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 One of the most significant challenges facing optimization models for  
the demand-side management (DSM) is obtaining feasible solutions in  
a shorter time. In this paper, the DSM is formulated in a smart building as  

a linear constrained multi-objective optimization model to schedule both 
electrical and thermal loads over one day. Two objectives are considered, 
energy cost and discomfort caused by allowing flexibility of loads within  
an acceptable comfort range. To solve this problem, an integrative 
matheuristic is proposed by combining a multi-objective evolutionary 
algorithm as a master level with an exact solver as a slave level. To cope 
with the non-triviality of feasible solutions representation and NP-hardness 
of our optimization model, in this approach discrete decision variables are 

encoded as partial chromosomes and the continuous decision variables are 
determined optimally by an exact solver. This matheuristic is relevant for 
dealing with the constraints of our optimization model. To validate  
the performance of our approach, a number of simulations are performed and 
compared with the goal programming under various scenarios of cold and hot 
weather conditions. It turns out that our approach outperforms the goal 
programming with respect to some comparison metrics including  
the hypervolume difference, epsilon indicator, number of the Pareto solutions 
found, and computational time metrics. 
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1. INTRODUCTION  
With the growth of innovative electronics systems, the building technologies have witnessed 

tremendous developments, giving rise to a smart building concept [1] . A smart building is a fully connected 

building, equipped with information and communication technologies that can respond continuously to  

the changing inhabitant requirements and environmental conditions, to provide safety and convenience of  

living [2]. Demand-side management (DSM) in a smart building can be defined as a set of programs that 

induce energy consumers to use energy in a rational way. Indeed, the DSM provides a multitude of benefits 

for the futuristic smart building by reducing energy costs and promoting the incorporation of clean renewable 

and low carbon energy technologies [3]. Among the reliable DSM services, demand response encourages 

consumers to voluntary reducing or shifting energy usage during peak periods in response to time-based rates 
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or other forms of financial incentives. For instance, in a smart building, the smart meter receives external 

price signal such as time of use pricing (ToU) which vary depending on three periods, off-peak, mid-peak 

and on-peak price periods, and then all connected energy devices are scheduled to give a better economic 

planning, but affecting consumer preferences, so that it might be operated at undesired periods. However,  

in such circumstances, considering a trade-off between the economic targets of the DSM and a convenient 

lifestyle is substantial. The automatic implementation of the DSM scheduling model in a smart building  

(B-DSM) is performed by using a home/building energy management system (HEMS/BEMS) and is 

becoming a challenging with respect to diversity of building appliances, targets and constraints  
to be optimized. 

Different B-DSM optimization models for the HEMS or BEMS have been established in  

the literature. For instance in [4], an appliance-scheduling is proposed taking into account a photovoltaic 

panel and a hybrid electric vehicle (PHEV). A dynamic multi-swarm with learning strategy is applied to 

solve the proposed model with the objective of reducing the weighted sum of the electricity payments, 

consumer's dissatisfaction and carbon dioxide emissions. In [5] the B-DSM with household appliances and 

a battery is proposed. The authors minimize the electricity cost and the discomfort level. The discomfort is 

modeled through the disparity between the baseline and the optimal schedule. The mixed integer non-linear 

optimization model is built and solved with AIMMS software. Authors in [6] proposed a framework for 

the HEMS with a battery, PV output and electric vehicle. They developed an improved particle swarm 

optimization with a heuristic approach to schedule appliances and calculate power distribution under 

electricity time varying prices, user preference constraint. The objective is the weighted sum of the electricity 
cost and the discomfort. In [7] a mixed integer non-linear optimization model is built for the DSM in a smart 

home considering electrical and thermal appliances, a battery and a cogeneration appliance. In [8], authors 

formulated the B-DSM as a multi-objective model between the electricity cost and the discomfort. 

The discomfort takes two aspects: Time slot preferences, and risk of interruption of energy supply. 

They applied a non-dominated sorting genetic algorithm (NSGAII) to find the compromise between the 

electricity cost and the discomfort. 

The majority of practical HEMS/BEMS optimization models are designed as mixed-integer linear 

programming problems (MILPs) with more than one objective. Getting feasible solutions in a shorter time is 

one of the most important challenges that face optimization models for the DSM in smart buildings. MILPs 

are NP-hard problems involving discrete and continuous decision variables. Exact solvers such CPLEX and 

GAMS which implement branch-and-bound or cutting planes algorithms are suitable for small sized-
problems for finding optimal solutions within a reasonable computation time. However, when the number of 

integer and/or binary variables grows in medium and large MILP problems, these algorithms are extremely 

time-consuming and have exponential computing complexity [9]. To use an exact solver in less time, some 

existing works proposed an integer-free optimization model for energy management in order to reduce  

the computation time [10]. However, this work ignores the scheduling of on/off status of appliances.  

Classical techniques for dealing with multi-objective optimization problems convert the multi-

objective optimization problem (MOOP) to a single-objective optimization problem (SOOP). The epsilon-

constraint method involves optimizing one objective and use all other objectives as constraints [9, 11],  

the WSA involves optimizing a weighted sum of various objectives [12], the weighted metric methods 

indicate optimizing an lp metric constructed from all objectives [13], and the goal programming technique 

involves optimizing a weighted sum of deviations of objectives from user-specified targets [14]. The arised 
SOOP should be tackled using a single-optimization algorithm. Each solution from the SOOP is specific to 

the conversion parameters. However, the disadvantages of these conversions are requiring several calls to  

the single-objective algorithm in order to obtain a set of Pareto optimal solutions, requiring some problem 

knowledge, such as suitable target values or weights, and having limitations to obtain solutions in  

the non-convex region of the Pareto optimal set [15]. 

Multi-objective evolutionary algorithms (MOEA) which imitate the natural selection process are 

well-adapted for MOOP. Among the most popular MOEA algorithm, NSGAII is a population-based 

metaheuristic, it aims to enhance population of solutions iteratively by using evolutionary operators 

(selection, crossover and mutation), and classifying the population into sub-populations based on Pareto 

dominance order and crowding distance concepts. However, NSGAII doesn't ensure finding an optimal 

Pareto front, and for some highly-constrained MOOP, the encoding of feasible candidate solutions isn't 

straightforward and involving the developement of some problem-specific heuristics [16]. 
In this paper, we propose a B-DSM optimization model in order to coordinate a typical set of 

appliances during 24 hours for both hot and cold weather conditions. These appliances are classified into 

three categories: Local energy sources, local energy storages, and loads. Local energy sources include 

photovoltaic panels (PV) and micro-combined heating cooling and power appliances (mCCHP). 

Local energy storages contain electrical domestic batteries (B) and thermal energy storages (TES). Loads are 
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subdivided into: thermal loads, and electrical loads. Thermal loads (TL) use heat produced by mCCHPs or 

stored in TES and include storage water heater appliances (SWH) and Heating & Air Conditioning 

appliances (HAC). Electrical loads (EL) include time shiftable loads (TSL), non-controllable loads (NCL) 

and electric chillers when the hot day is considered.  

To ovecorme the NP-hardness with the number of discrete (integer and binary) variables and 

guarantee the validity of solutions in our highly constrained mixed-integer linear scheduling model, we resort 

to a matheuristic to solve it within a reasonable computational time. In general, matheuristics are algorithms 

that combine mathematical programming methods and metaheuristics [17]. Our proposed hybrid approach is 

an integrative combination where the NSGAII works at the higher level and the exact algorithm is  

a subordinate embedded component of the evolutionary algorithm. More precisely, in our proposed 
matheuristic called (H-NSGAII) solutions are incompletely encoded, and an exact algorithm which is a black 

box solver (CPLEX) used as a decoder for determining the missing parts in an optimal fashion. This indirect 

encoding/decoding strategy is efficient in optimization problems involving many and complex constraints to 

satisfy, such as scheduling problems where neither metaheuristics nor mathematical programming is able to 

find good quality solutions within an acceptable computational time. To validate the performance of our 

approach, a number of simulations are performed and compared with the goal programming (GP) method 

under various scenarios. It turns out that our approach outperforms the GP method with respect to some 

comparison metrics including the hypervolume difference, epsilon indicator, number of Pareto solutions 

found and computational time metrics. In summary, the major contributions of this paper are: (i) solving our 

B-DSM faster than an exact solver; (ii) Overcoming the challenge of developing a problem-specific 

heuristics for representation of feasible solutions when implementing a MOEA on our constrained MILP 
problem; (iii) showing the effectiveness of our matheuristic in obtaining a set of Pareto optimal solutions 

between the total energy cost and the total discomfort while satisfying all constraints.  

