descriptor is grouped using  

the K-means technique referred to as visual bag of features, then SVM method is used to classify  

the multiple abnormalities of disease present in GI tract automatically and more effectively. 
 
 

 
 

Figure 2. Proposed work for the classification of multi-abnormalities in GI tract using WCE images 

 

 

3. FEATURE EXTRACTION 

3.1.  SIFT 

Gaussian's Laplacian is good to find interesting points (or main points) in a picture that are maxima 

and minima in the Gaussian picture distinction. Upon detection of interest points, characteristics such as 

SIFT are outlined. SIFT is an algorithm for the detection and description of local characteristics in pictures 

that David Lowe released in 1999 [23]. A circular region of picture with orientation is a SIFT key point.  

Four parameters in this technique are key point center, the scale (the area radius) and its orientation  

(an angle expressed in radians). SIFT detector is stated to be invariant and robust in translation, rotation, 

scaling, and partly invariant in order to affinate changes in distortion and lighting [23]. 
 

3.2.  Local binary pattern (LBP) 

A strong function for texture classification is known to be the LBP [23]. In 2009, LBP and 

histogram of orienting gradients (HOG) showed that detection efficiency was largely improved by  

Want et al. [24]. In [25], LBP was used as an efficient, nonparametric technique for texture analysis by Unay 

and Ekin. LBP was used to extract valuable data from medical images, especially magnetic brain resonance 

images. A content-based picture recovery algorithm was used to extract the characteristics. Their experiment 

has shown that the texture data along with spatial characteristics is better than only texture characteristics 

based on intensity. In 2007, the micro-matterns were removed with LBP by Oliver et al. [26] from 

mammograms. These masses are classified as benign or malignant with SVM. The findings of their research 

showed LBP's efficiency, as the amount of false positive characteristics decreased in all mass sizes [27].  
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3.3.  Center-symmetric local binary pattern (LBP) 

A description of the region of concern has been created for center-symmetric local binary patterns 

(CS-LBP) [28, 29]. CS-LBP seeks to generate shorter histograms for a larger amount of LBP labels that are 

more suitable for use in regional descriptors. In flat picture areas, CS-LBP was also intended to have greater 

stability. In CS-LBP, pixel values are compared symmetrically with the center pixel, not with the center 

pixel, but with the opposing pixel. In addition, robustness is achieved in flat picture areas by thresholding 

variations in gray levels with a tiny value T. 
 

𝐶𝑆 − 𝐿𝐵𝑃𝑅,𝑁,𝑇(𝑥, 𝑦) = ∑ 𝑠(𝑛𝑖 − 𝑛𝑖+𝑁/2)2𝑖

𝑁/2−1

𝑖=0

,   𝑠(𝑥) = {
1           𝑥 > 𝑇
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Where ni and ni+(N/2) equally spaced pixels on a circle of radius R corresponds to the gray values of  

the central-symmetric pairs of N-Pixels. The T limit value in our experiments is about 1% of the pixel value 

range. Since information for the region range from 0 to 1, T is set to 0.01. The size of the area is 8.  

The radius is set to 2. It is worth noting that CS-LBP's advantage over LBP is not just because of the decrease 

of the dimensions, but because the CS-LBP is better able to capture the gradient data than the fundamental 

LBP. LBP and CS-LBP experiments have demonstrated CS-LBP's advantages over LBP, particularly 

substantial decrease in dimension while maintaining distinguishability. 

 

3.4.  Auto color correlogram 

The suggested scheme uses the autocorrelogram to calculate the color feature. Let [D] denote a set 

of {d1 ... dD} fixed distances. Then the picture I correlogram is described at a range d for level pair (𝑔𝑖, 𝑔𝑗).  

 

𝛾𝑔𝑖,𝑔𝑗

(𝑑)
(𝐼) ≡ 𝑃𝑟𝑝𝑖∈𝐼𝑔𝑖,

𝑝𝑖∈𝐼𝑔𝑖
⌊𝑃2 ∈ 𝐼𝑔𝑗

|𝑝1 − 𝑃2 = 𝑑|⌋ 

 

Which provides the possibility that if a pixel p1 is 𝑔𝑖 level, a pixel p2 is 𝑔𝑖 level at the range d in some 

direction from the pixel p1. The spatial correlation of the same concentrations is found in the auto 

correlogram. 

