
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 9, No. 6, December 2019, pp. 5471~5478

ISSN: 2088-8708, DOI: 10.11591/ijece.v9i6.pp5471-5478  5471

Journal homepage: http://iaescore.com/journals/index.php/IJECE

Frequent itemset mining: technique to improve eclat

based algorithm

Mahadi Man, Masita Abdul Jalil
School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, Malaysia

Article Info ABSTRACT

Article history:

Received Dec 12, 2018

Revised Apr 18, 2019

Accepted Jun 12, 2019

 In frequent itemset mining, the main challenge is to discover relationships
between data in a transactional database or relational database. Various
algorithms have been introduced to process frequent itemset. Eclat based

algorithms are one of the prominent algorithm used for frequent itemset
mining. Various researches have been conducted based on Eclat based
algorithm such as Tidset, dEclat, Sortdiffset and Postdiffset. The algorithm
has been improvised along the time. However, the utilization of physical
memory and processing time become the main problem in this process.
This paper reviews and presents a comparison of various Eclat based
algorithms for frequent itemset mining and propose an enhancement
technique of Eclat based algorithm to reduce processing time and memory
usage. The experimental result shows some improvement in processing time

and memory utilization in frequent itemset mining.

Keywords:

Association rule mining

Data mining

Eclat based algorithm
Frequent itemset mining

Copyright © 2019 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Mahadi Man,

School of Informatics and applied Mathematics,

Universiti Malaysia Terengganu,

21030 Kuala Terenganu, Terengganu, Malaysia.

Email: hadie02@yahoo.com

1. INTRODUCTION

Nowadays, there is a numerous number of transaction recorded in any organization. In order to

process this data and find useful information, data mining is used [1]. Data mining is the process of extracting
useful information from various sources by extracting information from a data set and transform it into

an understandable structure for further use [2, 3]. Association Rule Mining (ARM) is one of the most

prominent areas in detecting the interesting pattern. With the aims to extract interesting correlations, frequent

patterns, association or casual structures among a set of items in the transaction databases or other data

repositories [4]. ARM must be emphasized to find out the association rules that satisfy the predefined

minimum support and confidence from a given database [5]. Association rule can create analyzing data for

frequent pattern using the criteria Support and Confidence. Support is indicating of how frequently the item

appears in the database. Confidence indicates the number of time has been found [6].

The concept of frequent itemset was first introduced for mining transaction databases [7].

Let I = {i1, i2, ..., in} be a set of all items. A k-itemset α, which consists of k items from I, is frequent if α

occurs in a transaction database D no lower than θ|D| times, where θ is a user-specified minimum support
threshold (called min_sup in our text), and |D| is the total number of transactions in D [8]. The task of finding

the frequent pattern in large databases is very essential and has been studied on a huge scale in the past few

years. Unfortunately, it is computationally expensive, especially when a huge number of patterns exist [9].

Eclat was introduced by Zaki et al. in 1997. Eclat is an acronym for Equivalence Class Clustering

and bottom-up Lattice Traversal [10]. Referring to W.A.B.W.A. (2016), Eclat uses prefix-based equivalence

relation, θ1 along with bottom-up search. It enumerates all frequent itemsets. There are two main steps:

candidate generation and pruning.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 5471 - 5478

5472

In candidate generation, each k-itemset candidate is generated from two frequent (k-1)-itemsets and

its support is counted, if its support is lower than the threshold, then it will be discarded, otherwise, it is

frequent itemsets and used to generate (k+1)-itemsets [4]. The first scan of the database builds the transaction

id (tids) of each single items. Starting with a single item (k = 1), then the frequent (k + 1)-itemset will grow

from the previous k-itemset will be generated with a depth-first computation order. The computation is done

by intersecting tids of the frequent k-itemsets to compute the tidsets of the corresponding (k+1)-itemsets.

The process is repeated until no more frequent candidate itemsets can be found [4].

Eclat starts with prefix {} and the search tree is actually the initial search tree. To divide the initial
search tree, it picks the prefix {a}, generate the corresponding equivalence class and does frequent itemset

mining in the sub tree of all itemsets containing {a}, in this subtree it divides further into two sub trees by

picking the prefix {ab}: the first subtree consists of all itemsets containing {ab}, the other consists of all

itemsets containing {a} but not {b}, and this process is recursive until all itemsets in the initial search tree

are visited. The search tree of an item base {a, b, c, d, e} is represented by the tree as shown in Figure 1.

Figure 2 illustrates how data in a horizontal layout is transformed by a set of transaction ids or tidset in

vertical layout [4].