The rest of this paper is organized as follows. In section 2, we formulate the mathematical  

model for the multi-objective B-DSM. We then describe the proposed matheuristic approach in section 3.  

In section 4, we provide data, scenarios, simulation results and discussions. Section 5 gives conclusions and  

future perspectives. 

 

 

2. B-DSM OPTIMIZATION MODEL  

In this section, we model the different components involved in the proposed B-DSM. A shown in 

Figure 1. The mCCHP system is modeled to generate electrical, heating and cooling powers. It is composed 

of a power generation unit (PGU) to produce electrical power from the natural gas whereas the recovering 
waste heat from the PGU is employed by the heat recovery system to satisfy the heat demand. The excess 

heat could be stored in the TES and can be later utilised to supply the needed thermal power. The cooling 

demand of our B-DSM is whether met by the absorption chiller (AC) or electric chiller (EC) [18]. Based on 

the day-ahead time of use tariff and gas price, all building components are then scheduled. For each time slot 

t ∈ T where T is the time horizon, 𝑃𝑃𝑉2𝐸𝐿
𝑖,𝑡

, 𝑃𝑃𝑉2𝐺
𝑖,𝑡

 and 𝑃𝑃𝑉2𝐵
𝑖,𝑡

 are the electrical powers supplied from the i-th PV 

to the electrical loads, the grid, and the battery respectively. 𝑃𝑚𝐶𝐶𝐻𝑃2𝐸𝐿
𝑖,𝑡

, 𝑃𝑚𝐶𝐶𝐻𝑃2𝐺
𝑖,𝑡

, 𝑃𝑚𝐶𝐶𝐻𝑃2𝐵
𝑖,𝑡

 are the electrical 

power injected from the i-th mCCHP to the electrical loads, the grid, and the battery respectively. 𝑃𝐺2𝐵
𝑡  and 

𝑃𝐺2𝐸𝐿
𝑡  are the electrical powers supplied from the grid to the batteries and the electrical loads respectively. 

𝑃𝐵2𝐸𝐿
𝑖,𝑡  is the electrical power injected from the i-th battery to the electrical loads. 

 
 

 
 

Figure 1. Proposed B-DSM framework 
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2.1. mCCHP model 

The relation between the electrical and thermal power output (𝑃mCCHP
𝑖,𝑡

 and 𝐻mCCHP
𝑖,𝑡

) of the i-th 

mCCHP is expressed as (1) [19]. ηi,e and ηi,th are the electrical and thermal efficiencies of the i-th mCCHP 

respectively. nmCCHP is the number of the considered mCCHPs in the building. The natural gas consumption 

𝐹mCCHP
𝑖,𝑡

 of the i-th mCCHP in m3 is given as (2) β is the converting factor of 1 kWh to m3 natural gas.  

To avoid stressed mCCHPs generations, minimum/maximum Up-Time, and minimum Down-Time 

constraints are insured with the constraints [20]. Minimum Up-Time constraint (3) defines the minimum time 

the i-th mCCHP should be started up once it is running. The i-th mCCHP initial and final status should 

satisfy the constraints (4) and (5). 𝑇up
𝑖,𝑚𝑖𝑛

 and 𝑇up0
𝑖,𝑚𝑖𝑛

 are the minimum uptime and the initial minimum uptime 

of the i-th mCCHP respectively. Maximum Up-Time constraint (6) defines the maximum time the i-th 

mCCHP has to be on once it started up. 𝑇up
𝑖,𝑚𝑎𝑥

 is the maximum uptime of the i-th mCCHP. Minimum  

Down-Time constraint (7) signifies the minimum time for which the i-th mCCHP should be turned off once  

a shutdown occurs. The initial and final time steps should satisfy the constraints (8) and (9) respectively. 

𝑇down
𝑖,𝑚𝑖𝑛

 and 𝑇down0
𝑖,𝑚𝑖𝑛

are, respectively, the minimum downtime and initial minimum downtime of the i-th 

mCCHP. The i-th mCCHP electrical and heat power must range between their minimum and maximum 

capacities, as expressed in the contraints (10) and (11). 𝑃mCCHP
𝑖,𝑚𝑖𝑛

 (𝐻mCCHP
𝑖,𝑚𝑖𝑛

) and 𝑃mCCHP
𝑖,𝑚𝑎𝑥

 (𝐻mCCHP
𝑖,𝑚𝑎𝑥

) are  

the allowable minimum and maximum electrical (thermal) output of the i-th mCCHP respectively.  

The 𝑠mCCHP
𝑖,𝑡

 is a binary variable corresponding to the on/off status of the i-th mCCHP at time slot t. 

The ramping constraints ensure that the i-th mCCHP production variations between two successive time slots 

are limited as expressed as in (12) and (13). rri is the ramp rate of the i-th mCCHP (kW/h). 

 

 𝑃𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 =

𝜂𝑖,𝑒
𝜂𝑖,𝑡ℎ

⋅ 𝐻𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡   ∀𝑖 ∈ {1,… , 𝑛𝑚𝐶𝐶𝐻𝑃},  ∀𝑡 ∈ {1, … , 𝑇} (1) 

   
 

𝐹𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 =

𝑃𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡

𝜂𝑖,𝑒
⋅ 𝛽    ∀𝑖 ∈ {1, … , 𝑛𝑚𝐶𝐶𝐻𝑃},  ∀𝑡 ∈ {1,… , 𝑇} (2) 

   

 

∑ 𝑠𝑚𝐶𝐶𝐻𝑃
𝑖,𝑛

𝑡+𝑇𝑢𝑝
𝑖,𝑚𝑖𝑛−1

𝑛=𝑡

≥ 𝑇𝑢𝑝
𝑖,𝑚𝑖𝑛 ⋅ (𝑠𝑚𝐶𝐶𝐻𝑃

𝑖,𝑡 − 𝑠𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡−1 )    ∀ 𝑡 = {𝑇𝑢𝑝0

𝑖,𝑚𝑖𝑛 + 1,… , 𝑇 − 𝑇𝑢𝑝
𝑖,𝑚𝑖𝑛 + 1} (3) 

   

 

∑ (1 − 𝑠𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 )

𝑇𝑢𝑝0
𝑖,𝑚𝑖𝑛

𝑡=1

= 0   ∀𝑖 ∈ {1,… , 𝑛𝑚𝐶𝐶𝐻𝑃}
 (4) 

   

 
∑(𝑠𝑚𝐶𝐶𝐻𝑃

𝑖,𝑛 − (𝑠𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 − 𝑠𝑚𝐶𝐶𝐻𝑃

𝑖,𝑡−1 )

𝑇

𝑛=𝑡

) ≥ 0 ∀𝑖 ∈ {1, … , 𝑛𝑚𝐶𝐶𝐻𝑃} ∀ 𝑡 = {𝑇 − 𝑇𝑢𝑝
𝑖,𝑚𝑖𝑛 + 2,… , 𝑇} (5) 

   

 

∑ 𝑠𝑚𝐶𝐶𝐻𝑃
𝑖,𝑛 ≤ 𝑇𝑢𝑝

𝑖,𝑚𝑎𝑥  

𝑡+𝑇𝑢𝑝
𝑖,𝑚𝑎𝑥

𝑛=𝑡

∀𝑖 ∈ {1,… , 𝑛𝑚𝐶𝐶𝐻𝑃} ∀ 𝑡 = {1, … , 𝑇 − 𝑇𝑢𝑝
𝑖,𝑚𝑎𝑥} (6) 

   

 

∑ (1− 𝑠𝑚𝐶𝐶𝐻𝑃
𝑖,𝑛 )

