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1. INTRODUCTION

One of the most important methods in mathematics used to discuss the existence and uniqueness of
a solution of such equations is the Banach contraction principle [1]. It is considered as a valuable tool in
fixed point theory. Since then, many mathematicians investigated the Banach contraction principle in many
directions. In [2], Abodayeh et al. utilized the concept of {2—distance to give some new generalizations of
Banach contraction principle. Shatanawi, M. Postolache in [3, 4] studied some common fixed points of such
mappings. For more generalizations of Banach fixed point theory, see [5—18]. In 1931 Wilson [19] introduced
the notion of quasi metric space as below:

Definition 1 [79] We call the function q : E x E — [0,00) a quasi metric if it satisfies:
(i) gler,e2) =0 & e =ey;
(ii) q(e1,e2) < (e1,e3) +q(es, e1) forall e, ez, €3 € E.

The pair (E, q) is called a quasi metric space.

For some work in quasi metric spaces, see [20-23]

If the symmetry condition is added to (E, q) (i.e. q(e1,e2) = q(ea,ey) for all e1,es € F), then the
space (F, ¢q) is a metric space.
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Henceforth, we denote by (E, ¢) a quasi metric space.
To generate a metric d on E. Defined : E x E — [0, 00) by

d = max{q(e1, e2), q(e2, 1)}
The concepts of completeness and convergence of quasi metric spaces are given below:

Definition 2 [24, 25] A sequence (es) converges to e* € E if lim g(es, e*) = lim g(e*, es) = 0.
S—r00

5500
Definition 3 [25] Let (es) be a sequence in E. Then we call
(i) (es) left-Cauchy if for any § > 0, there exists Ny € N such that q(es, e;) < 0 forall s >t > Ny.
(ii) (es) right-Cauchy if for any § > 0, there exists Nog € N such that q(es,e) < 6 forallt > s > Nj.
Definition 4 [24, 25] A sequence (es) in E is called a Cauchy sequence if

(i) If for any 0 > 0, there exists No € N such that q(es,e;) < § forall s,t > No;
or

(ii) (es) is right and left Cauchy.
Definition 5 [24, 25] We say (E, q) is complete if every Cauchy sequence (es) in E is convergent.
In 2016, Alegre and Marin [26] introduced the notion of modified w-distance mappings on (F, q).

Definition 6 [26] A modified w-distance (shortly mw-distance ) on (E, q) is a function
p: Ex E = [0,00), which satisfies the following:

(W1) pler,es) < p(er,es) + p(es, e2) forall e1,e2,e5 € E;
(W2) p(e,.): E — [0,00) is lower semi-continuous for all e € E; and

(mW3) for each ¢ > 0 there exists § > 0 such that if p(e1, e2) < § and p(es, e3) < 8, then q(ey, e3) < o for all
e1,es,e3 € F.

Henceforth, we denote by p an mw-distance mapping.

Definition 7 [26] if p is lower semi-continuous on the first and second coordinates, then p is called a strong
mw-distance.

Remark 1 [26] Every quasi metric q on E is mw-distance.

Lemma 1 [33] Let (05), (05) be two sequences of nonnegative real numbers that converge to zero. Then we
have the following:

(i) If p (es,er) < os forall s,t € Nwitht > s, then (es) is right Cauchy in (E, q).
(ii) If p(es,er) < o forall s,t € Nwitht < s, then (es) is left Cauchy in (E, q).

Remark 2 [33] The above lemma show that if %im ples,er) =0, then (es) is Cauchy in (E, q).
8,t—00

For more results in fixed point theory in w and modified w—distances, we ask the readers to consider
[20, 27-31, 33, 34].

Definition 8 [35] A self function ¢ on [0, 00) is said to be an ultra distance function if  satisfies p(u*) =
0 < p* = 0and if (1) is a sequence in [0, 00) such that 1ir+n p(pur) =0, then lirJP wr=0.
S—+00 S——+00
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2.  MAIN RESULTS
The definition of €,-contraction on a pair of self mappings is defined as follows:

Definition 9 Equipped (E, q) with p and let F\T be two self mappings on E. Then the pair (F,T) is called
€p-contraction if there exists an ultra distance function ¢ and a given € > 0 such that for all e1,e3 € E we
have:

pler,er)
Fey Tey) < | 251720 F Tes) b
op(Feq,Tey) < (Hl)(ehFel))maX{«pp(el, e1), p(ez, 62)}

