
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 10, No. 3, June 2020, pp. 2951~2958 

ISSN: 2088-8708, DOI: 10.11591/ijece.v10i3.pp2951-2958      2951 

  

Journal homepage: http://ijece.iaescore.com/index.php/IJECE 

Pipelined Vedic multiplier with manifold adder 

complexity levels 
 

 

Ansiya Eshack, S. Krishnakumar 
Department of Electronics, School of Technology and Applied Sciences, Edapally, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received May 13, 2019 

Revised Jan 3, 2020 

Accepted Jan 8, 2020 

 Recently, the increased use of portable devices, has driven the research world 

to design systems with low power-consumption and high throughput. Vedic 

multiplier provides least delay even in complex multiplications when 

compared to other conventional multipliers. In this paper, a 64-bit multiplier 

is created using the Urdhava Tiryakbhyam sutra in Vedic mathematics.  

The design of this 64-bit multiplier is implemented in five different ways 

with the pipelining concept applied at different stages of adder complexities. 

The different architectures show different delay and power consumption.  

It is noticed that as complexity of adders in the multipliers reduce,  

the systems show improved speed and least hardware utilization.  

The architecture designed using 2x2-bit pipelined Vedic multiplier is then 

compared with existing Vedic multipliers and conventional multipliers and 

shows least delay. 

Keywords: 

FPGA 

Low power  

Pipelining 

Vedic multipliers 

Urdhava Tiryakbhyam 

Copyright © 2020 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Ansiya Eshack 

Department of Electronics,  

School of Technology and Applied Sciences, 

Edapally, Ernakulam 682024, India  

Email: ansiya@yahoo.com 

 

 

1. INTRODUCTION 

Speed and power consumption are the two main aspects considered while designing a system in  

the field of communication [1]. The multipliers (more specifically the adders) which form the major part of 

these systems affect its speed [2]. The more complex a multiplier or its related adder is, the more is its effect 

on the speed [3]. Although addition operations are simple, addition of large bits will surely increase the time 

required for generation of the output. As number of bits of addends increases, time to complete addition also 

increases, ultimately leading to decrease in throughput of the multiplier. DSPs and communication systems 

rely heavily on adders and multipliers for processing their data [4, 5]. Existing multiplier systems consume 

more power and time and are thus, not suitable for DSP and communication systems [6]. 

This paper explores ways to reduce the bit size of the addends and eventually, reduce the complexity 

of the adders in the multipliers to increase its processing speed and lower the power consumption of  

the system. The use of adders with different complexities shows that as adders become less complex,  

the speed of the system increases. The designed 64-bit Vedic multipliers (VM), using Urdhava Tiryakbhyam 

(UT) Sutra, employ pipelining at five different adder complexities and the design with the lowest complexity 

achieves highest throughput. The five designs include the use of 4 thirty-two-bit, 16 sixteen-bit, 64 eight-bit, 

256 four-bit and 1024 two-bit pipelined VMs respectively. A reduction in the FPGA hardware used is also 

observed as VM are employed in the designed system. Faster output generation with low hardware utilization 

certainly brings down power consumption of this novel system. Thus, the designed multiplier systems are 

low power consuming and fast output generators with increase in speed and reduction in power consumption 

as the complexity of the adders decreases. The rest of paper is as follows: Research method is highlighted in 

Section 2 with explanation on VMs, Pipelined VMs, and Modified VMs. Section 3 gives the results and 

analysis. Finally, the conclusion is given in Section 4. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 :  2951 - 2958 

2952 

2. RESEARCH METHOD 

2.1. Vedic multiplier 

In the conventional multipliers, ‘the carry’ most often gets propagated all the way to the most 

significant bit, when binary multiplication is performed [7]. This is the major reason for higher delay in these 

multipliers. When Vedic multiplication technique like UT Sutra is used, there is partial product generation 

and these can be added up in a pipelined fashion  [8, 9]. So, VM employing the UT technique for 

multiplication of two numbers is seen to produce outputs faster than other multipliers by reducing the delay 

to generate the product [10]. This technique uses ‘Vertical and Crosswise’ methodology which utilizes least 

delay, and allows for low hardware usage during processing [11]. Thus UT Sutra allows for parallel 

processing and provides better performance [12–14].  

VMs, involving the UT Sutra, allow a higher order bit multiplication to be computed by breaking 

them to lower order bits. Generally, an NxN-bit VM is formed by four N/2xN/2-bit VMs [15]. Each of  

the N/2xN/2-bit VM can again be formed by four N/4xN/4-bit VMs [16]. Thus each higher bit VM can be 

formed by four lower bit VMs with the lower multipliers having half the bit size of the higher ones.  

