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 As the size of devices are scaling down at rapid pace, the interconnect delay 

play a major part in performance of IC chips. Therefore minimizing delay 

and wire length is the most desired objective. FLUTE (Fast Look-Up table) 

presented a fast and accurate RSMT (Rectilinear Steiner Minimum Tree) 

construction for both smaller and higher degree net. FLUTE presented  

an optimization technique that reduces time complexity for RSMT 

construction for both smaller and larger degree nets. However for larger 

degree net this technique induces memory overhead, as it does not consider 

the memory requirement in constructing RSMT. Since availability of 

memory is very less and is expensive, it is desired to utilize memory more 

efficiently which in turn results in reducing I/O time (i.e. reduce the number 

of I/O disk access). The proposed work presents a Memory Optimized 

RSMT (MORSMT) construction in order to address the memory overhead 

for larger degree net. The depth-first search and divide and conquer approach 

is adopted to build a Memory optimized tree. Experiments are conducted to 

evaluate the performance of proposed approach over existing model for 

varied benchmarks in terms of computation time, memory overhead and wire 

length. The experimental results show that the proposed model is scalable 

and efficient. 
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1. INTRODUCTION 

Rectilinear Steiner Minimal Tree (RSMT) is composed of small set of connected pins through 

Steiner nodes with minimal cumulative edge size in Manhattan distance for a given set of pins.  

The construction of RSMT is a major issue in designing Very Large Scale Integration (VLSI) such as 

interconnects design, placement and floor planning. It has been adopted in computing transmission delay, 

interconnect delay and in workload computation. It is also adopted in some global routing strategies to build 

a routing topography of all nets. 

The construction of RSMT for VLSI is considered a Non-deterministic polynomial problem [1],  

as a result rectilinear minimum spanning tree (RMST) has been adopted in some earlier design by exploring 

space dimensional design. RMST construction requires fast tree computing strategy and since the RMST 

does not allow Steiner nodes in tree construction the resulting RMST, length is longer than that of RSMT.  

In [2] showed that RMST is one and half times greater than that of RSMT with less than 50% in terms of 

accuracy, which is tolerable in earlier design. However, the later design requires good wire length accuracy 

for which the construction of RSMT is required. In [3] presented a wide range characteristic of RSMT 

construction. In [4, 5] presented an optimal strategy for RSMT construction, which is said to have least 

computation time. In [6] presented a near optimal solution for RSMT construction. However, they are 

computationally very heavy and are not suitable for applications, specifically for VLSI design. 
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Many approaches have been presented to reduce time complexity in constructing RSMT.  

In [7] adopted spanning graph [8] to aid in building the primary set of spanning tree and obtain finest sets for 

the edge-which are computed iteratively to eliminate longest edge. In [9] presented a greedy batched 

technique, which improved efficiency and reduced the computation time. The Single Trunk Steiner Tree 

(STST) is built to connect a set of pins to individual trunks, which traverse vertically or horizontally through 

set of all pins, but is not efficient for medium size pins. In [10] presented refined single-trunk tree for degree 

up to 5 nets and it is optimally accurate for medium degree nets with fair run time complexity. In [31, 34] 

spanning tree based approximation algorithm that produced optimal solutions were presented. 

In [11, 12] presented lookup table based fast and accurate optimal solution for RSMT construction 

namely FLUTE. In this technique, the nets are recursively broken into sub set of nets. FLUTE is evaluated 

for low degree nets and it is suitable for VLSI design. FLUTE is also efficient for high degree nets with 

runtime complexity of 𝑂(𝑛 log 𝑛). However, for higher degree nets the accuracy of RSMT construction is 

severely affected. This is due to the error induced during net breaking technique. To address this issue  

in [13] presented a scalable net partitioning technique, where the nets are broken into smaller subset of nets 

and again merged by adding Steiner nodes. This technique could handle both smaller and larger degree nets 

with slight reduction in accuracy but it induced a runtime complexity of 𝑂(𝑛 log2 𝑛). In [14] presented a fast 

lookup table based RSMT construction, which brings a good tradeoff between accuracy and the runtime 

complexity. As specified in [28-30, 32] memory is gaining prominence and efficient use of this resource is 

very important. Both [13, 14] did not consider the memory constraint in building a look up table. 