 

∝𝑔
(𝑑) (𝐼) = 𝛾𝑔,𝑔

(𝑑)
(𝐼) 

 

It provides the likelihood that pixels p1 and p2, d separate from each other, are of the same level 𝑔𝑖. 

The range measurement between histograms, auto correlograms, and correlograms is the L1 standard that is 

a computationally fast technique used in [30-33]. 

 

3.5.  CS-LBP, SIFT and ACC features integration 

If the background is complicated or corrupted with noise, SIFT can perform badly, CS-LBP with 

standardized patterns is complementary to SIFT by filtering out these noises [34]. We believe that  

the characteristics of an item in a image can be faster recorded by mixing these three features. This research 

therefore proposes the inclusion of SIFT, CS-LBP and ACC at patch level and picture level. We describe  

pi (x, y, σ, θ) as a key point spotted by SIFT approach, where (x, y) is the position of pixel pi in the original 

image, σ and θ is the scale and main direction of pi respectively. σ means to the confident level of pi in 

Gaussian Pyramid. Take a region with size of 8×8 as a patch where pi is the center of the patch,  

then the SIFT, CS-LBP and ACC descriptors are built as follows:  

 Step 1. Use 128-dimensional SIFT descriptor to describe each keypoint pi in a patch, denoted as SIFTi  

the image. 

 Step 2. Choose a 4 × 4 region around pi and compute the uniform pattern of each pixel. These descriptors 

are composed as a 64-dimensional vector, i.e. 

 

𝐹𝐶𝑆−𝐿𝐵𝑃𝑖
=[𝐶𝑆 − 𝐿𝐵𝑃4,1

𝑢1, 𝐶𝑆 − 𝐿𝐵𝑃4,1
𝑢2 … … 𝐶𝑆 − 𝐿𝐵𝑃4,1

𝑢16] 

 

 Step 3. For every patch ACC feature are calculated 

 Step 4. Finally, the feature vector computed by combining the three features is described as  

 

(𝐹𝑆𝐼𝐹𝑇𝑖,𝐹𝐶𝑆−𝐿𝐵𝑃𝑖,𝐹𝐴𝐶𝐶𝑖 ,) 
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4. VISUAL BAG OF WORDS 

4.1.  K-means algorithm 

The aim of k-means algorithm is to cluster the information and is one of the easiest methods of 

clustering the partitions. Clustering the picture consists of grouping the pixels according to certain features. 

We must originally identify the number of clusters in the k-means algorithm [35]. Then the center of  

the k-cluster is randomly selected. The distance to each cluster center between each pixel is calculated. 

Euclidean distance is used in particular. Using the range formula, single pixels are likened to all cluster 

centers. The pixel is transferred to a specific cluster with the shortest range between all. The center is then 

reassessed. Again, each pixel is compared to all centroids and the processes mentioned above are continued 

until the pixel are grouped into a suitable cluster with the following algorithm described. 

 

4.2.  Bag of features 

The Bag-of-features (BOF) techniques is mainly influenced by the notion of bag-of-words [36] that 

was widely used in text mining. In the BOW model, every term is considered to be autonomous although 

very contra intuitive and well utilized with outstanding performance in spam filtration and topical  

modeling [37]. Each image is characterized by a set of orderless local characteristics in the BOF model,  

later study has shown it efficacy in image processing. It has two main concepts: local features and codebook. 

The essential aspect of the BoF concept is to extract global image descriptor which are computed from  

the collection of local properties like SIFT, CS-LBP and ACC. The SIFT patches are tiny rectangular areas 

with a focus on point of concern and the CS-LBP patches are tiny round zones with the required radius and 

several sampling points. Auto correlogram collects only identical color values in the spatial correlation. 

Codebook is a way to represent an image by a set of local features [38]. The idea is to group  

the feature descriptors for all patches on the basis of a cluster number and each cluster is a visual word to 

form a codebook. Each image can be depicted, after the codebook has been obtained, by the visual codebook 

graphic frequency histogram BoF. 

