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1. INTRODUCTION

Recently, many Meta heuristic optimization algorithms have been developed. These include Particle
Swarm Optimization (PSO) [1-5], Genetic Algorithm (GA) [6-9] , Deferential Evolution (DE) [10],
Ant Colony (AC) [11], Gravitational Search algorithm (GSA) [12], Sine Cosine Algorithm (SCA) [13-15],
Hybrid PSOGSA Algorithm [16], Adaptive SCA integrated with particle swarm [17], and Teaching Learning
Based Optimization (TLBO) [18-20]. The same goal for them is to find the global optimum. In order to do
this, a heuristic algorithm should be equipped with two main characteristics to ensure finding global
optimum. These two major characteristics are exploration and exploitation. Exploration is the ability to
search whole parts of the space whereas exploitation is the convergence ability to the best solution. The goal
of all Meta heuristic optimization algorithms is to balance the ability of exploitation and exploration in order
to find global optimum. According to [21], exploitation and exploration in evolutionary computing are not
clear due to lake of a generally accepted perception. In other hand, with strengthening one ability, the other
will weaken and vice versa. Because of the above-mentioned points, the existing Meta heuristic optimization
algorithms are capable of solving finite set of problems. It has been proved that there is no algorithm, which
can perform general enough to solve all optimization problems [22]. Many hydride optimization algorithms
are to balance the overall exploration and exploitation ability.

In this study, the proposed modification increases the exploration and make the particle look to
the surrounding space before affected by the best solution. The proposed modification can be applied to any
population optimization algorithms. The PSO is one of the widely used population algorithms due to its
simplicity, convergence speed, and ability of searching global optimum. Recently TLBO is a new efficient
optimization method combine between teaching and learning phases. For the reasons listed above this
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modification has been applied to PSO and TLBO. The organization of this paper is as follows: Section 2
describes the standard PSO and its exploration problem. Section 3 describes the standard TLBO.
The proposed modification is presented in Section 4. Section 5 describes the results of the proposed
modification. Section 6 concludes this research.

2. THE STANDARD PARTICLE SWARM OPTIMIZATION
2.1. Particle Swarm Optimization Algorithm

PSO is a population computation algorithm, which is proposed by Kennedy and Eberhart [1].
The PSO was inspired from social behavior of bird flocking. It uses a number of particles, which fly, around
the search space. All particles try to find best solution. Meanwhile, they all look at the best particle in their
paths. In other words, particles consider their own best solutions and the best solution has found so far.
Each particle in PSO should consider the current position, the distance to pbest, the current velocity, and
the distance to global best (gbest) to modify its position. PSO was modeled as follow [1]:

t+1
i

Vit = wv} + ¢; X rand x (pbest} — x}) + c; X rand x (gbest' — xf) M)

t+1 +1
L

it =t + v: O]
where vi*1 is the velocity of particle i at iteration t,

w is a weighting function,

¢j is a weighting factor,

rand is a random number between 0 and 1,

x! is the current position of particle i at iteration t,

pbest; is the pbest of agent i at iteration t,

gbest is the best solution so far.

The first part of (1),wv! provides exploration ability for PSO. The second and third parts,
cixrand X (pbest — xf) and, c;xrand x (pbest — x!) represent private thinking and collaboration of
particles respectively [23, 24]. The PSO is initialized with randomly placing the particles in a problem space.
In each iteration, the particles velocities are calculated using (1). After velocities calculating, the position of
particle can be calculated as (2). This process will continue until meeting an end criterion.

2.1.1. PSO Exploration Problem

The first part of (1),wv} provides PSO exploration ability. When the algorithm is started,
the velocity is initialized with zero value. Thus from Equation 1, the Global Best Particle (GBP)
(i.e. P1 in Figure 1 (a)) remains in its place until the best global solution is changed by a new particle.
This means the global best particle cannot explore near area because it is not exited by any particle.
In addition, particles that arrive from another places (P2 - P5) to the place of the global best solution with
a certain velocity after a number of iteration may be damped before reaching the optimal solution as shown in
Figure 1 (b). This phenomenon will be treated using PPM in Section 2.