Figure 1. Prefix tree for 5 items {a, b, c, d, e}

Figure 2. Transformation from horizontal to vertical layout

This paper starts with a formal introduction of Eclat based algorithms. Moving forward, this paper

presented related works in section 2. Then it will continue with a comparative analysis based on

the advantages and disadvantages of each algorithm in section 3.Section 4 discussed the enhancement of

the Incremental Eclat algorithm. In section 5, this paper comes out with experimental results between

previous works and the proposed enhancement and to conclude the discussion, there will be a conclusion and

future works in section 6.

Int J Elec & Comp Eng ISSN: 2088-8708 

Frequent itemset mining: technique to improve eclat based algorithm (Mahadi Man)

5473

2. RELATED WORKS

Finding frequent itemset is a time-consuming process, many versions of frequent itemset

mining algorithms have been proposed by many researchers that aim at reducing the time and space

complexities [11].

2.1. Traditional eclat(tidset) algorithm

Tidset algorithm uses vertical dataset and a bottom-up approach for searching items in

a database [2]. Figure 3 depicted the pseudocode for Tidset algorithm.

Figure 3. Pseudocode for tidset algorithm

2.2. dEclat algorithm

dEclat performs a depth-first search of the subset tree. Zaki and Gouda (2003) show that diffset

allow it to mine on much lower supports than the base Eclat method. The input to the procedure is a set of

class members for a subtree rooted at P frequent itemset are generated by computing diffset for all distinct

pairs of itemsets and checking the support of the resulting itemsets. A recursive procedure call is made with
those itemsets found to be frequent at the current level. This process is repeated until all frequent itemsets

have been enumerated [12]. Figure 4 depicted the pseudocode for dEclat algorithm.

Figure 4. Pseudocode for dEclat algorithm

2.3. SortDiffset algorithm

SortDiffset was created by Trieu and Kunieda in 2014. In general, diffset in an equivalence class

should be sorted in descending order according to size to generate new itemsets represented by diffset with

smaller sizes [13]. Figure 5 depicted the pseudocode for SortDiffset algorithm.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 5471 - 5478

5474

Figure 5. Pseudocode for sortdiffset algorithm

2.4. Postdiffset algorithm

The initial objective of Postdiffset is to handle the issues of big and dynamic data. Postdiffset tends

to reduce a memory and spaces requirement by implementing flushing of memory prior to each itemset being

visited before intersecting the next itemsets. Figure 6 depicted the pseudocode for Postdiffset algorithm.

Figure 6. Pseudocode for postdiffset algorithm

Compared with Postdiffset and Tidset algorithm, Tidset algorithm is more prone to memory

scarcity. The situation becomes worse if the mining process involved a bigger dataset. As memory utilization

increased, the machine’s dependency on virtual memory increases. The more a computer has to depend on

virtual memory, the less efficiently that machine will run [14]. As a result, the performance of the computer

is compromised. Hence to prevent the problem of memory scarcity, Postdiffset included an additional step to

flush the memory.

3. COMPARATIVE ECLAT BASED ALGORITHM

In summary, the review and analysis of Eclat based algorithms are presented in Table 1.

From the comparative analysis, it shows that the Eclat based algorithm is challenged by memory utilization
and processing time (depends on the size of data used). Eclat algorithms need more memory to process

the data. Moving on to dEclat, even though its drastically cut down the size of memory required, but

degrades with a sparse database. The introduction of Sortdiffset has reduced running time and memory usage

but its cost to do the sorting. Finally, Postdiffset was introduced with the ability to reduced memory

utilization. However, Postdiffset has disadvantage on the processing time that needs to be improved in

the future works.

Int J Elec & Comp Eng ISSN: 2088-8708 

Frequent itemset mining: technique to improve eclat based algorithm (Mahadi Man)

5475

Table 1. Eclat based algorithm comparison
Approach Techniques Advantages Disadvantages

Eclat [15, 16] Vertical intersection of

tidlist

The size of Tidsets represents

support

Difficult in pruning technique.

The longer tidset, more time and

memory needed

dEclat [12] Only keeps track of

differences in tidsets.

Drastically cut down the size of

memory required to store

intermediate results

Suitable for a dense database but

degrades with sparse database

Need to switch between tidset

and diffset for a sparse database.

Sortdiffset [17] Combine Tidset + diffset,

then sort tidset in

ascending order and diffset

in descending order

- No need for switching condition

- Reduce running time and memory

usage

Cost to do sorting

Postdiffset [4] Perform tidset for first

level looping and diffset

for second level looping +

Introducing flushing of

memory for itemset being

visited.

