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 In frequent itemset mining, the main challenge is to discover relationships 
between data in a transactional database or relational database. Various 
algorithms have been introduced to process frequent itemset. Eclat based 

algorithms are one of the prominent algorithm used for frequent itemset 
mining. Various researches have been conducted based on Eclat based 
algorithm such as Tidset, dEclat, Sortdiffset and Postdiffset. The algorithm 
has been improvised along the time. However, the utilization of physical 
memory and processing time become the main problem in this process.  
This paper reviews and presents a comparison of various Eclat based 
algorithms for frequent itemset mining and propose an enhancement 
technique of Eclat based algorithm to reduce processing time and memory 
usage. The experimental result shows some improvement in processing time 

and memory utilization in frequent itemset mining. 
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1. INTRODUCTION  

Nowadays, there is a numerous number of transaction recorded in any organization. In order to 

process this data and find useful information, data mining is used [1]. Data mining is the process of extracting 
useful information from various sources by extracting information from a data set and transform it into  

an understandable structure for further use [2, 3]. Association Rule Mining (ARM) is one of the most 

prominent areas in detecting the interesting pattern. With the aims to extract interesting correlations, frequent 

patterns, association or casual structures among a set of items in the transaction databases or other data 

repositories [4]. ARM must be emphasized to find out the association rules that satisfy the predefined 

minimum support and confidence from a given database [5]. Association rule can create analyzing data for 

frequent pattern using the criteria Support and Confidence. Support is indicating of how frequently the item 

appears in the database. Confidence indicates the number of time has been found [6].  

The concept of frequent itemset was first introduced for mining transaction databases [7].  

Let I = {i1, i2, ..., in} be a set of all items. A k-itemset α, which consists of k items from I, is frequent if α 

occurs in a transaction database D no lower than θ|D| times, where θ is a user-specified minimum support 
threshold (called min_sup in our text), and |D| is the total number of transactions in D [8]. The task of finding  

the frequent pattern in large databases is very essential and has been studied on a huge scale in the past few 

years. Unfortunately, it is computationally expensive, especially when a huge number of patterns exist [9].  

Eclat was introduced by Zaki et al. in 1997. Eclat is an acronym for Equivalence Class Clustering 

and bottom-up Lattice Traversal [10]. Referring to W.A.B.W.A. (2016), Eclat uses prefix-based equivalence 

relation, θ1 along with bottom-up search. It enumerates all frequent itemsets. There are two main steps: 

candidate generation and pruning. 
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In candidate generation, each k-itemset candidate is generated from two frequent (k-1)-itemsets and 

its support is counted, if its support is lower than the threshold, then it will be discarded, otherwise, it is 

frequent itemsets and used to generate (k+1)-itemsets [4]. The first scan of the database builds the transaction 

id (tids) of each single items. Starting with a single item (k = 1), then the frequent (k + 1)-itemset will grow 

from the previous k-itemset will be generated with a depth-first computation order. The computation is done 

by intersecting tids of the frequent k-itemsets to compute the tidsets of the corresponding (k+1)-itemsets. 

The process is repeated until no more frequent candidate itemsets can be found [4]. 

Eclat starts with prefix {} and the search tree is actually the initial search tree. To divide the initial 
search tree, it picks the prefix {a}, generate the corresponding equivalence class and does frequent itemset 

mining in the sub tree of all itemsets containing {a}, in this subtree it divides further into two sub trees by 

picking the prefix {ab}: the first subtree consists of all itemsets containing {ab}, the other consists of all 

itemsets containing {a} but not {b}, and this process is recursive until all itemsets in the initial search tree  

are visited. The search tree of an item base {a, b, c, d, e} is represented by the tree as shown in Figure 1. 

Figure 2 illustrates how data in a horizontal layout is transformed by a set of transaction ids or tidset in 

vertical layout [4]. 

 

 

 
 

Figure 1. Prefix tree for 5 items {a, b, c, d, e} 

 
 

 
 

Figure 2. Transformation from horizontal to vertical layout 

 

 

This paper starts with a formal introduction of Eclat based algorithms. Moving forward, this paper 

presented related works in section 2. Then it will continue with a comparative analysis based on  

the advantages and disadvantages of each algorithm in section 3.Section 4 discussed the enhancement of  

the Incremental Eclat algorithm. In section 5, this paper comes out with experimental results between 

previous works and the proposed enhancement and to conclude the discussion, there will be a conclusion and 

future works in section 6. 
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2. RELATED WORKS 

Finding frequent itemset is a time-consuming process, many versions of frequent itemset  

mining algorithms have been proposed by many researchers that aim at reducing the time and space 

complexities [11]. 