This decomposition can continue until 2x2-bit VMs are reached, beyond which decomposition is not 

possible. This is as shown in Figure 1. A 2x2-bit UT Sutra based VM, having a 2-bit multiplier 11 and a 2-bit 

multiplicand 11, follows the steps shown in Figure 2 [17]. 

 

 

 
 

Figure 1. Decomposition of higher order bit VMs into lower order bit VMs 

 

 

 
 

Figure 2. UT Sutra based 2x2-bit VM 
 

 

2.2.   Designed system 

This section describes five architectures of the 64x64-bit VM. The diagrammatic representation of 

this is given in Figure 3(a) to (e). The five architectures with different bit sized pipelined VM are as follows: 

a. Multiplier with four 32x32-bit pipelined VM 

b. Multiplier with sixteen 16x16-bit pipelined VM 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Pipelined Vedic multiplier with manifold adder complexity levels (Ansiya Eshack) 

2953 

c. Multiplier with sixty-four 8x8-bit pipelined VM 

d. Multiplier with two-fifty-six 4x4-bit pipelined VM 

e. Multiplier with one-thousand-twenty-four 2x2-bit pipelined VM 

 

 

  
(a) (b) 

 

 

 
(c) 

 

 

 
(d) 

 

Figure 3. (a) Multiplier with four 32x32-bit pipelined VMs, 

(b) Multiplier with sixteen 16x16-bit pipelined VMs, 

(c) Multiplier with sixty-four 8x8-bit pipelined VMs, 

(d) Multiplier with two-fifty-six 4x4-bit pipelined VMs 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 :  2951 - 2958 

2954 

 
 

Figure 3. (e) Multiplier with one-thousand-twenty-four 2x2-bit pipelined VMs (continue) 

 

 

These designed multipliers thus use the UT Sutra combined with the pipelining technique.  

The designs are created by using the pipeline methodology to produce PMs at different multiplier stages.  

It is observed that as the bit size of these PM becomes low, leading to lesser complexity of the adders 

involved in them, the time for throughput also decreases. The 64x64-bit VM designed using the 2x2-bit 

pipelined VM is seen to yield the fastest results when compared with those designed using 4x4-bit PMs,  

8x8-bit PMs, 16x16-bit PMs or 32x32-bit PMs. As the bit size of the PM decreases, the adders become less 

and less complex eventually leading to faster throughput.  

 

2.3.1. Pipelined Vedic multiplier 

The ‘Vertical and Crosswise’ technique followed by UT Sutra is as shown in Figure 2. The bits of  

the input numbers are multiplied vertically and also in a crosswise manner in different steps and  

the concatenation of the partial products obtained in these individual steps lead to the output of  

the multipliers [18]. It can be observed that the UT Sutra supports pipelining and this method is followed for 

the faster output generation of the multipliers [19–21]. Thus, outputs in multipliers employing the UT Sutra 

are got faster than non-pipelined multipliers [22].  

 

The general steps followed by the UT Sutra for a 2x2-bit PM is as follows [23]: 

Input 1 = a2a1 ; Input 2 = b2b1 

Step 1(vertical): a1 * b1 = a1b1  P1 ;  

Step 2 (cross-wise): a1 * b2 + a2 * b1 = a1b2 + a2b1  P2;  

Step 3(vertical): a2 * b2 = a2b2  P3  

Output: P3 P2 P1 

 

The general steps followed in this techniques for a 4 x 4-bit PM is as follows: 

Input 1 = a4a3a2a1 ; Input 2 = b4b3b2b1 

Step 1(vertical): a1 * b1 = a1b1  P1 ;  

Step 2(cross-wise): a1 * b2 + a2 * b1 = a1b2 + a2b1  P2;  

Step 3(cross-wise): a1 * b3 + a2 * b2 + a3 * b1 = a1b3 + a2b2 + a3b1  P3;  

Step 4(cross-wise): a1 * b4 + a2 * b3 + a3* b2+ a4 * b1 = a1b4 + a2b3 + a3b2+ a4b1  P4;  

Step 5(cross-wise): a2* b4 + a3 * b3 + a4 * b2 = a2b4 + a3b3 + a4b2  P5;  

Step 6(cross-wise): a3 * b4 + a4 * b3 = a3b4 + a4b3 P6;   