𝑡+𝑇𝑑𝑜𝑤𝑛
𝑖,𝑚𝑖𝑛−1

𝑛=𝑡

≥ 𝑇𝑑𝑜𝑤𝑛
𝑖,𝑚𝑖𝑛 ⋅ (𝑠𝑚𝐶𝐶𝐻𝑃

𝑖,𝑡−1 − 𝑠𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 )  ∀ 𝑡 = {𝑇𝑑𝑜𝑤𝑛0

𝑚𝑖𝑛 + 1,… , 𝑇 − 𝑇𝑑𝑜𝑤𝑛
𝑚𝑖𝑛 + 1} (7) 

   

 

∑ 𝑠𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡

𝑇𝑑𝑜𝑤𝑛0
𝑖,𝑚𝑖𝑛

𝑡=1

= 0 (8) 

   
 

∑(1− 𝑠𝑚𝐶𝐶𝐻𝑃
𝑖,𝑛 − (𝑠𝑚𝐶𝐶𝐻𝑃

𝑖,𝑡−1 − 𝑠𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 ))

𝑇

𝑛=𝑡

≥ 0 ∀ 𝑡 = {𝑇 − 𝑇𝑑𝑜𝑤𝑛
𝑖,𝑚𝑖𝑛 + 2,… , 𝑇} (9) 
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 𝑠𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 ⋅ 𝑃𝑚𝐶𝐶𝐻𝑃

𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 ≤ 𝑠𝑚𝐶𝐶𝐻𝑃

𝑖,𝑡 ⋅ 𝑃𝑚𝐶𝐶𝐻𝑃
𝑖,𝑚𝑎𝑥  ∀𝑖 ∈ {1,… , 𝑛𝑚𝐶𝐶𝐻𝑃},  ∀𝑡 ∈ {1, … , 𝑇} (10) 

   

 𝑠𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 ⋅ 𝐻𝑚𝐶𝐶𝐻𝑃

𝑖,𝑚𝑖𝑛 ≤ 𝐻𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 ≤ 𝑠𝑚𝐶𝐶𝐻𝑃

𝑖,𝑡 ⋅ 𝐻𝑚𝐶𝐶𝐻𝑃
𝑖,𝑚𝑎𝑥  ∀𝑖 ∈ {1, … , 𝑛𝑚𝐶𝐶𝐻𝑃},  ∀𝑡 ∈ {1,… , 𝑇} (11) 

   

 |𝑃𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 − 𝑃𝑚𝐶𝐶𝐻𝑃

𝑖,𝑡−1 | ≤ 𝑟𝑟𝑖  ∀𝑖 ∈ {1,… , 𝑛𝑚𝐶𝐶𝐻𝑃},  ∀𝑡 ∈ {2, … , 𝑇} (12) 

   

 |𝐻𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 − 𝐻𝑚𝐶𝐶𝐻𝑃

𝑖,𝑡−1 | ≤
𝜂𝑖,𝑡ℎ
𝜂𝑖,𝑒

⋅ 𝑟𝑟𝑖  ∀𝑖 ∈ {1,… , 𝑛𝑚𝐶𝐶𝐻𝑃},  ∀𝑡 ∈ {2, … , 𝑇} (13) 

 

2.2. TES model 

The heat power injected 𝐇𝐢𝐧
𝐢,𝐭

and drawn 𝐇𝐝𝐫
𝐢,𝐭  from the i-th TES are bounded as in (14) and (15) 

respectively. 𝐬𝐢𝐧
𝐢,𝐭

 and 𝐬𝐝𝐫
𝐢,𝐭

 are binary variables which mean the injecting and drawing status at time slot t. 

nTES is the number of the considered TES in the building. ηi,in and ηi,dr are the injecting and drawing heat 

efficiencies. 𝐇𝐢𝐧
𝐢,𝐦𝐚𝐱 and 𝐇𝐝𝐫

𝐢,𝐦𝐚𝐱 are the maximal heat injected and drawn respectively. The constraint (16) 

determines the power flow of the i-th TES in any given time slot t. The i-th TES energy content 𝐐𝐓𝐄𝐒
𝐢,𝐭  is 

modeled by (17). The i-th TES energy content is limited as (18). 𝐐𝐓𝐄𝐒
𝐢,𝐦𝐢𝐧, and 𝐐𝐓𝐄𝐒

𝐢,𝐦𝐚𝐱  are the minimum and  

the maximum energy content limits of the i-th TES. In order that the i-th TES can fulfil the requirement for 

the next day, the initial and final energy content, denoted 𝐐𝐓𝐄𝐒
𝐢,𝟏   and 𝐐𝐓𝐄𝐒

𝐢,𝐓   are fixed on the same 

predetermined value. 

 

 
𝟎 ≤ 𝑯𝒊𝒏

𝒊,𝒕 ≤
𝟏

𝜼𝒊,𝒊𝒏
⋅ 𝑯𝒊𝒏

𝒊,𝒎𝒂𝒙 ⋅ 𝒔𝒊𝒏
𝒊,𝒕  ∀𝒊 ∈ {𝟏, … , 𝒏𝑻𝑬𝑺},  ∀𝒕 ∈ {𝟏,… , 𝑻} (14) 

   

 0 ≤ 𝐻𝑑𝑟
𝑖,𝑡 ≤ 𝐻𝑑𝑟

𝑖,𝑚𝑎𝑥 ⋅ 𝑠𝑑𝑟
𝑖,𝑡 ⋅ 𝜂𝑖,𝑑𝑟 ∀𝑖 ∈ {1,… , 𝑛𝑇𝐸𝑆},  ∀𝑡 ∈ {1, … , 𝑇}  (15) 

   

 𝑠𝑖𝑛
𝑖,𝑡 + 𝑠𝑑𝑟

𝑖,𝑡 ≤ 1 ∀𝑖 ∈ {1, … , 𝑛𝑇𝐸𝑆},  ∀𝑡 ∈ {1, … , 𝑇} (16) 

   

 
𝑄𝑇𝐸𝑆
𝑖,𝑡+1 = 𝑄𝑇𝐸𝑆

𝑖,𝑡 + (𝐻𝑖𝑛
𝑖,𝑡 ⋅ 𝜂𝑖,𝑖𝑛 −

𝐻𝑑𝑟
𝑖,𝑡

𝜂𝑖,𝑑𝑟
) ∀𝑖 ∈ {1, … , 𝑛𝑇𝐸𝑆},  ∀𝑡 ∈ {1, … , 𝑇}  (17) 

   

 𝑄𝑇𝐸𝑆
𝑖,𝑚𝑖𝑛 ≤ 𝑄𝑇𝐸𝑆

𝑖,𝑡 ≤ 𝑄𝑇𝐸𝑆
𝑖,𝑚𝑎𝑥  ∀𝑖 ∈ {1, … , 𝑛𝑇𝐸𝑆},  ∀𝑡 ∈ {1,… , 𝑇} (18) 

 

2.3. Battery model 

The state of charge 𝐒𝐎𝐂𝐢,𝐭 of the i-th battery is given by (19). nB is the number of batteries. 𝐏𝐜𝐡
𝐢,𝐭  and 

𝐏𝐝𝐜𝐡
𝐢,𝐭

determine the battery charging and discharging rates of the i-th battery. Ei, ηi,ch and ηi,dch are  

the capacity, charging and discharging efficiencies of the i-th battery. The SOCi,t is bounded as expressed  

in (20) [21]. 𝐒𝐎𝐂𝐢,𝐦𝐢𝐧 and 𝐒𝐎𝐂𝐢,𝐦𝐚𝐱 are, respectively, the maximal and minimal state of charge of the i-th 

battery. The 𝐏𝐜𝐡
𝐢,𝐭

 and 𝐏𝐝𝐜𝐡
𝐢,𝐭

 of the i-th battery are limited by the constraints (21), (22). 𝐏𝐜𝐡
𝐢,𝐦𝐚𝐱

 (resp. 𝐏𝐝𝐜𝐡
𝐢,𝐦𝐚𝐱

)  

is the maximal charging (resp. discharging) rate of the i-th battery. 𝐬𝐜𝐡
𝐢,𝐭

 and 𝐬𝐝𝐜𝐡
𝐢,𝐭  express  

the charging/discharging status of the i-th battery. 𝐬𝐜𝐡
𝐢,𝐭

 (resp. 𝐬𝐝𝐜𝐡
𝐢,𝐭

) is equal to 1 if the i-th battery is charged 

(resp. discharged) at time slot t and 0 otherwise. The battery usage constraint shows that the i-th battery in  

a specific time slot t can be in one of three modes: charge, discharge or off as given in  (23). The charging  
can be from all installed mCCHPs, PVs or the main grid (24). The discharging can only to  

the electrical loads (25). 