 

2.1. Traditional eclat(tidset) algorithm 

Tidset algorithm uses vertical dataset and a bottom-up approach for searching items in  

a database [2]. Figure 3 depicted the pseudocode for Tidset algorithm. 

 

 

 
 

Figure 3. Pseudocode for tidset algorithm 

 

 

2.2. dEclat algorithm 

dEclat performs a depth-first search of the subset tree. Zaki and Gouda (2003) show that diffset 

allow it to mine on much lower supports than the base Eclat method. The input to the procedure is a set of 

class members for a subtree rooted at P frequent itemset are generated by computing diffset for all distinct 

pairs of itemsets and checking the support of the resulting itemsets. A recursive procedure call is made with 
those itemsets found to be frequent at the current level. This process is repeated until all frequent itemsets 

have been enumerated [12]. Figure 4 depicted the pseudocode for dEclat algorithm. 

 

 

 
 

Figure 4. Pseudocode for dEclat algorithm 

 

 

2.3. SortDiffset algorithm 

SortDiffset was created by Trieu and Kunieda in 2014. In general, diffset in an equivalence class 

should be sorted in descending order according to size to generate new itemsets represented by diffset with 

smaller sizes [13]. Figure 5 depicted the pseudocode for SortDiffset algorithm. 
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Figure 5. Pseudocode for sortdiffset algorithm 
 

 

2.4. Postdiffset algorithm 

The initial objective of Postdiffset is to handle the issues of big and dynamic data. Postdiffset tends 

to reduce a memory and spaces requirement by implementing flushing of memory prior to each itemset being 

visited before intersecting the next itemsets. Figure 6 depicted the pseudocode for Postdiffset algorithm. 

 

 

 
 

Figure 6. Pseudocode for postdiffset algorithm 

 

 
Compared with Postdiffset and Tidset algorithm, Tidset algorithm is more prone to memory 

scarcity. The situation becomes worse if the mining process involved a bigger dataset. As memory utilization 

increased, the machine’s dependency on virtual memory increases. The more a computer has to depend on 

virtual memory, the less efficiently that machine will run [14]. As a result, the performance of the computer 

is compromised. Hence to prevent the problem of memory scarcity, Postdiffset included an additional step to 

flush the memory. 

 

 

3. COMPARATIVE ECLAT BASED ALGORITHM 

In summary, the review and analysis of Eclat based algorithms are presented in Table 1. 

From the comparative analysis, it shows that the Eclat based algorithm is challenged by memory utilization 
and processing time (depends on the size of data used). Eclat algorithms need more memory to process 

the data. Moving on to dEclat, even though its drastically cut down the size of memory required, but 

degrades with a sparse database. The introduction of Sortdiffset has reduced running time and memory usage 

but its cost to do the sorting. Finally, Postdiffset was introduced with the ability to reduced memory 

utilization. However, Postdiffset has disadvantage on the processing time that needs to be improved in 

the future works. 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Frequent itemset mining: technique to improve eclat based algorithm (Mahadi Man) 

5475 

Table 1. Eclat based algorithm comparison 
Approach Techniques Advantages Disadvantages 

Eclat [15, 16] Vertical intersection of 

tidlist 

The size of Tidsets represents 

support 

Difficult in pruning technique. 

The longer tidset, more time and 

memory needed 

dEclat [12] Only keeps track of 

differences in tidsets. 

Drastically cut down the size of 

memory required to store 

intermediate results 

Suitable for a dense database but 

degrades with sparse database 

Need to switch between tidset 

and diffset for a sparse database. 

Sortdiffset [17] Combine Tidset + diffset, 

then sort tidset in 

ascending order and diffset 

in descending order 

- No need for switching condition 

- Reduce running time and memory 

usage 

Cost to do sorting 

Postdiffset [4] Perform tidset for first 

level looping and diffset 

for second level looping + 

Introducing flushing of 

memory for itemset being 

visited. 

Better performance Reduced memory utilization. 

However, suffer from processing 

time. 