Step 7(vertical): a4 * b4  = a4b4  P7 

Output: P7 P6 P5 P4 P3 P2 P1 

 

The general steps followed in this techniques for a 8 x 8-bit PM is as follows: 

Input 1 = a8a7a6a5a4a3a2a1 ; Input 2 = b8b7b6b5b4b3b2b1 

Step 1(vertical): a1 * b1 = a1b1  P1;  

Step 2(cross-wise): a1 * b2 + a2 * b1 = a1b2 + a2b1  P2;  



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Pipelined Vedic multiplier with manifold adder complexity levels (Ansiya Eshack) 

2955 

Step 3(cross-wise): a1 * b3 + a2 * b2 + a3 * b1 = a1b3 + a2b2 + a3b1  P3;  

Step 4(cross-wise): a1 * b4 + a2 * b3 + a3* b2+ a4 * b1 = a1b4 + a2b3 + a3b2+ a4b1  P4;  

Step 5(cross-wise): a1 * b5 + a2 * b4 + a3 * b3 + a4 * b2 + a5 * b1 = a1b5 + a2b4 + a3b3 + a4b2 + a5b1  P5; 

Step 6(cross-wise): a1 * b6 + a2 * b5 + a3 * b4 + a4 * b3 + a5 * b2 + a6 * b1= a1b6 + a2b5 + a3b4 + a4b3 +   

a5b2 + a6b1  P6; 

Step 7(cross-wise): a1 * b7  + a2 * b6 + a3 * b5 + a4 * b4 + a5 * b3 + a6 * b2 + a7 * b1= a1b7  + a2b6 + a3b5 + 

a4b4 + a5b3 + a6b2 + a7b1  P7; 

Step 8(cross-wise): a1 * b8  + a2 * b7  + a3 * b6 + a4 * b5 + a5 * b4 + a6 * b3 + a7 * b2 + a8 * b1= a1b8  + a2b7  

+ a3b6 + a4b5 + a5b4 + a6b3 + a7b2 + a8b1  P8; 

Step 9(cross-wise): a2 * b8  + a3 * b7  + a4 * b6 + a5 * b5 + a6 * b4 + a7 * b3 + a8 * b2 = a2b8  + a3b7 + a4b6 + 

a5b5 + a6b4 + a7b3 + a8b2  P9; 

Step 10(cross-wise): a3 * b8  + a4 * b7  + a5 * b6 + a6 * b5 + a7 * b4 + a8 * b3 = a3b8  + a4b7 + a5b6 + a6b5 + 

a7b4 + a8b3  P10; 

Step 11(cross-wise): a4 * b8  + a5 * b7  + a6 * b6 + a7 * b5 + a8 * b4 = a4b8  + a5b7 + a6b6 + a7b5 + a8b4  

P11; 

Step 12(cross-wise): a5 * b8  + a6 * b7  + a7 * b6 + a8 * b5 = a5b8  + a6b7 + a7b6 + a8b5  P12; 

Step 13(cross-wise): a6 * b8  + a7 * b7  + a8 * b6 = a6b8  + a7b7 + a8b6  P13; 

Step 14(cross-wise): a7 * b8  + a8 * b7 = a7b8  + a8b7  P14; 

Step 15(vertical): a8 * b8  = a8b8  P15 

Output: P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 

 

The same concept is applied to form 16x16-bit and 32x32-bit PMs. It should be noted that  

the pipelined VMs are not created from four lower order bit multipliers as is the case with a general VM, i.e., 

an NxN-bit pipelined VM just follows the vertical and cross-wise steps as listed above and is not built by 

four N/2-bit VMs.   

 

2.3.2. Modified Vedic multiplier 

There are two steps followed in multiplication: partial product generation and partial product 

accumulation [24, 25]. The changes in the processing method of these two steps result in difference in 

throughput of the multiplier. In the designed VMs, the method of partial product accumulation is exploited, 

as described below, to gain faster outputs. Consider a 4x4-bit VM formed from four 2x2-bit VMs. The two 

4–bit numbers written as a4a3a2a1 and b4b3b2b1 can be partitioned into four 2-bit numbers a4a3, a2a1, b4b3 and 

b2b1. These 2-bit numbers serve as the inputs to the 2x2-bit VMs. The cross-wise and vertical technique of 

UT Sutra is used to generate the products of these 2x2-bit VMs. The partial products (PP) of the 4x4-bit VM 

is as shown in Figure 4. These partial products which are four-bit wide each are then added together to form 

the final product. 

