
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 10, No. 3, June 2020, pp. 2959~2968

ISSN: 2088-8708, DOI: 10.11591/ijece.v10i3.pp2959-2968 2959

Journal homepage: http://ijece.iaescore.com/index.php/IJECE

Memory and I/O optimized rectilinear Steiner minimum tree

routing for VLSI

Latha N. R., G. R. Prasad
Department of CSE, B.M.S. College of Engineering, India

Article Info ABSTRACT

Article history:

Received Jun 11, 2019

Revised Dec 16, 2019

Accepted Jan 7, 2020

 As the size of devices are scaling down at rapid pace, the interconnect delay

play a major part in performance of IC chips. Therefore minimizing delay

and wire length is the most desired objective. FLUTE (Fast Look-Up table)

presented a fast and accurate RSMT (Rectilinear Steiner Minimum Tree)

construction for both smaller and higher degree net. FLUTE presented

an optimization technique that reduces time complexity for RSMT

construction for both smaller and larger degree nets. However for larger

degree net this technique induces memory overhead, as it does not consider

the memory requirement in constructing RSMT. Since availability of

memory is very less and is expensive, it is desired to utilize memory more

efficiently which in turn results in reducing I/O time (i.e. reduce the number

of I/O disk access). The proposed work presents a Memory Optimized

RSMT (MORSMT) construction in order to address the memory overhead

for larger degree net. The depth-first search and divide and conquer approach

is adopted to build a Memory optimized tree. Experiments are conducted to

evaluate the performance of proposed approach over existing model for

varied benchmarks in terms of computation time, memory overhead and wire

length. The experimental results show that the proposed model is scalable

and efficient.

Keywords:

Minimum spanning tree

Rectilinear Steiner tree

VLSI

Wirelength estimation

Copyright © 2020 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Latha N. R.,

Department of CSE, B.M.S.,

College of Engineering, India.

Email: lathanr11@rediffmail.com

1. INTRODUCTION

Rectilinear Steiner Minimal Tree (RSMT) is composed of small set of connected pins through

Steiner nodes with minimal cumulative edge size in Manhattan distance for a given set of pins.

The construction of RSMT is a major issue in designing Very Large Scale Integration (VLSI) such as

interconnects design, placement and floor planning. It has been adopted in computing transmission delay,

interconnect delay and in workload computation. It is also adopted in some global routing strategies to build

a routing topography of all nets.

The construction of RSMT for VLSI is considered a Non-deterministic polynomial problem [1],

as a result rectilinear minimum spanning tree (RMST) has been adopted in some earlier design by exploring

space dimensional design. RMST construction requires fast tree computing strategy and since the RMST

does not allow Steiner nodes in tree construction the resulting RMST, length is longer than that of RSMT.

In [2] showed that RMST is one and half times greater than that of RSMT with less than 50% in terms of

accuracy, which is tolerable in earlier design. However, the later design requires good wire length accuracy

for which the construction of RSMT is required. In [3] presented a wide range characteristic of RSMT

construction. In [4, 5] presented an optimal strategy for RSMT construction, which is said to have least

computation time. In [6] presented a near optimal solution for RSMT construction. However, they are

computationally very heavy and are not suitable for applications, specifically for VLSI design.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 2659 - 2968

2960

Many approaches have been presented to reduce time complexity in constructing RSMT.

In [7] adopted spanning graph [8] to aid in building the primary set of spanning tree and obtain finest sets for

the edge-which are computed iteratively to eliminate longest edge. In [9] presented a greedy batched

technique, which improved efficiency and reduced the computation time. The Single Trunk Steiner Tree

(STST) is built to connect a set of pins to individual trunks, which traverse vertically or horizontally through

set of all pins, but is not efficient for medium size pins. In [10] presented refined single-trunk tree for degree

up to 5 nets and it is optimally accurate for medium degree nets with fair run time complexity. In [31, 34]

spanning tree based approximation algorithm that produced optimal solutions were presented.