And

ple1, e2)
Tey, Feg) < [ L7201} o e1,Ter), oples, Fes) .
op(Ter, Fey) < (6+p(61,T61)) X{SDP( 1,Ter), pp(ea 2)}

Next, we introduce our first result:

Theorem 2 Equipped (E, q) with p and let F,T be two self mappings on E such that the pair (F,T) is an
ep-contraction. Also, assume p(e;i1,€e;) = 0or p(ej,ej1) = 0, for some j € NU{0}. Then e; is a unique
common fixed point of F and T in E.

Proof. Let e € E. We create a sequence (e;) in E inductively by taking Fep; = egj41 and Tegj11 = eg;42
forall j € NU{0}.

To prove the result, we have to consider the following cases:

Case(1): p(e;,ej11) = 0. If j is even, then j = 2k for some k € NU {0}, so we have p(eax, e2r+1) = 0 and
s0 p(eak, eart1) = 0.

Now, since the pair (F,T) is an €,-contraction, we get:

op(eokt1,eak+2) = op(Feay, T€2k+1)

IN

€2k7€2k+1

PP
e+;(2;§f,2522k) max {W)(@Qk, Fear), pp(ert1, T62k+1)}
tplesn.eonit) mﬂ) max {%P(e%, eak+1), PP(€2k+1, €2k+2)}
0.

By the definition of ¢, we have
p(€2k+1, €2k42) = 0. (1)

From the assumption we have p(eak, e2x+1) = 0 and by (1) we get that
p(ezk, e2ry2) = 0. 2)
Also, by using mW3 of the definition of p, we get that

q(eak, e2r4+2) = 0. 3)

oplear+2,eant1) = pp(Teakt1, Feay)

p(ezpt1,€2k)

WM) max {90/0(€2k+1, €2k+2), SDP(GZka €2k+1)}

IA

p(e2k41,€2k)

= WW) max {@p<€2k+1»€2k+2)a op(eak, €2k+1>}

Therefore,
pleak+2,ear4+1) = 0. )

€-contraction and some fixed point results ... (K. Abodayeh)
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Also, using the Equations (2), (4) and mW?3 of the definition of p, we get that

q(ear41,e21) = 0. (5)

Hence, es), = €ar+1 = €242 and so e; is a common fixed point of F' and T" in E.
If j is odd, then j = 2k + 1, for some k € N U {0}. Then we have p(eax+1, €2k+2) = 0 and hence

ep(eak+1,e2+2) = 0.

op(eant2,e2n43) = ep(Teapt1, Feapio)

P(€2k+1;82k+2)
etp(eznit,Teantr) ) TAX {@p(€2k+1, €ar+2), pp(€2r+2, 62k+3)}

IN

(92k+17€2k+2)
rplearneanra) ) Max  9p(€2kt1, €2k v2), PP(€2k12, €2k+3)

P(62k+1 €2k42)
e+pleant1,€ant2) @p(e2k+2’ 62k+3>'

Let [, = —Lle2ksic2isa) - Then [, < 1 and so
et+p(ezky1,eari2)’

op(eant2, e243) < @p(eart2, €2k43)-
Thus, @p(eak+2, €2x+3) = 0. By the definition ¢, we get that
(€142, €2143) = 0. (6)
From the assumption, we have p(eag41, eax+2) = 0 and by (6), we get
p(€2k+1, €2k43) = 0. (7)
Also, Condition mW3 of the definition of p implies that
q(eart1,e2k43) = 0. (3)

p(Feapta, Teapi1)

pp(eants, €2k42) = pp
Eefp((e;;kf?’f;’;;iz)) max {@0(62k+2, Fegky2), ppeart, T€2k+1)}
0.

IN

(62k+2 82k+1
e+p(eapt2,€2k+3)

) max {@P(62k+27 e2r+3), Pp(€art1, €2k+2)}

In a similar manner, we can prove that if p(e;j41,¢e;) = 0, then e; is a common fixed point of F' and T in E. O

Next, we introduce our main result:

Theorem 3 Equipped (E, q) with p and let F, T be two self mappings on E. Assume the following conditions
hold:

(1) (E, q) is complete;

(1) The pair (F,T) is an €,-contraction ;

(ii7) F and T are continuous;

(iv) For all e, e3 € E and some integer L we have p(e1,e2) < L.