 

 
𝑆𝑂𝐶𝑖,𝑡+1 = 𝑆𝑂𝐶𝑖,𝑡 +

𝑃𝑐ℎ
𝑖,𝑡 ⋅ 𝜂𝑖,𝑐ℎ
𝐸𝑖

−
𝑃𝑑𝑐ℎ
𝑖,𝑡

𝐸𝑖 ⋅ 𝜂𝑖,𝑑𝑐ℎ
 ∀𝑖 ∈ {1, … , 𝑛𝐵},  ∀𝑡 ∈ {1, … , 𝑇} (19) 

   

 𝑆𝑂𝐶𝑖,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑖,𝑡 ≤ 𝑆𝑂𝐶𝑖,𝑚𝑎𝑥  ∀𝑖 ∈ {1, … , 𝑛𝐵},  ∀𝑡 ∈ {1,… , 𝑇} (20) 

   

 𝟎 ≤ 𝑷𝒄𝒉
𝒊,𝒕 ≤ 𝒔𝒄𝒉

𝒊,𝒕 ⋅ 𝑷𝒄𝒉
𝒊,𝒎𝒂𝒙 ∀𝒊 ∈ {𝟏, … , 𝒏𝑩},  ∀𝒕 ∈ {𝟏,… , 𝑻} (21) 

   

 0 ≤ 𝑃𝑑𝑐ℎ
𝑖,𝑡 ≤ 𝑠𝑑𝑐ℎ

𝑖,𝑡 ⋅ 𝑃𝑑𝑐ℎ
𝑖,𝑚𝑎𝑥  ∀𝑖 ∈ {1, … , 𝑛𝐵},  ∀𝑡 ∈ {1,… , 𝑇} (22) 
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 𝑠𝑐ℎ
𝑖,𝑡 + 𝑠𝑑𝑐ℎ

𝑖,𝑡 ≤ 1 ∀𝑖 ∈ {1, … , 𝑛𝐵},  ∀𝑡 ∈ {1, … , 𝑇} (23) 

   
 

∑𝑃𝑐ℎ
𝑖,𝑡

𝑛𝐵

𝑖=1

= ∑ 𝑃𝑚𝐶𝐶𝐻𝑃2𝐵
𝑖,𝑡

𝑛𝑚𝐶𝐶𝐻𝑃

𝑖=1

+∑𝑃𝑃𝑉2𝐵
𝑖,𝑡

𝑛𝑃𝑉

𝑖=1

+ 𝑃𝐺2𝐵
𝑡  ∀𝑡 ∈ {1,… , 𝑇} (24) 

   

 

∑𝐏𝐝𝐜𝐡
𝐢,𝐭

𝐧𝐁

𝐢=𝟏

=∑𝐏𝐁𝟐𝐄𝐋
𝐢,𝐭  

𝐧𝐁

𝐢=𝟏

∀𝐭 ∈ {𝟏, … ,𝐓} (25) 

 

2.4. TL model 

The indoor temperature 𝐓𝐢𝐧
𝐢,𝐭 of the i-th HAC in the building is expressed as (26) [22, 23]. nHAC is  

the number of HAC appliances. 𝐇𝐇𝐀𝐂
𝐢  is the heat power consumed by the i-th HAC, 𝐬𝐇𝐀𝐂

𝐢,𝐭
 on/off status of  

the i-th HAC at time slot t. 𝐓𝐨𝐮𝐭
𝐭  is the outdoor temperature, 𝐜𝐚𝐢𝐫 is the specific heat of air, R is the thermal 

resistance of the house wall. The hot water temperature 𝐓𝐒𝐖𝐇
𝐣,𝐭

 of the j-th storage water heater in the building 

is given as (27). nSWH is the number of SWH appliances. 𝐇𝐒𝐖𝐇
𝐣

is the heat power consumed by the j-th 

SWH, 𝐬𝐒𝐖𝐇
𝐢,𝐭  is the on/off status of the j-th SWH at time slot t . 𝐓𝐜𝐨𝐥𝐝  is the cold water temperature, 𝐕𝐜𝐨𝐥𝐝

𝐣,𝐭
 is  

the volume of the cold water, V is the volume of the storage water heater, 𝐂𝐰𝐚𝐭𝐞𝐫 is the specific heat of water. 

The constraints (28) and (29) ensure that the indoor temperature 𝐓𝐢𝐧
𝐢,𝐭

 and 𝐓𝐒𝐖𝐇
𝐣,𝐭

 are bounded between 

acceptable comfort ranges. 𝐓𝐇𝐀𝐂
𝐢,𝐦𝐢𝐧

, 𝐓𝐒𝐖𝐇
𝐣,𝐦𝐢𝐧

and 𝐓𝐇𝐀𝐂
𝐢,𝐦𝐚𝐱 , 𝐓𝐒𝐖𝐇

𝐣,𝐦𝐚𝐱
 are the minimal and maximal acceptable 

temperatures respectively, of the i-th HAC and hot water into the j-th SWH. 

 

 𝑇𝑖𝑛
𝑖,𝑡+1 = 𝑇𝑖𝑛

𝑖,𝑡 ⋅ 𝑒
−𝑡

𝑅𝐶𝑎𝑖𝑟 + (𝑅 ⋅ 𝐻𝐻𝐴𝐶
𝑖 ⋅ 𝑠𝐻𝐴𝐶

𝑖,𝑡 +𝑇𝑜𝑢𝑡
𝑡 ) ⋅ (1 − 𝑒

−𝑡

𝑅𝐶𝑎𝑖𝑟) ∀𝑖 ∈ {1,… , 𝑛𝐻𝐴𝐶},  ∀𝑡 ∈ {1,… , 𝑇}
  (26) 

   

 𝑇𝑆𝑊𝐻
𝑗,𝑡+1

=
𝑉𝑐𝑜𝑙𝑑
𝑗,𝑡

⋅(𝑇𝑐𝑜𝑙𝑑−𝑇𝑆𝑊𝐻
𝑗,𝑡

)+𝑉⋅𝑇𝑆𝑊𝐻
𝑗,𝑡

𝑉
+

𝐻𝑆𝑊𝐻
𝑗

⋅𝑠𝑆𝑊𝐻
𝑗,𝑡

𝑉⋅𝐶𝑤𝑎𝑡𝑒𝑟
 ∀𝑗 ∈ {1,… , 𝑛𝑆𝑊𝐻},  ∀𝑡 ∈ {1,… , 𝑇}  (27) 

   

 𝑇𝐻𝐴𝐶
𝑖,𝑚𝑖𝑛 ≤ 𝑇𝑖𝑛

𝑖,𝑡 ≤ 𝑇𝐻𝐴𝐶
𝑖,𝑚𝑎𝑥  ∀𝑖 ∈ {1,… , 𝑛𝐻𝐴𝐶},  ∀𝑡 ∈ {1,… , 𝑇} (28) 

   

 𝑇𝑆𝑊𝐻
𝑗,𝑚𝑖𝑛

≤ 𝑇𝑆𝑊𝐻
𝑗,𝑡

≤ 𝑇𝑆𝑊𝐻
𝑗,𝑚𝑎𝑥

 ∀𝑗 ∈ {1, … , 𝑛𝑆𝑊𝐻},  ∀𝑡 ∈ {1, … , 𝑇} (29) 

 

2.5. TSL model 

For each e ∈ TSL, we define the load profile 𝐪𝐞 = {𝐪𝐞 
𝟏 , 𝐪𝐞 

𝟐 , … , 𝐪𝐞 
𝐃𝐞} where 𝐪𝐞 

𝐭  is the required 

amount of electricity of e at time slot t. We denote 𝐌𝐒𝐓 
𝐞, 𝐄𝐓 

𝐞and 𝐃 
𝐞 respectively the minimum starting 

time, the maximum ending time and the processing time of e-th TSL. nTSL is the number of TSL in  

the building. The electrical power 𝐏𝐞
𝐭 consumed by e-th TSL is formulated as (30) 𝐱𝐞

𝐭  is a binary variable 

which represents the working status of e in time slot t. 𝐱𝐞
𝐭 = 𝟏 if e starts at time t and 0 otherwise. The time 

window λe of each e is defined as (31) [24]. The constraint (32) guarantees that each e-th TSL starts once 

within the time window λe. 