In [11, 12] presented lookup table based fast and accurate optimal solution for RSMT construction

namely FLUTE. In this technique, the nets are recursively broken into sub set of nets. FLUTE is evaluated

for low degree nets and it is suitable for VLSI design. FLUTE is also efficient for high degree nets with

runtime complexity of 𝑂(𝑛 log 𝑛). However, for higher degree nets the accuracy of RSMT construction is

severely affected. This is due to the error induced during net breaking technique. To address this issue

in [13] presented a scalable net partitioning technique, where the nets are broken into smaller subset of nets

and again merged by adding Steiner nodes. This technique could handle both smaller and larger degree nets

with slight reduction in accuracy but it induced a runtime complexity of 𝑂(𝑛 log2 𝑛). In [14] presented a fast

lookup table based RSMT construction, which brings a good tradeoff between accuracy and the runtime

complexity. As specified in [28-30, 32] memory is gaining prominence and efficient use of this resource is

very important. Both [13, 14] did not consider the memory constraint in building a look up table.

The future VLSI design consists of fixed blocks such as IP blocks, macros, and so on and FLUTE is adopted

by these researchers [15, 16]. In such designs minimizing wire length and reducing memory overhead is most

desired. To address these issues the proposed work presents a memory optimized RSMT construction that

reduces wire length and computational overhead complexities. The contribution of research work:

 No prior work has considered memory constraint in designing RSMT construction. The proposed work

presents a memory optimized RSMT construction.

 The proposed model reduces the wire length and computation time in constructing RSMT.

 The proposed model is evaluated considering different benchmark [25] and shows that the proposed

model is efficient considering all benchmark in terms of memory overhead, computation time and wire

length.

The paper organization is as follows: In section 2 extensive literature survey is carried out.

The proposed memory optimized RSMT models are presented in Section 3. The experimental study

considering various benchmark are presented in penultimate section. The concluding remark and future work

is discussed in the last section.

2. LITTERATURE SURVEY

VLSI is a technique of combining lakhs of transistors into solitary Integrated Circuit (IC) chip.

With the increase in transistors, the interconnecting wire length also increases. It is challenging to minimize

the resistive and capacitive features, which have an impact on delay. The interconnect wires have fixed width

and area making length as the only parameter that can be optimized. As a result, many routing techniques

have been proposed in VLSI designs that are as surveyed below.

In [17] showed that the global router generally decompose net through RSMT. Therefore, to reduce

congestion and provide flexibility it mainly depends on RSMT construction. FLUTE is a widely adopted

technique for fast RSMT construction with minimal wire length. However, it fails to incorporate congestion.

To provide flexibility and congestion optimization for net [17] presented a model namely Fthu, which is

a two-phase approach by adopting FLUTE. In first phase, it decreases congestion and increases flexibility by

applying reformed edge shifting and edge shrinking technique without changing Steiner tree topology.

In second phase, the congested Steiner tree is broken and reconnected using MST-based approach.

The outcomes show better performance in terms of reduced congestion time. However, there is no

improvement in wire length performance.

In [18, 19, 26, 27] presented a model to solve global routing problem. In [18] presented model,

namely GRIP (Global Routing Technology via Linear Programming).This model presented integer-

programming model for current large-scale network. The model obtained high quality solution by adopting

FLUTE for initial RSMT construction. The outcome shows improvement in cost and wire length

performance. However, they did not exploit CPU and memory performance. Linear programming model are

prone to get stuck in local optima. To overcome [19] presented a fast congestion driven Steiner tree creation

Int J Elec & Comp Eng ISSN: 2088-8708

Memory of I/O optimized rectilinear Steiner minimum tree routing for VLSI (Latha N. R.)

2961

by adopting FLUTE. The outcome shows significant in terms of runtime complexity. To solve the congestion

in global routing [20, 21, 33] adopted game theory approach. The game theory approach is adopted to

improve runtime complexity of clustering approach for VLSI routing placement design.