The future VLSI design consists of fixed blocks such as IP blocks, macros, and so on and FLUTE is adopted 

by these researchers [15, 16]. In such designs minimizing wire length and reducing memory overhead is most 

desired. To address these issues the proposed work presents a memory optimized RSMT construction that 

reduces wire length and computational overhead complexities. The contribution of research work:  

 No prior work has considered memory constraint in designing RSMT construction. The proposed work 

presents a memory optimized RSMT construction. 

 The proposed model reduces the wire length and computation time in constructing RSMT. 

 The proposed model is evaluated considering different benchmark [25] and shows that the proposed 

model is efficient considering all benchmark in terms of memory overhead, computation time and wire 

length. 

The paper organization is as follows: In section 2 extensive literature survey is carried out.  

The proposed memory optimized RSMT models are presented in Section 3. The experimental study 

considering various benchmark are presented in penultimate section. The concluding remark and future work 

is discussed in the last section. 

 

 

2. LITTERATURE SURVEY 

VLSI is a technique of combining lakhs of transistors into solitary Integrated Circuit (IC) chip.  

With the increase in transistors, the interconnecting wire length also increases. It is challenging to minimize 

the resistive and capacitive features, which have an impact on delay. The interconnect wires have fixed width 

and area making length as the only parameter that can be optimized. As a result, many routing techniques 

have been proposed in VLSI designs that are as surveyed below. 

In [17] showed that the global router generally decompose net through RSMT. Therefore, to reduce 

congestion and provide flexibility it mainly depends on RSMT construction. FLUTE is a widely adopted 

technique for fast RSMT construction with minimal wire length. However, it fails to incorporate congestion. 

To provide flexibility and congestion optimization for net [17] presented a model namely Fthu, which is  

a two-phase approach by adopting FLUTE. In first phase, it decreases congestion and increases flexibility by 

applying reformed edge shifting and edge shrinking technique without changing Steiner tree topology.  

In second phase, the congested Steiner tree is broken and reconnected using MST-based approach.  

The outcomes show better performance in terms of reduced congestion time. However, there is no 

improvement in wire length performance. 

In [18, 19, 26, 27] presented a model to solve global routing problem. In [18] presented model, 

namely GRIP (Global Routing Technology via Linear Programming).This model presented integer-

programming model for current large-scale network. The model obtained high quality solution by adopting 

FLUTE for initial RSMT construction. The outcome shows improvement in cost and wire length 

performance. However, they did not exploit CPU and memory performance. Linear programming model are 

prone to get stuck in local optima. To overcome [19] presented a fast congestion driven Steiner tree creation 
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by adopting FLUTE. The outcome shows significant in terms of runtime complexity. To solve the congestion 

in global routing [20, 21, 33] adopted game theory approach. The game theory approach is adopted to 

improve runtime complexity of clustering approach for VLSI routing placement design. 

In [22] studied various clustering based placement tool. An efficient clustering approach can aid in 

reducing wire length, cycle time or optimize a design based on these objectives. However clustering 

approach can induce time constraint. To address the time constraint [22] exploited a heterogeneous 

computing and presented a parallel clustering approach for placement. Their model is exploited for both CPU 

as well as GPU. The model utilizes the CPU and GPU core to full extent. The outcome shows it achieves  

a good speed up when compared to serial execution strategy. However adopting GPU for processing induces 

high cost of deployment and their model did not consider the memory constraint. As a result, it increases I/O 

access time.  

Extensive literature survey carried out shows that minimizing time complexity (runtime) and wire 

length is a critical factor for designing an efficient routing technique in VLSI design. Some existing 

approaches have considered minimizing wire length or runtime and some considered both for optimization. 