 

 𝑃𝑒
𝑡 = ∑ 𝑥𝑒

𝑡−𝑑+1 ⋅ 𝑞𝑒
𝑑

𝑑∈𝐷𝑒,𝑑≤𝑡

  ∀𝑒 ∈ {1, … , 𝑛𝑇𝑆𝐿} ∀𝑡 ∈ {1, … , 𝑇} (30) 

   

 𝜆𝑒 = [𝑀𝑆𝑇
𝑒 , … , 𝐸𝑇𝑒 − 𝐷𝑒] ∀𝑒 ∈ {1, … , 𝑛𝑇𝑆𝐿} (31) 

   

 

{
 
 

 
 ∑𝒙𝒆

𝒕

𝒕∈𝝀𝒆

= 𝟏  ∀𝒆 ∈ {𝟏, … , 𝒏𝑻𝑺𝑳}

𝒙𝒆
𝒕 = 𝟎  ∀𝒆 ∈ {𝟏, … , 𝒏𝑻𝑺𝑳},  𝒕 ∈ 𝑻 ∖ 𝝀𝒆

 
 

(32) 

 

2.6. Other constraints 

The constraint (33) ensures that the total PVs power output should be equal to the power transmitted 

from all PVs to the electrical loads, battery and grid. The constraint (34) ensures that total mCCHP electrical 

power output should be equal to the power transmitted from all mCCHPs to the electrical loads, battery  
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and grid. The electrical power balance is formulated in (35). 𝐏𝐍𝐂𝐋
𝐭  and 𝐏𝐄𝐂

𝐭  are respectively the electrical 
demand of the non-controllable loads, and the electric chiller at time slot t. For cold weather conditions,  

the heat power balance is formulated in (36). For hot weather conditions, the cooling demand balance is 

formulated in (37) and (38) [25]. 𝐂𝐎𝐏𝐀𝐂 and 𝐇𝐀𝐂
𝐢,𝐭

 are respectively the coefficient of performance and the heat 

power of the absorption chiller, and 𝐂𝐎𝐏𝐄𝐂 is the coefficient of performance of the electric chiller. 

 

 

∑𝑃𝑃𝑉
𝑖,𝑡

𝑛𝑝𝑣

𝑖=1

=∑𝑃𝑃𝑉2𝐸𝐿
𝑖,𝑡

𝑛𝑝𝑣

𝑖=1

+∑𝑃𝑃𝑉2𝐵
𝑖,𝑡

𝑛𝑝𝑣

𝑖=1

+∑𝑃𝑃𝑉2𝐺
𝑖,𝑡

𝑛𝑝𝑣

𝑖=1

 ∀𝑡 ∈ {1,… , 𝑇} (33) 

   

 

∑ 𝑃𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡

𝑛𝑚𝐶𝐶𝐻𝑃

𝑖=1

= ∑ 𝑃𝑚𝐶𝐶𝐻𝑃2𝐸𝐿
𝑖,𝑡

𝑛𝑚𝐶𝐶𝐻𝑃

𝑖=1

+ ∑ 𝑃𝑚𝐶𝐶𝐻𝑃2𝐵
𝑖,𝑡

𝑛𝑚𝐶𝐶𝐻𝑃

𝑖=1

+ ∑ 𝑃𝑚𝐶𝐶𝐻𝑃2𝐺
𝑖,𝑡

𝑛𝑚𝐶𝐶𝐻𝑃

𝑖=1

 (34) 

   

 

𝑃𝑁𝐶𝐿
𝑡 + ∑ 𝑃𝑖

𝑡

𝑛𝑇𝑆𝐿

𝑖=1

+ 𝑃𝐸𝐶
𝑡 =∑𝑃𝑃𝑉2𝐸𝐿

𝑖,𝑡

𝑛𝑃𝑉

𝑖=1

+ ∑ 𝑃𝑚𝐶𝐶𝐻𝑃2𝐸𝐿
𝑖,𝑡

𝑛𝑚𝐶𝐶𝐻𝑃

𝑖=1

+∑𝑃𝐵2𝐸𝐿
𝑖,𝑡

𝑛𝐵

𝑖=1

+ 𝑃𝐺2𝐸𝐿
𝑡  (35) 

   

 

∑ 𝐻𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡

𝑛𝑚𝐶𝐶𝐻𝑃

𝑖=1

+ ∑ 𝐻𝑖𝑛
𝑖,𝑡 ⋅ 𝜂𝑖𝑛

𝑛𝑇𝐸𝑆

𝑖=1

−∑
𝐻𝑑𝑟
𝑖,𝑡

𝜂𝑑𝑟

𝑛𝑇𝐸𝑆

𝑖=1

= ∑ 𝑠𝑆𝑊𝐻
𝑖,𝑡 𝐻𝑆𝑊𝐻

𝑖

𝑛𝑆𝑊𝐻

𝑖=1

+ ∑ 𝑠𝐻𝐴𝐶
𝑖,𝑡 𝐻𝐻𝐴𝐶

𝑖

𝑛𝐻𝐴𝐶

𝑖=1

 
 

(36) 

   

 

∑ 𝐻𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡

𝑛𝑚𝐶𝐶𝐻𝑃

𝑖=1

+ ∑ 𝐻𝑖𝑛
𝑖,𝑡 ⋅ 𝜂𝑖𝑛

𝑛𝑇𝐸𝑆

𝑖=1

−∑
𝐻𝑑𝑟
𝑖,𝑡

𝜂𝑑𝑟

𝑛𝑇𝐸𝑆

𝑖=1

= ∑ 𝑠𝑆𝑊𝐻
𝑖,𝑡 𝐻𝑆𝑊𝐻

𝑖

𝑛𝑆𝑊𝐻

𝑖=1

+ ∑ 𝐻𝐴𝐶
𝑖,𝑡

𝑛𝑚𝐶𝐶𝐻𝑃

𝑖=1

 (1) 

   

 

∑ 𝐻𝐴𝐶
𝑖,𝑡 ⋅ 𝐶𝑂𝑃𝐴𝐶

𝑛𝑚𝐶𝐶𝐻𝑃

𝑖=1

+ 𝑃𝐸𝐶
𝑡 ⋅ 𝐶𝑂𝑃𝐸𝐶 = ∑ 𝑠𝐻𝐴𝐶

𝑖,𝑡 𝐻𝐻𝐴𝐶
𝑖

𝑛𝐻𝐴𝐶

𝑖=1

 (38) 

 

2.7. Objectives 

2.7.1. Total energy cost 

The total energy cost Fcost over the scheduling horizon (cents/day) is formulated as (39) and 

composed of three parts; the electrical power cost imported from the grid penalized by a penalty factor δ if 

the violation of the maximum contractual peak power L between the utility and the smart building occurs, 

revenue from selling the surplus electrical power produced by the local energy sources to the grid as well as 

natural gas consumption cost of the mCCHP. πbuy
t , π

gas
, πsell,mCCHP and πsell,PVdenote the utility electricity 

tariff for each time slot t, gas price, and mCCHP and PV feed-in tariffs respectively. 