 

 

5. CLASSIFICATION USING SVM 

In the proposed method, the SVM [39] is employed to classify the WCE images. SVM classifier is 

the best option to classify problem, since our problem is to classify seven classes of abnormalities present in 

GI tract. Considering a training dataset which consists of N images with feature vectors xi, i=1,2,...N,  

where each M dimensional expression profile xi = xi (n), n=1,2,,...,M is associated with a feature value yi(+1,-1). 

The objective is to find and M dimensional decision vector w = [w1, w2.... wM]T due to the discriminating 

function f(x)=f(w,x). Such that: 

 

wT xi+b+1, for all positive xi 

 

wT xi+b≤-1, for all negative xi 

 

Considering an empirical vector a and (N*N) dimensional kernel matrix K with its (i, j)th element 

K(xi, yi), the decision boundary is characterized by f (x) = 0,  

Where: 

 

f (x) = ∑ 𝑎𝑖𝑘(𝑥𝑖,
𝑁
𝑖=1 𝑥)+b 

 

where b and ai are bi as and weights respectively. 

 

 

6. EXPERIMENTAL RESULTS 

6.1.  Dataset 

The dataset is collected from Kvasir containing images of GI tract. The anatomical features are  

Z-line, pylorus and cecum, while esophagitis, bleeding, polyps and ulcerated colitis are the pathological 

findings. The dataset contains images of multi-abnormalities diseases which has 3500 of images in 7 classes 

i.e. 500 images from each class for 40 patients. The set of images in each class is divide into two categories: 

training and testing set. A five-fold strategy to cross validation has been implemented in the proposed work. 

In this work, 80% of the images were randomly selected for training for each class and the other 20% for 

testing. The multi-abnormalities disease contains the Z-Line, Bleeding, Pylorus, Cecum, Esophagitis, Polyps 

and Ulcerative Colitis. 
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6.2.  Results and discussion 

In our proposed method, the WCE images are divided into number of patches. From the patched 

images features are extracted using three methods namely CS-LBP, SIFT and combined CS-LBP+SIFT+ACC. 

First, study of codebook size for CS-LBP, SIFT and CS-LBP+SIFT+ACC with SVM is calculated. We selected 

the size of codebook from {250, 500, 750, 1000}. The performance is shown in Figure 3. From the experiments, 

we obtained the best size of codebook is 750 with patch size 8*8 for the dataset considered in the experiments. 

For measuring the accuracy, the sensitivity and specificity method is used. 

 

 

 
 

Figure 3. Performance of varying codebook size 

 

 

 Specificity: The amount of right adverse statements separated by the complete negative numbers is 

calculated. 

 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 
 Sensitivity: It is calculated the number of negative predictions divided by the total number of negatives. 

 

Sensitivity=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

The performance of abnormalities using CS-LBP, SIFT and combined CS-LBP+SIFT+ACC with 

SVM shown in Table 1. When comparing each class, the performance of combined CS-LBP+SIFT shows an 

accuracy of 79.91 % for Esophagitis, 76.21% for Z-Line, 80.23% for cecum, 84.39% for Polyps, 85.92% for 

Ulcerative Colitis, 90.91% for Pylorus and 94.80% bleeding is obtained. Table 2 shows the confusion matrix 

for WCE image classification.  

 

6.3.  Comparison with existing work 

Further the proposed work is compared with existing WCE abnormality classification 

techniques [22, 40-42]. In [22], Yuan et al., classified the images into the normal ones and polyps using VQ 

and VQ is used to encode the features and also it shows local features by their nearest codewords. In [41], 

statistical based color, spatial and texture are features using bag of visual methods are proposed by Hwang. 

Nawarathan et al., [42] proposed a method to denote image feature by texton histogram where LBP features 

are cluster to obtained textons. The accuracy of SVM with CS-LBP+SIFT+ACC for Multi-abnormalities 

classification is shown in Figure 4. 

In proposed work, combination SIFT+CS-LBP+ACC is used for multi-abnormality classification. 