(b)

Figure 1.Particles at initial and final iteration, (a) initial iteration, (b) final iteration
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3. THE STANDARD TEACHING LEARNING BASED OPTIMIZATION

The TLBO method is based on the effect of the teacher on the learners. The teacher is considered as
a global best learned person (ghest®) who shares his knowledge with the learners. The process of TLBO is
divided to two phase. The first phase consists of the ‘Teacher Phase’ and the second phase consists of
the ‘Learner Phase’. The ‘Teacher Phase’ means learning from the teacher and the ‘Learner Phase’ means
learning through the interaction between learners. TLBO was modeled as follows [18]:

3.1. Teacher Phase
A learner learns from teacher by moving its mean to teacher value. Learner modification is
expressed as:

Tr = round[1 + rand(0,1)]
mean dif ference! = r(gbestt — T-M?)
Where M! is the mean of the learner and ‘gbest®’ is the global best (the teacher) at any iteration t.
Fori = 1: number of learnears
Xt = X! + mean difference ®
Accept X} if it gives a better function value.
End

3.2. Learner Phase
A learner learns new something if the other learner has better knowledge than him. Learner
modification is expressed as:

Fori = 1: number of learnears
Randomly select two learners X{ and X{,where i # j
If f (D) < £ (%)
Xt = Xf + rand(X{ - Xf)

Else
Xt = Xt + rand(Xf - Xx{)
End
Accept X}TLif it gives a better function value.
End

4. PREDICTIVE PARTICLE

The main idea of the PPM based on that each iteration the particle should look at its near area and
see if it have a value best than the GBP or not. If it have value better than GBP, it will be the GBP. The PPM
can remedy non-exiting GBP (P1 in Figure 1 (a)) and not wait until excitation from another particle.
In addition, it can improve the vision of the particle before movement toward GBP and overcome the jump
over narrow area leaving goloabal solution.

Consider the initial values of the particles P1 to P5, which are shown in Figure 2. In the next
iteration, these particles will move toward P1 (as it is the GBP at this moment) and take positions P1, P2’ to
P5'. In addition, the P3 may jump to P3’ without converge to gbest especially when the fitness function have
narrow area with high deep value. In addition, the P1 still in its position as it is GBP. These phenomena can
be treated if the particle try to find a best solution (target) from near area before move to GBP as shown in
Figure 3. This can be done using the numerical gradient with a definite target. Assume the fitness function
(F) is a linear function near the particle position in matrix form:

Figure 2. Particles movement
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Initial

Figure 3. Initial and target of the particle

F=AX+bD
Using numerical gradient method:

dF
Xnew = Xolg — R * d_X

where
AF /Ax,

=A
AF /Ax,

dF
ax =

Xpew IS the new postion of the particle in column form

Xo1q IS the current position of the particle
R isthe step size

AF /Ax; is calculated numerically near X,;; by change only x;

From (3):

Folg = AXpq + b

Frew = AXpew +b
From (5) and (6) by substraction:

Folqa — Fnew
Xnew = _OT + Xold

where
Foq is the current fitinenss value
Fhew IS the new fitinenss value

From (4) and (7).

Fold - l:new _ Fold - l:"new

R= =
dF dF,, dF
xR
Foia — F
Xnew = Xola =~ —gr——qz- * dF/dX

(@ * 1

©)

(4)

()
(6)

()

(®)

©)
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0

If F; is the current fitness value of the particle and F, is the target fitness of the particle (less than gbest

value). It is nice to dived search steps to N steps as follows:
Assume dist = F; — F;

for each step

dist/N  dF
dF,, dF dX
@@ *ax

Xnew = Xoig — AX

(10)

(11)

(12)

3265

The complete PPM algorithm before moving to GBP is shown in Table 1. In addition, the Modified PSO

(MPSO) and Modified TLBO (MTLBO) are shown in Table 2 and Table 3 respectively

Table 1. Gradient algorithm
Set particle gradient parameter:

F,; < gbest
X,1q = current position of particle
dist = F; — F,

intialize Vtemp = 0
Execute gradiant algorithm:
For N step

Xnew = Xo1a — AX according to (12)
Xnew =Max(Xpew, Xmin);

Xnew = Min(X,0,y, Xmax);
If F(XTLEW) < F(XTlEW)

Xtemp = Xpeow
Viemp=AX
Else

Xtemp = X, — 2 *x Vtemp
Xtemp=max(Xtemp, Xxmin);
Xtemp= min(Xtemp, Xmax);
Vtemp=Vtemp
End
End

Update particle position :

If F(Xtemp) < gbest
xft1 = Xtemp
vt =Vtemp

End

Table 2. Modified PSO

For each particle

initialize particle
End

Choose the particle with the best fitness value
of all the particles as the gbest
Do
For each particle
Update particle position according to
vi*t = wof + ¢, X rand X (gbest — xf)
Xt = xf 4+ vt
gradient algorithm as shown in Table 1
End
For each particle
Calculate fitness value

If the fitness value is better than the best

fitness value (pbest) in history set current
value as the new phest
End

Choose the particle with the best fitness value
of all the particles as the gbest
While maximum iterations or minimum error
criteria is not attained

Population based optimization algorithms improvement... (M. M. H. Elroby)
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Table 3. Modified TLBO

For each particle
initialize particle
End

Choose the particle with the best fitness value of all the particles as the gbest

Do
1) Teacher phase

Tr = round[1l + rand(0,1)]

mean dif ference ' = r(gbestt — TzM")

Fori = 1: number of learnears
XM = X! + mean dif ference
gradient algorithm as shown in Table. 1 for i Accept X!t if it gives a better function value.