 

 

2.7.2. Total discomfort 

The total discomfort objective Fdiscomfort (%) measures the quality of service of B-DSM, and it is 

divided into three parts; discomfort due to delay or advance operation of TSL, and discomforts caused by  

the deviation from desired indoor and storage water heater temperatures. Fdiscomfort is modeled as expressed as 

(40). dissi,TSL is formulated as (41). STe and PREe are respectively the current and preferred starting times of 

each e ∈ TSL. 𝐓𝐢𝐧
𝐝𝐞𝐬 and 𝐓𝐡𝐨𝐭

𝐝𝐞𝐬 are the desired indoor and hot water storage temperatures respectively. 

 
min𝐹𝑐𝑜𝑠𝑡 =∑(𝑃𝐺2𝐸𝐿

𝑡 + 𝑃𝐺2𝐵
𝑡 ) ⋅ 𝜋𝑏𝑢𝑦

𝑡 ⋅ 1(𝑃𝐺2𝐸𝐿𝑡 +𝑃𝐺2𝐵
𝑡 )≤𝐿

𝑇

𝑡=1

+∑(𝑃𝐺2𝐸𝐿
𝑡 + 𝑃𝐺2𝐵

𝑡 ) ⋅ 𝛿 ⋅ 𝜋𝑏𝑢𝑦
𝑡 ⋅ 1(𝑃𝐺2𝐸𝐿𝑡 +𝑃𝐺2𝐵

𝑡 )>𝐿

𝑇

𝑡=1

−∑

𝑛𝑃𝑉

𝑖=1

∑𝑃𝑃𝑉2𝐺
𝑖,𝑡 ⋅ 𝜋𝑠𝑒𝑙𝑙,𝑃𝑉

𝑇

𝑡=1

− ∑

𝑛𝑚𝐶𝐶𝐻𝑃

𝑖=1

∑𝑃𝑚𝐶𝐶𝐻𝑃2𝐺
𝑖,𝑡 ⋅ 𝜋𝑠𝑒𝑙𝑙,𝑚𝐶𝐶𝐻𝑃

𝑇

𝑡=1

+ ∑

𝑛𝑚𝐶𝐶𝐻𝑃

𝑖=1

∑𝐹𝑚𝐶𝐶𝐻𝑃
𝑖,𝑡 ⋅ 𝜋𝑔𝑎𝑠

𝑇

𝑡=1

 
(39) 
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min𝐹𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 =
1

3
[100

1

𝑛𝑇𝑆𝐿
∑𝑑𝑖𝑠𝑠𝑒,𝑇𝑆𝐿
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+ 100
1

𝑛𝑆𝑊𝐻
×∑

1

𝑇

|𝑇ℎ𝑜𝑡
𝑡 −𝑇ℎ𝑜𝑡

𝑑𝑒𝑠|

max(𝑇ℎ𝑜𝑡
𝑑𝑒𝑠 −𝑇𝑆𝑊𝐻

𝑚𝑖𝑛 , 𝑇𝑆𝑊𝐻
𝑚𝑎𝑥 −𝑇ℎ𝑜𝑡

𝑑𝑒𝑠)

𝑛𝑆𝑊𝐻

𝑖=1

+100
1

𝑛𝐻𝐴𝐶
∑

1

𝑇

|𝑇𝐻𝐴𝐶
𝑡 −𝑇𝑖𝑛

𝑑𝑒𝑠|

max(𝑇𝑖𝑛
𝑑𝑒𝑠 −𝑇𝐻𝐴𝐶

𝑚𝑖𝑛 , 𝑇𝐻𝐴𝐶
𝑚𝑎𝑥 −𝑇𝑖𝑛

𝑑𝑒𝑠)
]

𝑛𝐻𝐴𝐶

𝑖=1

 
(40) 
 

   

 

𝑑𝑖𝑠𝑠𝑒,𝑇𝑆𝐿 = {

𝑃𝑅𝐸𝑒 − 𝑆𝑇𝑒

𝑃𝑅𝐸𝑒 −𝑀𝑆𝑇𝑒
  if 𝑀𝑆𝑇𝑒 ≤ 𝑆𝑇𝑒 ≤ 𝑃𝑅𝐸𝑒

𝑆𝑇𝑒 − 𝑃𝑅𝐸𝑒  

𝐸𝑇𝑒 − 𝐷𝑒 − 𝑃𝑅𝐸𝑒
 if PRE𝑒 ≤ 𝑆𝑇𝑒 ≤ 𝐸𝑇𝑒 −𝐷𝑒

 
(41) 

 

 

 

3. PROPOSED ALGORITHM  

3.1. MOOP problem  

Many problems involve multiple conflicting objectives being optimized simultaneously. MOOP 
with such contradictory objectives lead to a set of optimal solutions instead of a single optimal solution. 

These optimal sets are known as Pareto-optimal solutions [16]. A MOOP problem can be defined as follows: 

 

f(x)=(f1(x), f2(x), …, fq(x) ) is the vector of q objective functions fi, and q is the number of objectives (q ≤ 2). 

x=(x1, x2, ...,xm) represents the decision vector, where xi is a variable of the problem. m is the number of 

decision variables. The set ℝ which contains X is called criteria or decision space. Z=f(X) is the projection of 

the space X onto the space of the objectives. 

An objective vector x=(x1,…,xm) ∈ X dominates another objective vector x'=(x'1,…,x'm) ∈ X 

(denoted by x ≼x') if and only if x is partially less than x', i.e; ∀i ∈ {(1,…,m)}, xi ≤ x'i ∧ ∃ i ∈ {(1,…,m)},  

xi < x'i.  A solution x ∈ X is said to be Pareto optimal if and only if there is no x' ∈ X such that f(x') dominates 

f(x). For a given MOOP, f(x), the Pareto optimal set PS, is defined as: 

 

For a given MOOP, f(x), and Pareto optimal set PS, the Pareto front PF is defined as: 

 

 

3.2. H-NSGAII 
As explained earlier, H-NSGAII is a hybrid algorithm between NSGAII and CPLEX solver.  

By means of this hybridization, our matheuristic is capable to obtain a set of Pareto solutions in a reasonable 

time since CPLEX tackles only continuous variables, and we do not need to develop a specific heuristic for 

the feasible solution representation when applying any metaheuristic such as NSGAII. The implementation of 

our matheuristic H-NSGAII is described by the flowchart given in Figure 2. 

 

3.2.1. Step 1: Read input data 

In the first step, we gather input data related to our B-DSM, including the energy price market from 

the utility, the forcasted power generation of PV, outside temperature, technical specifications of each 

component in the building. We set the maximum number of generations, the number of population size. 

 

3.2.2. Step 2: Generate partial chromosomes 

In step 2, the adopted partial chromosome encoding scheme is based on a mixed binary and integer-

valued strings, each integer-valued gene encodes the starting time of each time shiftable load e ∈ TSL, and 

randomly generated within λe, whereas the binary genes encode the on/off status of thermal loads, the on/off 

status of mCCHP, TES heat power injected and drawn status, and batteries charging and discharging status 

for each time slot t. The length of each partial chromosome is: nTSL + (nHAC + nSWH + nmCCHP + 2 ×n TES + 2 

×nB) × T. 

 
(𝑀𝑂𝑂𝑃) = {

(𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑞(𝑥))

𝑠. 𝑡.  𝑥 ∈ 𝑋
 

 

(42) 

 

 𝑃𝑆 = {𝑥 ∈ 𝑋/∄𝑥′ ∈ 𝑋, 𝑓(𝑥′) ⪯ 𝑓(𝑥)} (43) 
 

 𝑃𝐹 = {𝑓(𝑥) ∈ ℝ𝑚/𝑥 ∈ 𝑃𝑆} (44) 
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Figure 2. Proposed H-NSGAII 
 
 

3.2.3. Step 3: Perform CPLEX decoder 

In decoding step 3, the completeness of partial solution is carried out by solving a sub-problem to 

optimality using CPLEX solver. This sub-problem involves getting an optimal management of the local 

energy sources and storages. More specifically, the CPLEX decoder considers the discrete decision variables 

as input data provided from the previous step, and calculates to optimally the continuous variables.  

 

3.2.4. Step 4: Evaluate the two objective functions 
We evaluate the partial solutions of Popgen whose objective values are the total energy cost Fcost and 

the total discomfort Fdiscomfort. It is mentioned that constraints (28), (29) are handled using the penalty method. 

 

3.2.5. Steps 5: Fitness assignment 

At each iteration gen, partial solutions are ranked based on the non-dominance concept [16].  

 

3.2.6. Step 6: Diversity measure 

Within a given non-dominance rank, partial solutions are sorted based on the crowding distance 

value [16]. Partial solutions with highest crowding distance are preferred because they introduce more 

diversity into the population. 