Better performance Reduced memory utilization.

However, suffer from processing

time.

4. IMPROVEMENT FOR INCREMENTAL ECLAT ALGORITHM

Previous works use a Relational Database Management System (RDBMS) for its transaction process

to store transaction data gained in the data mining process. RDBMS is one that presents information in tables

with rows and columns. A table is referred to as a relation in the sense that it is a collection of objects of

the same type (rows). Data in a table can be related according to common keys or concepts, and the ability to

retrieve related data from a table is the basis for the term relational database [18]. There is two types of SQL

statement can be used to store data into the database using a single row INSERT or LOAD DATA INFILE.

According to (Benjamin Morel, 2017) LOAD DATA INFILE is the preferred solution when looking for raw

performance on a single connection [19]. It requires to prepare a properly formatted file first before
the LOAD DATA INFILE can be executed.

In current algorithms, transaction data is stored in the database using a single row INSERT.

Therefore, the statement needs to be executed multiple times based on the n-transaction of data available.

Figure 7 shows the algorithm for single row INSERT. To improve on the single row INSERT into

the database system, LOAD DATA INFILE statement has been used. By using INFILE LOAD statement,

only one statement is executed to insert data into the database system. Since only one statement executed,

it minimized the used of memory for data transaction to the database. Figure 8 shows how the improved

algorithm is executed.

Figure 7. Pseudocode for a single row insert into
database

Figure 8. Pseudocode for multiple rows insert into
database

5. EXPERIMENT

5.1. Application platform

The experiment is performed on a Dell LATITUDE 7280, Intel ® Core(TM) i7-6600U CPU 2.60

GHz with 8 GB RAM in a Win 10 64-bit platform. The software used is MySQL version 10.1.34-MariaDB

database server, Apache/2.4.17 (Win32) OpenSSL/1.0.2d PHP/5.6.21as a web server. Benchmark datasets

have been retrieved from http://fimi.ua.ac.be/data/ and the being imported into the MySQL. For the initial

test, we start with a simple dataset in order to produce faster results. Chess and Mushroom datasets are

divided into several benchmark trained datasets.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 5471 - 5478

5476

5.2. Experimental result

The experiment has been carried out for dEclat (Diffset) algorithm, SortDiffset algorithm and

Postdiffset algorithm. We focused on the performance of processing time and memory usage between old

algorithms and the proposed algorithm as shown in Table 2.

Table 2. Database characteristic
Dataset Size (KB) Length (Attribute) Records

Chess100 7.48 12 100

Chess200 14.85 12 200

Chess400 202.5 12 400

Chess500 202.5 12 500

Mushroom100 213 12 100

Mushroom200 213 12 200

Mushroom400 256 12 400

Mushroom500 256 12 500

Figures 9 and 10 demonstrate the running time between the old algorithm and the new proposed

algorithm using chess datasets at a support threshold of 10%. For all three algorithms, both running time is
increasing in line with the number of records. The new proposed algorithm shows a better performance in

processing time. By average, Diffset reduced by 42.48%, SortDiffset by 15.88% and Postdiffset by 22.3%.

On the memory usage, the usage is reduced by 3.66% for Diffset,1.26% for SortDiffset and 3.5% for

Postdiffset. Overall result shows an improvement for all algorithm.

Figure 9. Experimental result for old algorithm

using chess datasets

Figure 10. Experimental result for proposed

algorithm using chess dataset

Figures 11 and 12 presented the experimental using mushroom datasets at 10% support threshold.

Comparing with the old algorithm, on average, the proposed algorithm reduced the execution time by 22.23%

for Diffset, 22.54% for SortDiffset and 11.59% for Postdiffset. On memory usage, the new algorithm shows
good performance by reducing 3.65% for Diffset, 2.85% for SortDiffset and 3.51% for Postdiffset.

Int J Elec & Comp Eng ISSN: 2088-8708 

Frequent itemset mining: technique to improve eclat based algorithm (Mahadi Man)

5477

Figure 11. Experimental result for old algorithm

using mushroom datasets

Figure 12. Experimental result for proposed

algorithm using mushroom dataset

6. CONCLUTION AND FUTURE WORKS

Our proposed technique shows some improvement in reducing memory usage and processing time.