 

 

 
 

Figure 4. Modified 4x4-bit VM with the generated partial products and its accumulation 
 
 

4x4 bit VM 

2x2 bit VM 2x2 bit VM 2x2 bit VM 2x2 bit VM 

PP4 = a4a3*b4b3 PP3 = a4a3*b2b1 PP2 = a2a1*b4b3 PP1 = a2a1*b2b1 

       PP4(2:1)          PP3(4:3)              PP3(2:1)                      PP2(2:1)                     PP1(4:3) 

 
             
                                               PP2(4:3)    
 
     PP4(4:3)          PP1(2:1) 

Adder 

     P8-7               P6-5                     P4-3   P2-1 

 

Adder 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 :  2951 - 2958 

2956 

The modified 4x4-bit VM is thus constructed from four 2x2-bit VMs by using the principle of 
product accumulation as given below. The four partial products PP1-PP4 and the final product can be written 
as follows:  

 

PP1   =                                a2a1 * b2b1  

PP2   =            a2a1 * b4b3 

PP3   =            a4a3 * b2b1 

PP4   =            a4a3 * b4b3 

--------------------------------------------------------------------- 
  Final product  =             P8-7    P6-5    P4-3    P2-1 

--------------------------------------------------------------------- 
 

where P8-7 = PP4(4:3), the first two bits of PP4, P6-5 = PP4(2:1) + PP3(4:3) + PP2(4:3), the sum of the first 
two bits of PP3 and PP2 & the last two bits of PP4, P4-3 = PP3(2:1) + PP2(2:1) + PP1(4:3), the sum of first 
two bits of PP1 and last two bits of PP3 & PP2 and P2-1 = PP1(2:1), the last two bits of PP1. The carry of P4-3 

is added to the sum of P6-5 and that of P6-5 is added to P8-7. Modified 8x8-bit, 16x16-bit and 32x32-bit VMs 
all follow the same principle of partial product accumulation for final product generation. This modification 
allows for faster generation of the products and thus reduces the delay of the system. 
 
 

3. RESULTS AND ANALYSIS 
Five different architectures of 64x64-bit VMs, with varying bit sizes of the pipelined VMs, have 

been designed and implemented. The designs consist of modified VMs and pipelined VMs at different adder 
complexities. The bit size of the pipelined VMs has a direct relation with the complexity of the adders and 
the throughput of the system. It is observed that as multiplier and the adder complexity reduces, the delay for 
generating the product also decreases. Figure 5 gives the delay for the five different designs of  
the 64x64–bit multiplier architectures. 
 

 

 
 

 

Figure 5. Delay for the five different architectures of 64x64-bit VM 
 
 

The number of look-up tables (LUTs), of the FPGA, utilized by the five different pipelined 
architectures of 64x64-bit VM are as given in Table 1. It is seen that the architecture with 32x32-bit pipelined 
VM utilizes the highest number of LUTs. The utilization of LUTs decreases as the level of pipelining reduces 
and the multiplier with 2x2-bit pipelined VM has the least number of LUTs. The reason for increased 
throughput of the architectures with decrease in bit size of pipelined VM is due to the fact that as bit size 
reduces, the complexity of adders also decreases.  The volume of additions and the size of the addends 
decreases and this leads to decrease in the time to produce the output. This is the reason for reduction in 
the number of LUTs used by the multiplier designs. The delay of the designed multiplier system employing 
2x2-bit pipelined VM thus yields the best result in terms of hardware utilization of FPGA and system speed.  
This architecture design is compared with other existing 64x64-bit VMs as shown in Figure 6. The designed 
64x64-bit multiplier system with least adder complexity, i. e. employing the 2x2-bit pipelined VM, shows 
the least delay when compared with the existing multipliers. Figure 7 shows the delay comparison between 
the conventional multipliers and the designed multiplier system. 
 