To improve runtime few approaches have considered a parallel implementation by utilizing CPU and GPU 

core. However, none of the approaches has considered memory performance. Utilizing the memory 

efficiently can aid in reducing the time complexity (i.e. I/O access time). The proposed work presents  

a memory optimization based RSMT to improve wire length, runtime and memory performance. In the next 

section below the proposed memory optimized RSMT (MORSMT) model is presented. 

 

 

3. PROPOSED MEMORY OPTIMIZED RSMT MODEL 

Here we present a memory optimized RSMT construction that reduces wire length, memory usage 

and computation time. As similar to [14], let us consider that the size of each sub tree be divided based on 

memory optimized tree and takes memory and spanning tree as input. Firstly it computes the least overhead 

edges (using memory optimized spanning graph) and selects one of the node as its root. The node, which is 

closer to the root node, is considered as parent node by realizing child-parent relationship along each of  

the edges. Then depth-first search and divide and conquer approach is adopted to optimize memory for larger 

size nets. Let us consider a graph 𝐻(𝑁, 𝑀), where 𝑀 and 𝑁 depicts a set of ordered pairs of edges and nodes 

respectively. Let 𝑚 = |𝐸| and 𝑛 = |𝑉| represent set of edges and nodes respectively. Here, we first construct 

an initial spanning graph 𝐻 by adding Steiner nodes 𝛼 and is considered to be connected to all nodes in 𝐻. 

Then divide-conquer approach is applied to build a memory optimized tree of graph 𝐻. Below table shows 

the notations and symbols used in the paper. 

 

 

Table 1. Notations and symbols used 
Symbol used Abbreviation 

𝐻 Graph 

𝑁 Set of nodes 

𝑀 Set of edges 

𝐻(𝑁|𝑀) It is a directed graph 

𝐺 Spanning graph 

𝛼 Set of Steiner nodes 

𝑆 Memory Available 

𝜇 Memory optimized subtree graph 

𝑑 Number of subtree 

 

 

3.1.  Memory optimized divide and conquer approach 

The memory optimized divide conquer approach takes memory S, Spanning graph G of H and graph 

H as an input and obtain a tree Gas output which is a depth first search tree of H, where G is retained in 

memory and H is kept in disk. The algorithm first tests whether graph H can satisfy memory optimization 

requirement, so that the H can be loaded into S and if so it computes memory optimized tree G of H using 

available-memory optimization strategy and obtains G. Or else if does not obtain any G, the algorithm further 

computes memory optimized tree G of H by dividing memory optimized tree G by using divide and conquer 

approach. 

To obtain an efficient memory optimized tree the legal dividend of H must be computed which is set 

to false initially as shown in flowchart in Figure 1. Then the present spanning graph G is optimized with 

respect to H until G is a memory optimized tree G of H or we obtain a legal dividend of H on spanning tree 
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G. Here the dividend is obtained by invoking dividend optimization technique to achieve a graph division 

H_0,H_1,H_2,…,H_d of H with resultant spanning graph〖G〗_0,G_1,G_2,…,G_d. The dividend optimizer 

also evaluates a memory optimized graph μ during the merge operation. 

The dividend is said to be legal only if d>1 as shown in flow chart in Figure 1. Once the legal tree 

division is obtained, the memory-optimized tree G_q is computed for all sub-graph H_q using divide and 

conquer approach in a recursive manner. Then by combining all memory optimized tree G_q of H_q based 

on μ the memory optimized tree G is computed and obtain G as memory optimized tree of H. The overall 

flow of proposed memory optimized RSMT construction is shown in Figure 1. 