Then F and T have a unique common fixed point in E.

Proof. Let ¢y € E. Construct a sequence (e,,) in E inductively by taking Fea,, = ea,,41 and Teay 1 = €ap42
foralln € NU {0}.

If for some i € N we have p(e;, e;41) = 0 or p(e;+1,e;) = 0, then by Theorem 2, e; is a unique common fixed
point of F'and T'in F.
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Now, assume that p(e,,, e,+1) # 0 and p(ep+1,e,) # 0, forall n € NU {0}.
Since the pair (F,T') is an €,-contraction, then we have
op(€anyi1;eante) = pp(Fean, Teani1)
< m) max {90,0(6%7 FeQn)a @p(€2n+17 T€2n+1)}
= m> max {cpp(ezm €2n+1); @p(eznﬂ,ezmz)}.
_ P(62n,62n+1)
Also, if max < @p(ean, €ant1), pp(€2n+1, 62n+2)} = @p(ean+1, €ant2), we get that
wp(eanti,€amt2) < Lmax {900(6271, €2nt1), Pp(€2n+1, 62n+2)}
= Lyp(eany1,€2nt2) 9)
< pp(€ant1,€2nt2)-
Thus, pp(eant1, €2n+2) = 0 and so p(e2n 41, €an+2) = 0 a contradiction.
Therefore,
p(€2n, €2n11)
n b) n S - ns n M 10
opleant1, €ant2) (6 R P—— Jop(ean, €2ni1) (10)
@p(6271+2> e2n+1) = <PP(T€2n+1, FeQn)
< m> max {90,0(62n+17 €2n+2), 90/7(6271,76217,-&-1)}
= ( gmsrcan) ) max {cp,o(ezwh €an+2), Pp(€2n, e2n+1)}
= | pcnly Jwnlean eanin).
Also, we can show that:
op(en; ent1) < (M)W(en—hen)- (11)
€+ p(en—la en)
And ( )
P\€EnyEn—1
€En y En S Y €n—1,€n)- 12
SDP( +1 ) <€+p(€n’en+l)>@p( 1 ) ( )
Now,
< P(en—lven)
ppen,ent1) < etplen_1.en) op(en—1,en)
plen—1,€n) plen—2,6n—1)
= et+plen—1,€n) (e+p(en22,en11)>wp(e”2’ enfl)
<< (M)@p(eo, ).
let L; = (%) Then L; < 1foralli € {1,2,--- ,n}, so we have
wp Bn, en—‘,—l H ‘PP €n, en+1)) (13)

€-contraction and some fixed point results ... (K. Abodayeh)
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Letting n — oo, we get

lim pp(en,ent1) =0. (14)
n—oo
Since ¢ is ultra distance function, we have
lim p(en,ent1) =0. (15)
n— oo

@p(en-‘rlaen) < % @p(en—laen)

p(en,en,1) p(en—2ven71)

< et+p(en,entt) (e+p(en—2,en—1)>@p(€”2’6”1)

€n,En— n—1 €i—1,€4
< (6&(67“61;)1)) 1 (Ei(p(e:el)l))w)(eo,e1).

IN

Let L; = (%) Then L; < 1foralli € {1,2,--- ,n — 1} and since p(e1,e2) < Lforalle;,e; € E

and some integer L, we get that

n—1
ep(ent1en) < L[] Li(wp(eo, 1)), (16)
i=1
Letting n — oo, we get that:
Jim pp(entasen) = 0. (17)
The definition of ¢ informs us
nlingop(en+1, en) = 0. (18)

Now, we need to show that (e;) is a Cauchy sequence in E.

In order to do that, we first prove that (e;) is a right Cauchy sequence in (E, q). For each s,t € N with s < ¢,
we have the following cases:

Case (1): If s odd and t even, then we have:

pples,er) = pp(Fes—1,Te;—1)
e+l:)((eeilf,?ej)1)> max {@P(esh Fes_1),pp(es—1, T€t1)}

IN

ples—1,et—1)

ctp(ea_1.es) maX{%P(Es—h@s)aSﬁp(et—l’et)}

ples—1,et—1)

oy )eples—1,es).