 

Table 1. LUT utilization of the five different architectures of 64x64-bit VM 

Types of VM 
32 bit 

pipelined VM 
16 bit 

pipelined VM 
8 bit 

pipelined VM 
4 bit 

pipelined VM 
2 bit  

pipelined VM 

No. of Look-up tables 13151 12805 12255 11905 11378 

 
 

 

151.72 ns

74.34 ns

42.94 ns 33.77 ns 32.08 ns

20
40
60
80

100
120
140
160

32 bit pipelined
VM

16 bit pipelined
VM

8 bit pipelined
VM

4 bit pipelined
VM

2 bit pipelined
VM



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Pipelined Vedic multiplier with manifold adder complexity levels (Ansiya Eshack) 

2957 

  
  

Figure 6. Delay comparison of designed system with 
existing 64x64-bit VMs 

Figure 7. Delay comparison of designed system with 
conventional 64x64-bit multipliers 

 
 

4. CONCLUSION 
The paper proposes the design of five system architectures of the 64x64-bit VM. The designs show 

that the system designed using the 2x2-bit pipelined modified VM gives the highest throughput. Also this 
2x2-bit pipelined modified VM design utilizes least amount of FPGA hardware out of all the five designs. 
This proves that as the bit size of the pipelined VM reduces, the complexity of the system reduces, and this in 
turn increases its computation speed and decreases its power consumption. The best architecture among  
the five designs of the 64x64-bit VM has been compared with other existing similar bit-sized VMs and 
standard multipliers and is observed to have the least delay. 
 
 
REFERENCES 
[1] M. Jhamb, Garima, and H. Lohani, “Design, implementation and performance comparison of multiplier topologies 

in power-delay space,” International Journal Engineering Science and Technology, vol. 19, no. 1, pp. 355–363, 

Mar 2016. 

[2] C. Chaitanya, C. Sundaresan, P. Venkateswaran, and K. Prasad, “Asic design of low power-delay product carry 

pre-computation based multiplier,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 13, 

no. 2, pp. 845–852, 2019. 

[3] T. Gupta and J. B. Sharma, “Han–Carlson adder based high-speed Vedic multiplier for complex multiplication,” 

Microsystem Technologies, vol. 24, no. 9, pp. 3901–3906, Sep 2018. 

[4] V. K. Rao and K. Lavanya, “An area efficient Q-format multiplier with high performance for digital processing 

applications,” in IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics 

(PrimeAsia), pp. 137–141, 2015. 

[5] M. Barakat, W. Saad, and M. Shokair, “Implementation of efficient multiplier for high speed applications using 

FPGA,” in 13th International Conference on Computer Engineering and Systems (ICCES), pp. 211–214, 2018. 

[6] K. D. Rao, C. Gangadhar, and P. K. Korrai, “FPGA implementation of complex multiplier using minimum delay 

Vedic real multiplier architecture,” in IEEE Uttar Pradesh Section International Conference on Electrical, 

Computer and Electronics Engineering (UPCON), pp. 580–584, 2016. 

[7] E. Prabhu, H. Mangalam, and P. R. Gokul, “A delay efficient Vedic multiplier,” Proceedings of the National 

Academy of Sciences, India Section A: Physical Sciences, vol. 89, no. 2, pp. 257–268, Jun 2019. 

[8] Y. S. Rao, M. Kamaraju, and D. V. S. Ramanjaneyulu, “An FPGA implementation of high speed and area efficient 

double-precision floating point multiplier using Urdhva Tiryagbhyam technique,” in Conference on Power, 

Control, Communication and Computational Technologies for Sustainable Growth (PCCCTSG), pp. 271-276, 2015. 

[9] A. Sai Ramya, B. S. S. V. Ramesh Babu, E. Srikala, M. Pavan, P. Unita, and A. V. S. Swathi, “Performance of 

optimized reversible Vedic multipliers,” in Comp. Comm., Netw. and Int. Sec., pp. 587–593, 2017. 

[10] S. G. M. E. Atre and M. A. M. Alshewimy, “Design and implementation of new delay-efficient/configurable 

multiplier using FPGA,” in 12th Int. Conference on Computer Engineering and Systems (ICCES), pp. 8–13, 2017. 

[11] C. Chaitanya, C. Sundaresan, P. Venkateswaran, and K. Prasad, “Design of modified booth based multiplier with 

carry pre-computation,” Ind. Jour. of Elec.l Eng. and Comp. Sci., vol. 13, no. 3, pp. 1048–1055, 2019. 

[12] S. L. G. Moses and M. Thilagar, “VHDL implementation of high performance RC6 algorithm using ancient Indian 

Vedic mathematics,” in 3rd International Conference on Electronics Computer Technology, vol. 4, pp. 140–143, 2011. 

[13] P. Tuwanuti and N. Thongbai, “Implementation of Vedic multiplier technique on multicore processor,”  

in TENCON 2014 - 2014 IEEE Region 10 Conference, pp. 1–6, 2014. 

[14] K. Pichhode, M. D. Patil, D. Shah, and B. C. Rohit, “FPGA implementation of efficient Vedic multiplier,”  

in International Conference on Information Processing (ICIP), pp. 565–570, 2015. 