 

 

 
 

Figure 1. Memory optimized based rectilinear steiner minimum tree construction 

 

 

3.2.  Memory optimized division algorithm 

The objective of memory optimized divide and conquer approach is to maximize the number of 

divided subgraph. In existing model, for a given spanning tree 𝐺 and graph 𝐻, the division is obtained using 

structure 𝐺0 with same parent as 𝐺. This leads to following problem. Firstly, 𝜇 is obtained on top of 𝐺0, 

where 𝐺0 is generated based on only one level of nodes in 𝐺. The relationship of subgraph induced by 

subtrees rooted at leaf nodes of 𝑎0 is complex or when the parent 𝑎0 at 𝐺 has limited number of child nodes, 

after evaluating the division by contracting all SCCs (Strongly Connected Component), this might result in 

availability of only few divided subgraphs. Secondly, 𝜇 is obtained by scanning graph 𝐻 on disk once and 

evaluate set of edges�̅�, namely �̅�(�̅�𝑞 , �̅�𝑟) with �̅�𝑞 and �̅�𝑟 be the leaf node of 𝑎0 in 𝐺, whereas, the number of 

leaf node 𝑎0 is less, then �̅� may be smaller than the�̅�, which is available in graph. As a result large amount of 

�̿� is computed but not utilized during scanning edges. This reduces the I/O efficiency, which results in the 

increase in computation time. 

Our proposed model will overcome these problems by enlarging the size of 𝐺0 and its 

correspondent 𝜇 with respect to memory size (i.e. whether they can fit in main memory). To satisfy memory 

constraint, the model considers multiple levels of nodes in 𝐺 to generate 𝐺0 and it’s correspondent 𝜇.  

The multi-level subtree 𝐺 is defined as a partitioned tree𝐺𝑝. Let us consider a tree 𝐺 with parent node𝑎0, 

partitioned tree 𝐺𝑝that is a subtree of 𝐺must satisfy the following condition. Firstly, the parent of 𝐺𝑝 should 

be 𝐺0. Secondly, for any node 𝑦, for instance the leaf nodes of 𝑦 in 𝐺 are 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛, if 𝑦 ∈ 𝑁(𝐺𝑝), then 

𝑦 is either a node in 𝐺𝑝 with leaf nodes 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛 or a leaf node of 𝑦 in𝐺𝑝. 
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To satisfy these constraints, consider a tree 𝐺 with parent 𝑎0 and memory constraint �̅�,  

the partitioned tree 𝐺𝑝 is generated as follows. The 𝐺𝑝 initially is composed of one node𝑎0. Then the child 

node 𝑦 are iteratively selected from 𝐺𝑝, where all leaf nodes of 𝑦 in 𝐺 as the leaf nodes of 𝑦 in 𝐺𝑝.Note𝜇 with 

respect to 𝐺𝑝comprises of at least|𝑁(𝐺𝑝)|
2
edges. As a result, the execution is stopped when adding 

node |𝑁(𝐺𝑝)|
2

> 𝑆. 

The memory optimized division model is as presented in Figure 2. Here 𝐺0is constructed in  

top-down fashion based on 𝐺𝑝.  The algorithm first evaluates partition tree �̅�0of 𝐺 using above discussed 

method and initialize 𝜇 to be�̅�0. Then it searches all edges (𝑥, 𝑦) in 𝐻 on disk and add 

 (𝑢𝑥, 𝑢𝑦) = 𝜇(𝑥, 𝑦)into𝜇, if 𝑢𝑥 and 𝑢𝑦 belongs to𝑁(�̅�0). Then the model finds all 𝒯 in 𝜇 and top-down 

methodology is used to generate𝐺0. After that 𝐺0and FIFO (First in First out) queue 𝒬is initialized. It first 

pushes parent 𝑎0 of 𝐺 into 𝒬. Then the edges are iteratively added into 𝐺0until 𝒬 becomes null. In every 

round, it first retrieves the top node 𝑥 in 𝒬 and pushes all leaf nodes 𝑦 of 𝑥 into 𝐺0(i.e. if 𝑦 is in the tree and 𝑥 

is not a Steiner node). For each such instances (i.e. 𝑦 pushed into 𝐺0), it is further pushed into 𝒬 for further 

expansion. Once 𝐺0 is computed, 𝜇 is updated. The 𝜇 𝑖𝑠 updated by popping (deleting) all nodes that are not 

in 𝑁(𝐺0) from 𝜇. Lastly, divided subgraph 𝐻1, 𝐻2, 𝐻3, … , 𝐻𝑑 and subtrees 𝐺1, 𝐺2, 𝐺3, … , 𝐺𝑑 are evaluated. 