End
2) learner phase

Fori = 1: number of learnears

Randomly select two learners X} and Xf,where i # j
gradient algorithm as shown in Table 1 for i and j

If f(xE) < f(Xf)

X = Xt + rand (X! - X})

Else

X = X! + rand(Xf — XP)

End

gradient algorithm as shown in Table 1 for i
Accept XF¥Yif it gives a better function value.

End

Choose the particle with the best fitness value of all the particles as the gbest
While maximum iterations or minimum error criteria is not attained

5. EXPERIMENTAL RESULTS AND DISCUSSION

The standard PSO, PSOSGSA, SCA, TLBO, MPSO, and MTLBO with the parameter in
Table 4 [25-28] have executed 30 independent runs over each benchmark function for statistical analysis.
As shown in Table 5, MPSO and MTLBO outperformed all of the other algorithms with regard to the quality
of the solutions for all functions. In contrast, the other algorithms produced poor results on certain functions
and accurate results on others. This finding reflects the efficient performance of the MPSO and MTLBO in
comparison with the other unmodifeied algorithms. In addition, Figure 4 to Figure 11 show a comparison
between MPSO and MTLBO and all the other algorithms for the convergence rate for the fitness versus
the iterations. These figures show that MPSO and MTLBO outperforms all the other unmodifeied algorithms
in terms of the convergence speed with an accurate solutio

Table 4. Algorithms parameter

Algorithm Parameter

PSO C1=C2=2 wdamp=0.9

PSOGSA G0=1, C1=0.5, C2=15

SCA a=2, r2=(2*pi)*rand , r3=2*rand, r4=rand
TLBO TF=randi([1 2])

MPSOA C1=C2=2, wdamp=0.9 , N=5

MTLBO G0=1, C1=0.5, C2=1.5,N=5

MaxVelocity=0.2*(VarMax-VarMin) , MinVelocity= —MaxVelocity

Table 5. Benchmark functions

Function n Range PSO PSOGSA SCA TLBO MPSO MTLBO
F, = P 30 [-100,100] 12.6934 2.61276-04 70,1582 9.4739-10  3.76046-20 1.0693¢-310
|,-2 — X“ 1|xi| + I"I=1 Xy 30 [-10,10] 0.86537 10.0018 1.86028 1.4461e-05 0.0013288 3.1831e-25
T — NN i 2 30 100,100 138.401 0.073822 44,1612 0.0043885 0.031916 8.5545e-33
Fy = Z.i:](L;:] "j) [ ! ' ’
|;4 e m:‘lxlxl'l R 1<i<n 30 [-100,100] 4.4334 0.033062 1.7684 0.00014051 4.6443¢-21 3.2386¢-14

3

Fg = XML, [100(x;, ; —x2)? + 30 [-30,30] 761.6989 7.5496 427.0597 6.7747 5.5657 0.035228

P 2
(x;—1)%]

[.‘6 = Ei“:l(xi + ()'5)1 30 [-100,100] 23.7811 0.0001977 20.3904 5.9683¢-06 5.4363e-17 6.7631e-27
F7 = 1 iX? + ‘ra,‘n|0,‘1) 30 [-1.28,1.28] 0.016338 0.053117 0.029228 0.003001 0.0068485 0.00059692
s X "] ; 30 [-500,500] -2759.9392 -2818.879 -1900.6632 -2809.0376 -3004.0262 -3367.6955
Fg = Xty —x; sin [VAETT))

r;‘) - ‘El=1|xiz — 10 (:()5(2115\’.’,-) + 30 [-5.12,5.12] 10,3042 9.9651 36.8504 22.5791 9.9635 1.3882

10]