LetL; = (%) Since p(eq, ez) < Lforall ef, e5 € E and some integer L, we have

s—1

pples,er) < L] Li(wpleo, e1)). (19)
i=1
Letting s,t — oo, we have lim ¢ (p(es, e;)) = 0.
s,t—00
Thus,
lim ¢ p(es, e¢) = 0. (20)

s,t—00
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Case (2): If s even and ¢ odd, then we have:

oples,er) = pp(Tes—1, Fep1)
6+pp((eesslly,eTte:>l)) max {@P(esh Tes—1), op(€t—1, Fetl)}

IN

ples—1,et—1)

tples_1,es) | X {@P(Bs—ly es), pp(er—1, €t)}-

ples—1,et-1)

Ty |eples—,es).

Let L; = (<=1 ) ‘Since p(ey, e5) < L forall ey, e € E and some integer L, then we get that

e+p(ei—1,€i)
s—1
ples,er) < L] Li(wpleo, e1)). @
i=1
Letting s,t — oo, we have lim ¢ (p(es,e;)) = 0.
s,t—00
So,
lim ¢ p(es, e¢) = 0. (22)
s,t—00
Case (3): If s and ¢ are odd, we get
ples,er) < ples,est1) + plessr,er). (23)
Hence,
s}fgnoop(es’ et) =0 (24)
Case (4): If s and ¢ are even, we get
ples,er) < ples,ec—1) + pler—1,er). (25)
Hence,
S’ltlgloop(es, e;) = 0. (26)

Using Lemma 1, we get that (e;) is a right Cauchy sequence in (F, ¢). Similarly, we can prove that (e;) is a
left Cauchy sequence in E.

Hence, (e;) is a Cauchy sequence in E. The completeness of (F, ¢) implies that there exists an element e* € F
such that (es) — e*.

If F'is a continuous function then e; 1 = Fe, — Fe*. By the uniqueness of limit, we get that F'e* = e*.

In a similar manner, we can prove that T'e* = e* when T is a continuous function.

To prove the uniqueness of e¢*. First we show that p(e*, e*) = 0.

pp(e*,e*) = pp(Fe*, Te*)
EféﬁeifF)EJ max {gap(e*, Fe*), pp(e*, Te*)}

M) max {@p(eﬁ e*), pp(e, e*)}

IN

Therefore, p(e*,e*) = 0.

€-contraction and some fixed point results ... (K. Abodayeh)
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Assume that there exists * € E such that F'\p* = Tp* = p*. Then

wp(e*, u*)

IA

wp(

E_ff,e 7MF)C* max {gop(e*, Fe*), gop(u*,Tu*)}
ei(; ‘ maX {W(e"? "), pp(p”, u*)}

0.

Thus, we have p(e*, u*) = 0 since p(e*, e*) = 0 we get that g(e*, u*) = 0 and so e* = p*. O

Corollary 4 A complete (E, q) Equipped with p and let F,T be two self continuous mappings on E. Assume
the following conditions hold:
(i) For all e1,e2 € E and a given € > 0 and an ultra distance function @ we have:

pp(Fer, Tes) < (2(6 f(:(léle2;el))) (@p(eu Fey) + pp(es, Tez)) :

And

ple1, e2)
Tei, F < T F .
op(Te1, Fep) < (2(6+p(61,T61))> (‘Pp(el, e1) + pp(ez, 62))
(it) For all ey, eq € E we have p(ey, e2) < L for some integer L.

Then F and T have a unique common fixed point in E.

Proof.
op(Fey, Tes)

IN

g(ff)(lli?))) (sop(el, Fey) + ¢p(ez, T62)>

%) max {@P(el, Fey), <P/)(€2,T€2)}-

Similarly, we can prove that:

ep(Ter, Fez) < <m> (wp(el, Ter) + pp(ez, Fez)) :

O

Corollary 5 A complete (E, q) Equipped with p and let F, T be two self continuous mappings on E. Assume
the following conditions hold:
(i) For all e1,e2 € E and for a given € > 0 and an ultra distance function ¢ and k € [0, 1) we have:

ep(Fer, Tez) < kpp(er, ea).

And
op(Tey, Fez) < kpp(er, ea).

(it) For all e1,eq € E we have p(ey, es) < L for some integer L.

Then F and T have a unique common fixed point in E.