 

 

 
 

Figure 2. Memory optimized division algorithm 
 

 

3.2.  Memory optimized merging algorithm 

The merge algorithm presented in Figure 3 takes as input, a divided tree 𝐺0, 𝐺1,𝐺2, … , 𝐺𝑑 and  

the corresponding 𝜇 and outputs a graph 𝐺. To perform the merge operation according to the algorithm in 

Figure 3, the following issues must be solved. First issue is how to arrange 𝐺0, 𝐺1,𝐺2, … , 𝐺𝑑in the merged 

tree 𝐺, such that 𝐺 is a tree of graph 𝐻. And Second issue is how to handle the Steiner node in 

tree𝐺0, 𝐺1,𝐺2, … , 𝐺𝑑. The flow of merging algorithm is as shown in Figure 3. 
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Figure 3. Memory optimized merging algorithm 

 

 

To solve the first issue, we use information of 𝜇 (i.e. 𝜇 is a graph that preserves the topology of 

edges of all partitioned subgraphs). Then sort all the nodes in 𝜇 and rearrange the nodes in 𝐺0 based on 

reverse topological order of correspondent nodes in 𝜇 and then merge all 𝐺𝑞(1 ≤ 𝑞 ≤ 𝑑) with 𝐺0to obtain 

tree of 𝐻, we need to be assured that 𝜇 is a DAG and 𝑁(𝜇) = 𝑁(𝐺0). To solve the second issue, we merge all 

trees𝐺0, 𝐺1,𝐺2, … , 𝐺𝑑, to obtain a tree 𝐺. For each Steiner node 𝑦 ∈ 𝑁(𝐺0), for instance root node of 𝑦 in 𝐺 is 

𝑥, then delete edge (𝑥, 𝑦) from 𝐺, and for each leaf node 𝑢 of 𝑦 in 𝐺, we eliminate edge (𝑦, 𝑢) from 𝐺 and 

add edge (𝑥, 𝑢) into 𝐺. This method aids in improving to validate that the resultant tree 𝐺 is tree of 𝐻.  

The performance study of the proposed approach is presented in the next section. 

 

 

4. RESULT AND ANALYSIS 

  The MORSMT algorithm is implemented using C++ object oriented programming language.  

The GCC compiler is used to compile the code. The eclipse Kepler IDE used for running the algorithm.  

The system environment used to run the algorithm is Centos 7.0 Linux operating system, 3.2 GHz, Intel I-5 

Quad core processor and 16GB RAM. The IBM benchmark [25] is considered for evaluation, which is as 

shown in Table 2. The experiment is carried out to evaluate the performance of MORSMT over existing 

approach [14] in terms of wirelength, memory utilization and computation time. 

 

4.1.  Wirelength performance 

  Experiments are carried out to evaluate wirelength performance and 18 IBM circuit in ISPD98 

benchmark is used. The information of benchmark is shown in Table 2. and there are 1.57 million nets in 

total. The proposed MORSMT approach is compared with FLUTE [14] with default accuracy 𝐴 = 3 in terms 

of wirelength performance, which is shown in Table 3. The outcome shows that MORSMT performs better 

than existing approach in terms of wirelength reduction for all the cases. An average reduction of 0.026%  

is achieved by MORSMT over existing approach. 

 

4.2.  Computation time performance 

  The proposed MORSMT approach is compared with FLUTE [14] with default accuracy 𝐴 = 3 in 

terms of computation time performance, which is shown in Table 4. The outcome shows that MORSMT 

performs better than existing approach in terms of computation time reduction for all the cases. An average 

improvement of 32.62% is achieved by MORSMT over existing approach. 
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Table 2. Benchmark details 
Benchmark circuit case Number of nets Maximum degree Average degree 