30 [-32,32] 3.6428 0.024135 7.2123 1.4591e-05 0.00033049 9.1038e-13

n
1
exp (;Z cus(an,-)) +20+e

i=1
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Table 5. Benchmark functions (continue)
Function n Range PSO PSOGSA SCA TLBO MPSO MTLBO
Fo=_Lyn .2 30 [-600,600] 13209 011893 12887 0.21989 0.4499 0
11 = oo 2i=1 Xi —
n X
[1}cos ( ﬁ) +1
™ : 30 [50,50 0.54574 14131 1.128 84362¢-06  0.0031873  1.8935¢-13
Fiz = ~{ 10 sin(mx;) + Xk (xi — 1-50.50] a <
1% [1+
10 sin® (2 )]+ (%, — 1)%}
+¥iL, u(x;,10,100,4)
Fys = 0.1{sin(3mxy) + XL 0 — 30 [5050] 17699 28238¢05 14988 00026299 0052191 5.1608¢-13
. n
1)1+ sin?(3mx; + 1)] +
G - 1?1+
sin?(2mx, )]} +
¥, u(x;,5100,4)
Fo— (L 2 [65.536, 15716 12012 1.0012 0.73009 0.73009 0.73009
14 = (G5t 65.536]
_251 1 )1
j=1° z
IR (rimaig)
u X0 +bpen) 1 4 [5.5] 0.00078406  0.00073004  0.00319543  0.00078124  0.00039186  0.00031247
Fis = imalai — 57y
a2 2,1 6 2 [5,5] 10316 10316 10316 1.0316 10316 10316
Fig = 4xi — 2.1x; tomt
X1%y — 4x% + 4x}
Fo= 51 5,5 2 [55] 0.39789 0.39789 0.42789 0.39789 0.39789 0.39789
17= (2 =X +ox -
2 _ 1
6)*+10(1 2 cosx; +
10
Fig = [1+ (t; + %, + 1)2(19 — 2 [22] 3.0001 3 3 3 3 3
14x; + 3% — 14x, +
63125 + 3x2)] x [30 + (2x, —
3x,)% x (18 — 32x; +
12x% + 48x, —
36x1x; + 27x2)]
Fyo = 31,3 38628 38628 38516 38628 38628 38628
4 3 2
—Xi=1Giexp (- Zj:l aij(xi - pij) )
Fyg = 6 [01] -3.3215 32031 29779 33175 3322 33217
4 6 2
— Xi=1 i exp (= Xj=1 85(%; — Pip))
= 5 -10. 2. 4. -10. -10. -9.
F21 — Zi:l [(X _ ai)(X _ 4 [0,10] 10.1532 2.6305 4.559 10.149 10.1532 04881
T -1
a)’ +¢ )
FZZ [ Zi:i [(X _ ai)(X _ 4 [0, 10] -5.1288 -10.4029 -1.5161 -4.9127 -10.4007 -10.2496
T -1
a;)" +¢l
- 10 -5. -10. -1. -10. -10. -10.
Fys = — Y20 [(X —a)(X — 4 [0,10] 5.1756 10.5364 1.7766 10.5364 10.5363 10.4808
T -1
a)” +¢]
F1
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Figure 4. Converge rate curves for F1 to F3
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Figure 4. Converge rate curves for F1 to F3 (continue)
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Figure 5. Converge rate curves for F4 to F6
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Figure 5. Converge rate curves for F4 to F6 (continue)
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Figure 6. Converge rate curves for F7 to F9
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Figure 8. Converge rate curves for F13 to F15

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 3261 - 3274



Int J Elec & Comp Eng ISSN: 2088-8708 O 3271

F14
5
e PSO
=== SCA
4 TLBO
v s PSOGSA
S — PSOMOdiﬁEd
2.0
g —TLBOMOdiﬂed
]
n
g2
Al \
AW \
U
0 | | | | | |
0 10 2 20 40 50 80

Iteration number

F15

0.03
——PSO
0.025 [ —SCA
TLBO
——PS0GSA
Ve —PSOModiﬂed
_TLBOModified
0.015 H
0.005 - \;
—
10

o
o
~

Fitness value

o
=4
I

——— =

20 30 40 50 60
Iteration number

Figure 8. Converge rate curves for F13 to F15 (continue)
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Figure 9. Converge rate curves for F16 to F18
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Figure 11. Converge rate curves for F22 to F23

CONCLUSION
In this paper, the PPM has the advantage of powerful exploration. Thus, it was necessary to enhance

the population algorithms by merging it with PPM, which has the advantage of powerful exploitation.
Hence, the proposed modification improves the exploration quality and maintaining fast convergence.
PPM optimization was tested to find the optimal solution for standard mathematical functions, and results
demonstrated improvement in solution quality and convergence rate..
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