Int J Elec & Comp Eng, Vol. 10, No. 4, August 2020 : 3839 — 3853
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Proof. Let p(y1,) = . and let k = (%) Then k € [0,1).
Now,

pp(Fey,Tes) = p(Fey,Tes)

ple1,Fei)
< etpler,Fer) P(el, 62)

% plex, Fey)

_ p(ei,e2)

TFoler,Fen) wp(er, Fey)

et o ) max {@p(el, Fey), wp(ez,T@)}-

IN

Similarly, we can prove that:
ep(Tey, Fez) < kgp(er, e2).

O

If we take F' = T in Corollary 5, we get the following result:

Corollary 6 A complete (E,q) Equipped with p and let F' be a self continuous mapping on E. Assume the

following conditions hold:

(1) For all e, e2 € E and for a given € > 0 and an ultra distance function ¢ and k € [0, 1)we have:

pp(Fer, Fez) < kgpler, e2).

(i3) For all e1, e2 € E we have p(e1,e3) < L for some integer L.

Then F' has a unique common fixed point in E.

Example 1 Let F =0,1,--- ,m where m € N.
Define F,'T on E as follows:
0 if e; €{0,1};
F(er) = 1 if e €{2,3,---,5}
2 ife €{6,7,---,m}h

0 ifesc{0,1,--- 5}
T(eg) = 1 lf eg € {6,7, ,10},‘
2 ifesc {11,12,--- ,m).

Then F' and T have a unique fixed point in E.

Proof. To show that F and T have a unique fixed point in E.
Define p,q : E x E — [0, 00) such that

2 1
q(e1,es) = 561 + geg.

pler,e2) = 2e1 + es.

Also define ¢(p.) : [0,00) — [0, 00) as follows:

(/4. if p € [0, m];
i) = { (/4 (L2 +2)  if g > m.

Then

1. F and T are continuous functions.

€,-contraction and some fixed point results

... (K. Abodayeh)
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@ is an ultra distance function.
(E, q) is a complete quasi metric space.

p is an mw-distance mapping.

A N

The pair (F,T) is e,-contraction with ( € = 1)
i.e., Ve, e € E we have

op(Fer, Teg) < (—PL0122) ) {¢p<e1,Fel>,sap<e2,Te2>}.

1+ p(ela Fel
And

eo(Ter, Fea) < (120 ymax {pter. Ter) opteas Fea) )

1+ p(er,Te

Now, it is an easy matter to check out that F' and T are continuous functions. In addition,, it is
obviously that ¢ is an ultra distance function, p is an mw-distance mapping and (E, q) is a quasi metric space.
To show that q is complete, let (es) be a Cauchy sequence in E. Then for each s,t € N we have

i alense) <0

we conclude that es = e, for all s,t € N but not for finitely many. Therefore, (es) is a convergent sequence in
E. Consequently, (E, q) is a complete quasi metric space.
To prove that the pair (F,T) is e,-contraction with ( € = 1), we need to consider the following cases:
Case (1): If ey € {0,1}, then we have the following subcases:
Subcase (1): If eo € {0,1,-- ,5}, then

pp(Fey, Tes) = pp(0,0) = 0.
Subcase (2): If es € {6,7,--- ,10}, then

1
pp(Fer,Tez) = pp(0,1) = p(1) = 7.
(%) max {sap(el,Fel),W(emTeQ)} = | Bge2, {ip(ezv 1)
= 2221?) i(2e24+1)
13 [ 2e1+6
Z 4\ 2e1+1
> (5)(F)
> 5
Subcase (3): If ea € {11,12,--- ,m}, then we get that
2
pp(Fer,Tes) = pp(0,2) = p(2) = 7.

2e1+tes
261+1 262 + 2)

2€1+11
261+1

Y

(%) max {50/)(617F€1)790P(€2»T€2)} = Eﬁ(;é? % (€2,2)
6
26
2
4°

AV

Int J Elec & Comp Eng, Vol. 10, No. 4, August 2020 : 3839 — 3853
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Case (2): Ife; € {2,3,--- , b}, then we have the following subcases:
Subcase (1): If ea € {0,1,--- ,5}, then we have

R

pp(Fey,Tea) = ¢p(1,0) = ¢(2) =

ek ) oten

(%) max {gpp(el, Fey), pp(ez, Tez)}
226611-:_622> i(Qel + 1)