 

3.2.7. Step 7: Mating selection 

We use a binary tournament selection. Two partial solutions are randomly picked from  

the population. We select the best partial chromosome based on the non-dominance ranking. If their  

non-dominance rankings are equal, we select the partial solution that provides the largest value of  

the crowding distance. 

 

3.2.8. Step 8: Variation operators 

Variations operators are stochastic operators that modify partial solutions to progress in the feasible 

search space. In our B-DSM, a uniform crossover is adopted as depicted in Figure 3. Two offsprings are 

generated by swapping two randomly chosen starting times, HAC SWH, mCCHP, TES, batteries binary 

genes of two parents with a fixed probability probcross. The mutation is carried out by changing a randomly 

chosen starting time, HAC, SWH, mCCHP, TES and batteries binary genes according to the mutation rate 
probmut as indicated in Figure 4. 
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Figure 1. Crossover 

 

 

 
 

Figure 2. Mutation 

 

 

3.2.9. Step 9: Replacement 

An elitist replacement is carried out as follows: A population of offspring partial solutions Ogen is 
created with size Size. These partial chormosomes are decoded and evaluated. Then, a population Rgen with 

size 2× Size is obtained by combining Pgen and Ogen. The partial solutions in Rgen are classified according to 

the non-dominance order and crowding distance values. The better half of the two populations' union is 

forming the new population.  

 

3.2.10. Step 10: Report Pareto optimal front 

We iterate until the maximum number of generations is achieved. Finally, the Pareto optimal front  

is recorded. 

 

 

4. SIMULATION RESULTS AND DISCUSSIONS  

4.1. Data and parameters 
In this paper, a time horizon of 24 hours is considered and divided into 24 time slots of one hour 

each. For both hot and cold weather conditions, the time of use tariff as listed in Table 1. Day-ahead ToU is 

adopted. The natural gas tariff is 58.30 cents per m3. The feed-in tariffs are 12.00, 13.00 cents per kWh for 

hot and cold weather conditions respectively. We consider one mCCHP, one TES, one battery, one PV panel 

with a maximum power capacity of 6 kWh, three HAC, three SWH, and 18 TSL. The penalty factor δ is set 

to 3. The contractual electrical power L is set to 4 kW. The 𝐓𝐮𝐩
𝐢,𝐦𝐚𝐱, 𝐓𝐮𝐩

𝐢,𝐦𝐢𝐧, 𝐓𝐝𝐧
𝐢,𝐦𝐢𝐧

, COPAC and COPEC are 

set to 8, 3, 3, 0.7, 3 respectively. The initial and final SOC are set to 0.5. It is mentioned that all data for both 

cold and hot weather conditions used in this paper are available on-line at the mendeley repository [26. 

Depending on these data and the components involved in the scheduling, experiments were grouped 

into 6 cases, three scenarios for hot weather conditions (SH1, SH2, SH3), and three scenarios for cold 

weather conditions (SC1, SC2, SC3) are taken into account. In SH1/SC1, PVs and batteries are not 

considered. In SH2/SC2, PVs are considered without batteries. In SH3/SC3, both PVs and batteries are taken 

into account. 

 

 

Table 1. Day-ahead ToU 
  ToU for cold weather conditions 

(Cents/kWh) 

ToU for hot weather conditions 

(Cents/kWh) 

[8 A.M,14 P.M] and [20 P.M, 22 P.M] Mid-peak 27.00 28.00 

[14 P.M, 20 P.M] On-peak 36.00 48.00 

[22 P.M, 8 A.M] Off-peak 13.00 12.00 
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4.2. Comparison with CPLEX solver  

To assess the performance of our hybrid matheuristic H-NSGAII and to find out how our algorithm 

can cope with the limitations of prohibitive calcul time of exact solvers, and non-triviality of feasible solution 

encoding with the high number of equality and inequality constraints of the B-DSM optimization model,  

we compare H-NSGAII with the GP method solved with CPLEX for all six scenarios. As explained earlier, 

the introduction of discrete variables in the B-DSM makes the model hard and the computation time would 

grow exponentially. It is entirely acceptable to find good feasible Pareto solutions under reasonable 

computational time, even if the Pareto solutions obtained are suboptimal.  

In the GP, we try to minimize the distance of objective functions from ideal point. Ideal point is 

calculated by solving each objective function separately. The multi-objective problem is transformed to  
a mono-objective problem to form a single objective problem as follows [27]: 

 

 

where Fcost
min, Fdiscomfort

min , Fcost
maxand Fdiscomfort

max  are the minimum and the maximum values of Fcost and Fdiscomfort. 

ν and η are the weights with ν + η = 1. 
To obtain Pareto front in GP method, B-DSM is run multiple times and with different sets of 

weights. Each run gets one solution. The non-dominated solutions are extracted from these obtained 

solutions. The CPLEX time limit for each combination of weights is set to 15 seconds, the CPLEX number of 

runs is 100.  

The parameters of the proposed matheuristic H-NSGAII are as follows: The population size is  

100 and the maximum generation number is 300. The mutation probability is 0.5 and the crossover 

probability is 0.6. 

To validate and compare the proposed algorithms, we use four performance indicators: 

 The computation time in seconds; 

 The number of Pareto solutions found by each algorithm (NPS). Generally, the greater the NPS value is, 

the better the algorithm is; 

 The hypervolume-difference (IH
−). It measures the quality of a Pareto set both in terms of convergence and 

diversity [28] . 

 The convergence indicator ϵ -indicator (Iϵ
+) [29, 30].  

Ten independent runs for each scenario are carried out using H-NSGAII. The reference Pareto front 

is generated by combining all found solutions of both algorithms and the Pareto solutions of this set form  

the reference front underlying the calculation of hypervolume difference and epsilon-indicator indicators. 

GP method is coded with the mathematical programming language (AMPL) and solved with CPLEX solver, 

and H-NSGAII algorithm is coded with ParadisEO version 2.0.1 [31], a C++ white-box object-oriented 
framework and Concert Technology with IBM ILOG CPLEX Optimization Studio Version 12.7.0. 

Both algorithms are run on a Linux 16.04 (64 bit) Intel® Core i7-6500U CPU @ 2.50GHz × 4 computer with 

an 8.00 GiB memory.  

Table 2 compares the average values of these indicators performed for each scenario. Obviously,  

H-NSGAII solves instances in remarkably less time than CPLEX. CPLEX cannot find the optimal Pareto 

solutions within a reasonable time and for some scenarios it stopped at CPLEX timelimit which is set to 1500 

seconds. According to NPS indicator, H-NSGAII obtains more solutions than CPLEX, which offers more 

options to the decision-maker. As we have shown in the results of the hypervolume difference IH 
− and epsilon 

Iϵ
+ metrics for all scenarios, H-NSGAII is better than the CPLEX both in convergence and in spreading of  

the solutions sets. The results yields lower values of IH
−and Iϵ

+ indicators. Consequently, the proposed  

H-NSGAII algorithm in this study can be regarded as an effective tool for solving our MOOP and mixed-

integer linear problem in a reasonable time. 
The compromise solutions and the extreme points of each objective (Fcost, Fdiscomfort) are compared 

for both algorithms in Table 3. It is mentionned that the compromise solutions are selected using TOPSIS 

method [32]. As we can see from this table, H-NSGAII outperforms GP in all scenarios. This is due to  

the crowding distance mechanism of H-NSGAII algorithm which preserves diversity of solutions and 

maintains the extreme points at each iteration. In the other hand, for both hot and cold weather scenarios,  

we can also observe that the scenarios SH3 and SC3 can achieve more cost savings than others scenarios. 

This is due the fact that the combination between all components and flexible loads motive our B-DSM 

framework to more efficiently utilize the energy sources and storages. 

 
min 𝜈 ⋅

𝐹𝑐𝑜𝑠𝑡 − 𝐹𝑐𝑜𝑠𝑡
𝑚𝑖𝑛

𝐹𝑐𝑜𝑠𝑡
𝑚𝑎𝑥 − 𝐹𝑐𝑜𝑠𝑡

𝑚𝑖𝑛 + 𝜂 ⋅
𝐹𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 − 𝐹𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡

𝑚𝑖𝑛

𝐹𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡
𝑚𝑎𝑥 − 𝐹𝑑𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡

𝑚𝑖𝑛

s. t (1).−(38)

 

 

(45) 
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Pareto fronts obtained for both algorithms on the SC3 and SH3 scenarios are shown in Figure 5 (a) 

and Figure 5 (b). The compromise and extreme solutions of H-NSGAII are marked in these figures. 