Table 3 shows the accuracy of proposed abnormalities with existing work. Majority of existing work is 

focussed on only one or two type abnormality detection and the accuracy is also not up to the level of 

satisfactory. But we focused on all classes of GI tract diseases and we obtained remarkable improvement in 

all classes of GI tract diseases and the overall accuracy of the proposed system is significantly high and is 

84.62% which is owing to the combination of proposed effective texture and color features. The results 

obtained for polyp, ulcer, bleeding, Esophagitis, Z-line, Cecum, pylorus is 84.39%, 85.92%, 96.85%, 

79.91%, 76.21%, 80.23% and 90.91% respectively. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 :  5678 - 5686 

5684 

 
 

Figure 4. Shows the accuracy of SVM with CS-LBP+SIFT+ACC for Multi-abnormalities classification 

 

 

Table 1. Performance of Abnormalities using SVM with CS-LBP, SIFT and combined CS-LBP with SIFT 
Abnormalities  Performance (in %) CS-LBP+SIFT CS-LBP + SIFT+ACC 

Esophagitis Accuracy 72.50 79.91 

 Sensitivity 72.30 78.95 

 Specificity 94.28 96.1 

Z-Line Accuracy 75.01 76.21 

 Sensitivity 74.05 75.21 

 Specificity 95.25 95.19 

Cecum Accuracy 79.21 80.23 

 Sensitivity 78.95 80.01 

 Specificity 95.6 90.9 

Polyps Accuracy 83.91 84.39 

 Sensitivity 83.20 84.21 

 Specificity 95.12 90.9 

Ulcerative Colitis Accuracy 80.20 85.92 

 Sensitivity 80.71 84.21 

 Specificity 93.25 93.64 

Pylorus Accuracy 89.01 90.91 

 Sensitivity 88.20 89.57 

 Specificity 93.25 93.25 

Bleeding Accuracy 88.92 96.85 

 Sensitivity 88.23 90.11 

 Specificity 92.28 97.12 

 

 

Table 2. Confusion matrix for WCE image classification 
 

 

Esophagitis Z-Line Cecum Polyps Ulcerative 

Colitis 

Pylorus Bleeding Sensitivity 

Esophagitis 78.90 21.05 0 0 0 0 0 78.95 

Z-Line 10.05 75.21 0 8.23 0 6.45 0 75.21 
Cecum 0 6.67 80.00 13.33 0 0 0 80.00 

Polyps 0 0 14.02 80.00 0 5.95 0 80.00 

Ulcerative Colitis 5.26 0 0 5.26 84.21 5.26 0 84.21 
Pylorus 5.20 2.30 2.93 0 0 89.57 0 89.57 

Bleeding 0 0 0 3.15 0 0 96.85 96.85 

Specificity 96.10 95.19 90.9 90.90 93.64 93.25 98.12  

 

 

Table 3. Performance comparison of abnormalities classification with proposed and existing work 

 Polyp Ulcer Bleeding Esophagitis Z-Line Cecum Pylorus 

Coimbra et al., [37]. 74.67 72.78 87.9 Nil Nil Nil Nil 
Hwang et al., [38]. 81.33 78.33 90.95 Nil Nil Nil Nil 

Nawarathna et al., [39]. 84.00 83.33 93.33 Nil Nil Nil Nil 

Yuan et al., [22]. 83.50 80.33 96.60 Nil Nil Nil Nil 
Proposed system 84.39 85.92 96.85 79.91 76.21 80.23 90.91 
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7. CONCLUSION 

Classifying the abnormalities from WCE images such as Z-Line, Bleeding, Pylorus, Cecum, 

Esophagitis, Polyps, Ulcerative Colitis is a challenging task. It may take 2 hours per patient for reviewing GI 

tract diseases. It is highly time consuming and increases healthcare costs considerably. To overcome this 

problem, we proposed Multi-Abnormalities classification model using Visual Bag of Words which is 

constructed using CS-LBP with SIFT and combined CS-LBP, SIFT with ACC using K-means clustering 

approach. The SVM is used for classification. By varying the codebook size from {250, 500, 750, 1000},  

we obtained 750 as best size for out datasets. From the experiment results, it is demonstrated that  

the accuracy of 79.91 % for Esophagitis, 76.21% for Z-Line, 80.23% for cecum, 84.39% for Polyps, 85.92% 

for Ulcerative Colitis, 90.91% for Pylorus and 94.80% for bleeding is obtained for combined  

CS-LBP+SIFT+ACC with SVM which is significantly higher than the existing approaches and  

the combination of CS-LBP and SIFT. In future, the performance of the proposed system may be optimized 

using various parameters to improve performance. 
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