Vv
BIND O

AVAY

Subcase (2): If es € {6,7,--- 10}, then we get that

3
pp(Fer,Tes) = pp(1,1) = 9(3) = .
(Jﬁ%) max {(pp(617F61)7 gpp(eg,Teg)} = 1’1;%;‘3) {ip(ez, 1)
= 2266111‘522) i(261 + 1)
13 (2614
Syl
2 ?(ﬁ)
> 1
Subcase (3): If eo € {11,12,--- ,m}, then we get that
pp(Fer, Tez) = op(1,2) = p(4) = L.
(M) max {sop(el, Fey), wp(eszez)} = | S5 {ip(eb 2)

22e€11-:e22> i(262 + 2)

2e1+11
6< 2e1+2 )

1

%

AV
w‘m

1.

Case (3): Ifey € {6,7,--- ,m}, then we have the following subcases:
Subcase (1): Ifea € {0,1,--- ,5}, then we have

pp(Fer,Tez) = ¢p(2,0) = p(4) = 1.

(1—‘:0((6611,3?)81)) max {@p(elv F61)7 QDP(@Q, Te?)} = 1/_);'_(;%;@?2,%) |:}Lp(€17 2)
= 226611—:632> i(2e1 +2)
> (2255 [Heer +2)
- 3
> 1.
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Subcase (2): If eq € {6,7, -+ ,10}, then we have

pp(Fey, Tea) = ¢p(2,1) = ¢(5) =

W | ot

plei,e2) 1
1+p361?2) Zp(elv 2)

226;116;32) i(261 +2)

g2t ) 121 + 2|

(M) max {sap(eu Fey), pp(ea, Teg)} >

Y, Il
NN T N

(VA
NU'U“

Subcase (3): If eo € {11,12,--- ,m}, then we get that

6
op(Fer, Tez) = ¢p(2,2) = ¢(6) = T
(J(F’)) max {sap<e1,Fe1>, @0(627T€2)} > (e {ip(e% 2
= 22661;:-632> i(2€2 + 2)
Z 6(2266114:"_131)
>

In a similar manner, we can show that:

gpp(TehFeg)g( plessez) ))max{g&p(ehTel),(pp(eg,Feg)}.

1+ p(e1,Teq

Consequently, the pair (F,T) satisfies the conditions of Theorem 3 ensures that F' and T have a unique common
fixed point in E. (O

3. APPLICATION
Theorem 7 Let m = 2" withn € N. Then the function

Flx)=|1—-2™)/(n—a™)|, wheren > m + 2

has a unique fixed point in [0, 1].
Proof. Let E = [0, 1]. Define ¢ : E x E — [0,00) by q(e1,e2) = |e1 — ea|. Then (E, q) is a complete quasi
metric space. Also, define p : E x E — [0,00) by p(e1, e2) = |e1 — e2]. Then p is an mw-distance mapping.

Now, equipped (E, ¢) with p.

Also, define ¢ : [0,00) — [0, 00) by

B . if . € 10,1];
plus) = { ?1/9)(/& +1) ifz* > 1.
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Note that ¢ is an ultra distance function.
Now,

1—el 1—ep?
@P(F€1,F€2)=‘ =) = ( p— ’
(77_61 7]_62)

_ ‘ (I—e™)(n—e5)—(1—ed)(n—el) ‘
(n—ef)(n—ey)

€1 — €2

< (n—1) )
(n—er")(n—ef’)
(n ef:;: 61271)) [(61 +e)(ef +e3)(ef +e3): - (e? n 622)}

(n—1)(2")
(n—1)2

(n—1)(m)
(n—1)2
__(m)

(n—1)

€1 — €y

€1 — €2

wp(er, ea).

By taking k = (7(]”_1%) then £ < 1 and noting that F' is continuous, we deduce that F' satisfies all conditions of

Corollary 6. Therefore, F has a unique fixed point in E. [J

Example 2 The function
F(z) = |[(1—2'®)/(130 — %)

has a unique fixed point in [0, 1].

Proof. By applying Theorem 7 with m = 128 and n = 130. O

4. CONCLUSION

Based on the definition of modified w-distance mappings, the notion of the €4 —contraction was intro-
duced. By employ this new definition, we proved some fixed point result. An example was introduced to show
the validity and reliability of our new results.
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