From these figures, it is clear that the applied H-NSGAII is able to generate Pareto front in a single 

simulation run. Each solution point on the Pareto front indicates a non-dominated B-DSM scheduling 

operation strategy, where the trade-off between the total energy cost, and the discomfort is achieved. We can 

see that the Pareto solutions for the GP are not evenly distributed. Solutions obtained by the proposed 

matheuristic are distributed more uniformly in comparison with the GP. 

 
 

Table 2. Performance metrics comparison between H-NSGAII and GP 
 Instances Algorithm Time (s) NPS 𝐼𝐻

− 𝐼𝜖
+ 

Hot weather 

conditions 

SH1 H-NSGAII 283 178 3.54E-04 7.78E-03  

CPLEX  1500 28 4.27E-02 6.77E-02 

SH2 H-NSGAII 411.7 118 4.58E-04 7.57E-03 

CPLEX  1500 25 1.24E-02 2.86E-02 

SH3 H-NSGAII 420 184 1.23E-04 2.56E-03 

CPLEX  1500 24 4.29E-02 6.91E-02 

Cold weather 

conditions 

SC1 H-NSGAII 46.39 171 7.13E-03 4.62E-02 

CPLEX  1206.6 28 3.45E-02 6.59E-02 

SC2 H-NSGAII 94.13 183 4.90E-03 3.07E-02 

CPLEX  1264.8 21 1.16E-01 1.30E-01 

SC3 H-NSGAII  392.06 115 4.96E-04 8.46E-03 

CPLEX 1500 26 1.34E-01 1.71E-01 

 
 

Table 3. Extreme and compromise solutions for all scenarios for H-NSGAII and GP algorithms 
 Instances Algorithm Best energy cost solution Best discomfort solution Compromise solution 

Hot weather 

conditions 

SH1 H-NSGAII  (1704.76 35.5819) (8787.4 5.98074) (2394.21 12.3299) 

CPLEX  (1761.060 34.4232) (8698.29 7.30403) (2416.89 13.0833) 

SH2 H-NSGAII  (1009.67 45.6252)  (5916.8 7.09835) (1678.78 10.0841) 

CPLEX (1062.75 41.8978) (6516.240 7.13709) (1695.3 10.3254) 

SH3 H-NSGAII (1005.53 47.0681) (4952.24 7.11) (1298.91 10.71) 

CPLEX (1042 31.13360) (4978.91 7.25895) (1413.25 10.8291) 

Cold weather 

conditions 

SC1 H-NSGAII (2480.68 35.4239) (8169.49 7.1336) (3669.63 13.1882) 

CPLEX (2480.97 37.7693) (8182.07 7.29231) (4001.27 13.444) 

SC2 H-NSGAII (2359.68 39.4373) (7555.67 6.53384) (3292.070 13.1822) 

CPLEX (2384.46 30.7114) (7864.69 7.3988) (3305.97 14.2801) 

SC3 H-NSGAII (2251.49 38.1855) (6672.14 7.2) (2696.3 11.8098) 

CPLEX (2294.76 28.6783) (6937.99 7.20557) (2792.7 12.3459) 

 

 

 
(a) 

 
(b) 

 

Figure 5. Pareto front, (a) SH3, (b) SC3 
 

 

4.3. Comparison between extreme and compromise solutions 

In this subsection, we study some particular solutions from the Pareto front of SH3 scenario, 

including the best cost solution, the best discomfort solution and the compromise solution in order to show 

the operation load scheduling behaviour of TL (HACs, SWHs) and TSL of these solutions. Figure 6 and 

Figure 7 shows the indoor and hot water temperature profiles for SH3. 
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(a) 

 
(b) 

 

 
(c) 

 

Figure 6. Indoor temperature for SH3 for the three selected Pareto solutions (a) Best cost solution,  

(b) Best discomfort solution, (c) Compromise solution 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 7. Hot water temperature for SH3 for the three selected Pareto solutions, (a) Best cost solution,  

(b) Best discomfort solution (c) Compromise solution 
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Figure 6 and Figure 7 shows the indoor and hot water temperature profiles for SH3. In the same 

figures, the minimum, the maximum and the preferred temperatures are also plotted. As we can see,  

the indoor and hot water temperatures are within their prespecified ranges. For the three considered HAC and 

SWH, the indoor and hot water temperatures are much closer to the user preferred temperatures in almost all 

time slots for the best discomfort and compromise solutions compared to the best cost solutions. 

Figure 8 depicts the electrical power dispatch and state of different electrical loads for SH3 for  

the three selected Pareto solutions. For the best cost and compromise solutions, the electrical power bought 

from the grid (G2EL) is under the contractual power limit L and the import of electricity is shifted to the low 
price periods, however for the best discomfort solution the contractual power limit is violated between time 

slot 14 and 17 which increases the energy cost. 

 

 

 
(a) 

 
(b) 

 

 
(c)  

 

Figure 8. Electrical power dispatch for SH3 for the three selected Pareto solutions (a) Best cost solution,  

(b) Best discomfort solution, (c) Compromise solution 

 

 

Figure 9 (a) shows the mCCHP heat production at each time slot for the compromise solution of 

SH3 scenario. As we can see, the operational constraints minimum/maximum Up-Time, and minimum 

Down-Time constraints are satisfied. The mCCHP reaches its maximum at time slot 9 and nearly 

the maximum at time slots 16 and 17. The thermal energy content and the heat power injected and drawn for 

the compromise solution of SH3 scenario is shown in Figure 9 (b). As can be seen, the TES profile fall 

between their maximum and minimum values. The initial and final TES content are set to 10 kWh. 
The battery SOC and power for the compromise solution of SH3 scenario are depicted in Figure 9 (c). 

The positive and negative values represent the battery charging and discharging, respectively. For this Pareto 

solution, the battery charges from the grid during low price periods and discharges during peak price to help 

satisfy loads and keep the electrical demand from the grid under the contractual power limit. The SOC of 

the domestic battery is within the specified range during the scheduling horizon. 
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(a) 

 
(b) 

 

 
(c)  

 

Figure 9. The mCCHP, TES, and battery operations for the compromise solution of SH3,  

(a) mCCHP heat power output, (b) TES energy content with the heat drawn and injected,  

(c) Battery SOC with the charging and discharging power 
 

 

5.  CONCLUSION  

In this paper, we have proposed a B-DSM optimization model to schedule electrical and thermal 

appliances with local energy sources (mCCHP, PV) and storages (TES, Battery). The B-DSM is formulated 

as a mixed-integer linear and multi-objective optimization problem, the bi-objective problem deals  

with reducing simultaneously of the total energy cost, and the total discomfort caused by allowing flexibility 

of loads. To deal with the restrictions of excessif computational time of CPLEX with the number of discrete 

variables considered in the model, and the nontriviality of feasible solutions encoding with the number of 

equality and inequality constraints when implementing a MOEA, we develop a matheuristic algorithm based 

on combining the NSGAII algorithm and a black box solver to tackle this problem. In this approach, discrete 

variables are encoded as partial solutions by the NSGAII and considered as input data for the CPLEX solver 
which optimally determines the continuous variables. This matheuristic is effective for our constrained 

MOOP when neither a black box solver nor a MOEA can find good feasible solutions in a reasonable time. 

Several simulations are carried out for both cold and hot weather conditions and compared with  

the GP solved with CPLEX under six scenarios. The results demonstrate the effectiveness of our proposed 

framework and show that our matheuristic is able to obtain more Pareto solutions in a much shorter time that 

are far better than those obtained by CPLEX according to the hypervolume difference and epsilon indicator 

metrics. Future extensions to this work will be mainly aimed at investigating data uncertainties due to  

the penetration of volatile renewable energy sources, electricity and gas prices forecasting errors and 

unpredictable energy consumption. We will also formulate our B-DSM to encompass several buildings by 

taking into account energy trading between buildings through so-called collaborative micro-grids. 
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