 

 

4. IMPROVEMENT FOR INCREMENTAL ECLAT ALGORITHM 

Previous works use a Relational Database Management System (RDBMS) for its transaction process 

to store transaction data gained in the data mining process. RDBMS is one that presents information in tables 

with rows and columns. A table is referred to as a relation in the sense that it is a collection of objects of  

the same type (rows). Data in a table can be related according to common keys or concepts, and the ability to 

retrieve related data from a table is the basis for the term relational database [18]. There is two types of SQL 

statement can be used to store data into the database using a single row INSERT or LOAD DATA INFILE. 

According to (Benjamin Morel, 2017) LOAD DATA INFILE is the preferred solution when looking for raw 

performance on a single connection [19]. It requires to prepare a properly formatted file first before  
the LOAD DATA INFILE can be executed. 

In current algorithms, transaction data is stored in the database using a single row INSERT. 

Therefore, the statement needs to be executed multiple times based on the n-transaction of data available. 

Figure 7 shows the algorithm for single row INSERT. To improve on the single row INSERT into  

the database system, LOAD DATA INFILE statement has been used. By using INFILE LOAD statement, 

only one statement is executed to insert data into the database system. Since only one statement executed, 

it minimized the used of memory for data transaction to the database. Figure 8 shows how the improved 

algorithm is executed. 

 

 

 
 

Figure 7. Pseudocode for a single row insert into 
database 

 
 

Figure 8. Pseudocode for multiple rows insert into 
database 

 

 

5. EXPERIMENT 

5.1. Application platform 

The experiment is performed on a Dell LATITUDE 7280, Intel ® Core(TM) i7-6600U CPU 2.60 

GHz with 8 GB RAM in a Win 10 64-bit platform. The software used is MySQL version 10.1.34-MariaDB 

database server, Apache/2.4.17 (Win32) OpenSSL/1.0.2d PHP/5.6.21as a web server. Benchmark datasets 

have been retrieved from http://fimi.ua.ac.be/data/ and the being imported into the MySQL. For the initial 

test, we start with a simple dataset in order to produce faster results. Chess and Mushroom datasets are 

divided into several benchmark trained datasets. 
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5.2. Experimental result 

The experiment has been carried out for dEclat (Diffset) algorithm, SortDiffset algorithm and 

Postdiffset algorithm. We focused on the performance of processing time and memory usage between old 

algorithms and the proposed algorithm as shown in Table 2. 

 

 

Table 2. Database characteristic 
Dataset Size (KB) Length (Attribute) Records 

Chess100 7.48 12 100 

Chess200 14.85 12 200 

Chess400 202.5 12 400 

Chess500 202.5 12 500 

Mushroom100 213 12 100 

Mushroom200 213 12 200 

Mushroom400 256 12 400 

Mushroom500 256 12 500 

 

 

Figures 9 and 10 demonstrate the running time between the old algorithm and the new proposed 

algorithm using chess datasets at a support threshold of 10%. For all three algorithms, both running time is 
increasing in line with the number of records. The new proposed algorithm shows a better performance in 

processing time. By average, Diffset reduced by 42.48%, SortDiffset by 15.88% and Postdiffset by 22.3%. 

On the memory usage, the usage is reduced by 3.66% for Diffset,1.26% for SortDiffset and 3.5% for 

Postdiffset. Overall result shows an improvement for all algorithm.  

 

 

  

Figure 9. Experimental result for old algorithm 

using chess datasets 

 

Figure 10. Experimental result for proposed 

algorithm using chess dataset 

 

 

Figures 11 and 12 presented the experimental using mushroom datasets at 10% support threshold. 

Comparing with the old algorithm, on average, the proposed algorithm reduced the execution time by 22.23% 

for Diffset, 22.54% for SortDiffset and 11.59% for Postdiffset. On memory usage, the new algorithm shows 
good performance by reducing 3.65% for Diffset, 2.85% for SortDiffset and 3.51% for Postdiffset.  
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Figure 11. Experimental result for old algorithm 

using mushroom datasets 

 

Figure 12. Experimental result for proposed 

algorithm using mushroom dataset 

 

 

6. CONCLUTION AND FUTURE WORKS 

Our proposed technique shows some improvement in reducing memory usage and processing time. 

By reducing the number of transaction to the MySQL database, memory usage is reduced. It also affects  

the processing time. From the experimental result, the occurrences of the itemset would be one of  

the contributing factors of the algorithm performance. For future work, we can also deploy this technique for 

sparse datasets such as T10I4D100K or retail. Looking at the same domain, the technique would be 
implemented to mining infrequent itemset. Hence, we could discover either the result would be the same as 

frequent itemset or distinguished from the findings. 
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