IBM1 14111 42 3.58 

IBM2 19584 134 4.15 

IBM3 27401 55 3.41 

IBM4 31970 46 3.31 

IBM5 28446 17 4.44 

IBM6 34826 35 3.68 

IBM7 48117 25 3.65 

IBM8 50513 75 4.06 

IBM9 60902 39 3.65 

IBM10 75196 41 3.96 

IBM11 81454 24 3.45 

IBM12 77240 28 4.11 

IBM13 99666 24 3.58 

IBM14 152772 33 3.58 

IBM15 186608 36 3.84 

IBM16 190048 40 4.10 

IBM17 189581 36 4.54 

IBM18 201920 66 4.06 

Average 106299 134 3.92 

 

 

Table 3. Wirelength performance 
Benchmark circuit case MORSMT FLUTE [14] 

IBM1 444307 444553 

IBM2 527382 527641 

IBM3 761993 762276 

IBM4 855986 856273 

IBM5 2809615 2810816 

IBM6 494144 495969 

IBM7 994978 995265 

IBM8 944096 944382 

IBM9 1260914 1261199 

IBM10 3190871 3191615 

IBM11 1898961 1899367 

IBM12 2914884 2915521 

IBM13 2450087 2450577 

IBM14 3180260 3180777 

IBM15 2922395 2922778 

IBM16 3500272 3500776 

IBM17 5368916 5369659 

IBM18 2145856 2146128 

Average 2036995.389 2037531.778 

 

 

Table 4. Computation time performance 
Benchmark circuit case MORSMT FLUTE [14] 

IBM1 90000 180000 

IBM2 130000 220000 

IBM3 163700 267000 

IBM4 161100 269000 

IBM5 410000 870000 

IBM6 183000 277000 

IBM7 193000 298800 

IBM8 250000 320000 

IBM9 219000 322000 

IBM10 260000 347000 

IBM11 298000 390000 

IBM12 390000 510000 

IBM13 410000 570000 

IBM14 520000 640000 

IBM15 517000 651000 

IBM16 587000 690000 

IBM17 1190000 1780000 

IBM18 1090000 1880000 

Average 392322.2 582322.2222 
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4.3.  Memory utilization performance 

  To evaluate the performance of memory usage, valgrind [23, 24] has been used. The proposed 

MORSMT approach is compared with FLUTE [14] with default accuracy 𝐴 = 3 interms of memory 

utilization performance which is as shown in Table 5. The outcome shows that MORSMT performs better 

than existing approach in terms of memory consumption for all the cases. An average reduction of 77.71% is 

achieved by MORSMT over existing approach. The outcome shows that memory usage is directly dependent 

on wire length and degree size. 

 

 

Table 5. Memory utilization performance 
Benchmark circuit case MORSMT FLUTE [14] 

IBM1 109,264 398,908 

IBM2 168,457 713,451 

IBM3 180,996 711,893 

IBM4 211,003 723,607 

IBM5 224,661 1,188,898 

IBM6 244,577 970,098 

IBM7 337,674 1,248,799 

IBM8 414,185 2,078,590 

IBM9 411,154 1,595,039 

IBM10 524,740 2,239,228 

IBM11 531,886 1,789,611 

IBM12 543,178 2,407,032 

IBM13 659,237 2,551,928 

IBM14 1,030,486 3,801,149 

IBM15 1,284,495 5,603,960 

IBM16 1,348,313 5,732,675 

IBM17 1,414,806 6804778 

IBM18 1,627,262 6982462 

Average 625,910 2,641,228 

 

 

5. CONCLUSION 

This work presented a memory efficient RSMT construction. The proposed model is an 

improvement of original FLUTE. FLUTE does not consider memory optimization in RSMT construction and 

adopted breadth first search to find minimum spanning tree, which induced memory overhead. To address 

this problem the proposed work adopts divide and conquer and depth first search to find the minimum 

spanning tree. The experiments are conducted to evaluate the performance of proposed approach over 

existing approach for varied benchmarks. The outcome shows significant performance improvement of 

0.026%, 76.3%, and 32.62% over existing approach in terms of wirelength, memory overhead, and 

computation time reduction respectively. The future work would consider presenting parallel memory 

optimized RSMT construction and experiment will be carried out on multi-core environment such as CPU or 

GPU to improve speedup performance. 
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