[15] T. Gupta and J. B. Sharma, “A CSA-based architecture of Vedic multiplier for complex multiplication,”  

in Ambient Communications and Computer Systems, pp. 41–52, 2018. 

[16] Jinesh S, Ramesh P, and J. Thomas, “Implementation of 64Bit high speed multiplier for DSP application- based on 

Vedic mathematics,” in TENCON 2015 - 2015 IEEE Region 10 Conference, pp. 1–5, 2015. 

44.87 ns

40.33 ns

36.68 ns

32.08 ns

30

36

42

48

M.
Ramalatha

[17]

V. K. Rao [4] M. Yuvaraj
[24]

Designed VM
with 2x2 bit

46.11 ns

36.55 ns

32.08 ns

30

36

42

48

Modified Booth
Algorithm [10]

Array Multiplier
[15]

Designed VM with
2x2 bit



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 :  2951 - 2958 

2958 

[17] M. Ramalatha, K. D. Dayalan, P. Dharani, and S. D. Priya, “High speed energy efficient ALU design using Vedic 

multiplication techniques,” in 2009 International Conference on Advances in Computational Tools for Engineering 

Applications, pp. 600–603, 2009. 

[18] R. K. Barik, M. Pradhan, and R. Panda, “Time efficient signed Vedic multiplier using redundant binary 

representation,” The Journal of Engineering, vol. 2017, no. 3, pp. 60–68, 2017. 

[19] V. Jayaprakasan, S. Vijayakumar, and V. S. Kanchana Bhaaskaran, “Evaluation of the conventional vs. ancient 

computation methodology for energy efficient arithmetic architecture,” in International Conference on Process 

Automation, Control and Computing, pp. 1–4, 2011. 

[20] K. Morghade and P. Dakhole, “Design of fast Vedic multiplier with fault diagnostic capabilities,” in International 

Conference on Communication and Signal Processing, pp. 0416–0419, 2016. 

[21] A. Eshack and S. Krishnakumar, “Low power 32 x 32 – bit reversible Vedic multiplier,” International Journal of 

Innovative Technology and Exploring Engineering (IJITEE), vol. 8, no. 10, Aug 2019. 

[22] V. Gowreesrinivas and P. Samundiswary, “Resource efficient single precision floating point multiplier using 

Karatsuba algorithm,” Ind. Jour. of Elec. Eng. and Inf. (IJEEI), vol. 6, no. 3, pp. 333–342, 2018. 

[23] A. Jais and P. Palsodkar, “Design and implementation of 64 bit multiplier using Vedic algorithm,” in International 

Conference on Communication and Signal Processing (ICCSP), pp. 0775–0779, 2016. 

[24] M. Yuvaraj, B. J. Kailath, and N. Bhaskhar, “Design of optimized MAC unit using integrated Vedic multiplier,”  

in International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), pp. 1–6, 2017. 

[25] A. Eshack and S. Krishnakumar, “Reversible logic in pipelined low power Vedic multiplier,” Indonesian Journal of 

Electrical Engineering and Computer Science, vol. 16, no. 3, pp. 1265–1272, Dec 2019. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Ansiya Eshack received her B.Tech from MES College of Engineering, Kuttipuram and M.Tech 

from Model Engineering College, Kochi. She is presently an Associate Professor at KMEA 

Engineering College, Ernakulam. She is working on her PhD in Electronics at Mahatma Gandhi 

University, Kottayam. Her research interests include Low Power VLSI Design, Embedded 

Systems, Communication Systems and DSP Applications. 

  

 

S. Krishnakumar completed his M.Sc. in Physics with Electronics specialization in 1987 from 

Mahatma Gandhi University, Kottayam. He was awarded Ph.D. in Thin Film Devices in 1995 

from Mahatma Gandhi University, Kottayam. He received his M.Tech. in Computer Science from 

Allahabad Agricultural Institute (Deemed University) in 2006 and his MCA from IGNOU in 2010. 

He served as the Regional Director at the School of Technology and Applied Sciences (STAS), 

during the period 2014-17. Currently he is working in the STAS, Mahatma Gandhi University 

Research Centre, Edapally. His research interest fields include ANN, VLSI, Analog circuit design 

and Image processing. Dr. S. Krishnakumar is an Associate member of Institute of Engineers, 

India. He was a member of Board of studies of University of Calicut and a member of Academic 

council of Mahatma Gandhi University, Kottayam. 
 