By reducing the number of transaction to the MySQL database, memory usage is reduced. It also affects

the processing time. From the experimental result, the occurrences of the itemset would be one of

the contributing factors of the algorithm performance. For future work, we can also deploy this technique for

sparse datasets such as T10I4D100K or retail. Looking at the same domain, the technique would be
implemented to mining infrequent itemset. Hence, we could discover either the result would be the same as

frequent itemset or distinguished from the findings.

REFERENCES
[1] K. Maniktala, et al., “Technique to Enhance Map Reduce ECLAT Algorithm,” Int. J. Technol. Comput., vol. 2,

pp. 547-548, 2016.
[2] M. Kaur, et al., “Advanced Eclat Algorithm for Frequent Itemsets Generation,” Int. J. Appl. Eng. Res., vol. 10,

pp. 23263-23279, 2015.

[3] V. Shine, “Dataset Preparation in Datamining Analysis Using Horizontal Aggregations,” Int. J. Eng. Res. Appl.,
vol. 4, pp. 369-372, 2014.

[4] W. A. B. W. A. Bakar, et al., “Advances in Machine Learning and Signal Processing,” vol. 387, pp. 35-46, 2016.
[5] A. Meenakshi, “Survey of Frequent Pattern Mining Algorithms in Horizontal and Vertical Data Layouts,”

Int. J. Adv. Comput. Sci. Technol., vol. 4, pp. 48-58, 2015.
[6] R. Ishita and A. Rathod, “Eclat with Large Database Parallel Algorithm and Improve its Efficiency,”

Int. J. Comput. Appl., vol. 143, pp. 33-37, 2016.
[7] R. Agrawal, et al., “Mining Association Rules between Sets of Items in Large Databases,” Proceedings of

the 1993ACM-SIGMOD international conference on management of data (SIGMOD’93)), Washington, DC,
pp. 207-216, 1993.

[8] J. Han, et al., “Frequent pattern mining : current status and future directions,” Springer Sci. Media, LLC 2007,
pp. 55-86, 2007.

[9] R. Krupali and D. Garg, “Survey on the Techniques of FP-Growth Tree for Efficient Frequent Item-set Mining,”
Int. J. Comput. Appl., vol. 160, pp. 975-8887, 2017.

[10] B. Goethals, “Survey on Frequent Pattern Mining,” Univ. Helsinki, pp. 1-43, 2003.
[11] J. Shana and T. Venkatachalam, “An Improved Method for Counting Frequent Itemsets Using Bloom Filter,”

Procedia - Procedia Comput. Sci., vol. 47, pp. 84-91, 2015.

[12] M. J. Zaki and K. Gouda, “Fast Vertical Mining Using Diffsets,” Proceedings of the ninth ACM SIGKDD
international, 2003.

[13] W. Bakar, et al., “Postdiffset : An Eclat-like algorithm for frequent itemset mining Postdiffset : an Eclat-like
algorithm for frequent itemset mining,” Int. J. Eng. Technol., vol. 54, pp. 2-5, 2018.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 5471 - 5478

5478

[14] B. Posey, “Understanding the Impact of RAM on Overall System Performance,” 2006, [Online], Available:
http://techgenix.com/understanding-impact-ram-overall-system-performance/.

[15] M. J. Zaki, “Scalable Algorithms for Association Mining,” IEEE Trans. Knowledge Data Eng., vol. 12,

pp. 372-390, 2000.
[16] W. Li, et al., “New Algorithms for Fast Discovery of Association,” KDD-97 Proceedings, pp. 283-286, 1997.
[17] T. A. Trieu, “An Improvement for dEclat Algorithm,” Proceedings of The 6th International Conference on

Ubiquitous In- formation Management and Communication (ICUIMC’12), pp. 1-6, 2012.
[18] A. B. P. D. Raut, “NOSQL Database and Its Comparison with RDBMS,” Int. J. Comput. Intell. Res., vol. 13,

pp. 1645-1651, 2017.
[19] M. Benjamin, “High-speed inserts with MySQL,” 2017, [Online] Available: https://medium.com/@benmorel/high-

speed-inserts-with-mysql-9d3dcd76f723.

BIOGRAPHIES OF AUTHORS

Mahadi Man was born in Terengganu, Malaysia. He received his B.Sc. in Information System
Engineering from Universiti Technology MARA (UiTM) on May 2007. His research work in
the field of the database system. His area of interest is in the field of big data analytics,
machine learning, data mining and data integration.

Dr. Masita Abdul Jalil is currently working as a Senior Lecturer in the School of Informatics
and Applied Mathematics, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu,
Malaysia. Her interest is in the field of Software Engineering, Computer Science Education,
Programming Languages and Mobile Learning.