In [22] studied various clustering based placement tool. An efficient clustering approach can aid in

reducing wire length, cycle time or optimize a design based on these objectives. However clustering

approach can induce time constraint. To address the time constraint [22] exploited a heterogeneous

computing and presented a parallel clustering approach for placement. Their model is exploited for both CPU

as well as GPU. The model utilizes the CPU and GPU core to full extent. The outcome shows it achieves

a good speed up when compared to serial execution strategy. However adopting GPU for processing induces

high cost of deployment and their model did not consider the memory constraint. As a result, it increases I/O

access time.

Extensive literature survey carried out shows that minimizing time complexity (runtime) and wire

length is a critical factor for designing an efficient routing technique in VLSI design. Some existing

approaches have considered minimizing wire length or runtime and some considered both for optimization.

To improve runtime few approaches have considered a parallel implementation by utilizing CPU and GPU

core. However, none of the approaches has considered memory performance. Utilizing the memory

efficiently can aid in reducing the time complexity (i.e. I/O access time). The proposed work presents

a memory optimization based RSMT to improve wire length, runtime and memory performance. In the next

section below the proposed memory optimized RSMT (MORSMT) model is presented.

3. PROPOSED MEMORY OPTIMIZED RSMT MODEL

Here we present a memory optimized RSMT construction that reduces wire length, memory usage

and computation time. As similar to [14], let us consider that the size of each sub tree be divided based on

memory optimized tree and takes memory and spanning tree as input. Firstly it computes the least overhead

edges (using memory optimized spanning graph) and selects one of the node as its root. The node, which is

closer to the root node, is considered as parent node by realizing child-parent relationship along each of

the edges. Then depth-first search and divide and conquer approach is adopted to optimize memory for larger

size nets. Let us consider a graph 𝐻(𝑁, 𝑀), where 𝑀 and 𝑁 depicts a set of ordered pairs of edges and nodes

respectively. Let 𝑚 = |𝐸| and 𝑛 = |𝑉| represent set of edges and nodes respectively. Here, we first construct

an initial spanning graph 𝐻 by adding Steiner nodes 𝛼 and is considered to be connected to all nodes in 𝐻.

Then divide-conquer approach is applied to build a memory optimized tree of graph 𝐻. Below table shows

the notations and symbols used in the paper.

Table 1. Notations and symbols used
Symbol used Abbreviation

𝐻 Graph

𝑁 Set of nodes

𝑀 Set of edges

𝐻(𝑁|𝑀) It is a directed graph

𝐺 Spanning graph

𝛼 Set of Steiner nodes

𝑆 Memory Available

𝜇 Memory optimized subtree graph

𝑑 Number of subtree

3.1. Memory optimized divide and conquer approach

The memory optimized divide conquer approach takes memory S, Spanning graph G of H and graph

H as an input and obtain a tree Gas output which is a depth first search tree of H, where G is retained in

memory and H is kept in disk. The algorithm first tests whether graph H can satisfy memory optimization

requirement, so that the H can be loaded into S and if so it computes memory optimized tree G of H using

available-memory optimization strategy and obtains G. Or else if does not obtain any G, the algorithm further

computes memory optimized tree G of H by dividing memory optimized tree G by using divide and conquer

approach.

To obtain an efficient memory optimized tree the legal dividend of H must be computed which is set

to false initially as shown in flowchart in Figure 1. Then the present spanning graph G is optimized with

respect to H until G is a memory optimized tree G of H or we obtain a legal dividend of H on spanning tree

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 2659 - 2968

2962

G. Here the dividend is obtained by invoking dividend optimization technique to achieve a graph division

H_0,H_1,H_2,…,H_d of H with resultant spanning graph〖G〗_0,G_1,G_2,…,G_d. The dividend optimizer

also evaluates a memory optimized graph μ during the merge operation.

The dividend is said to be legal only if d>1 as shown in flow chart in Figure 1. Once the legal tree

division is obtained, the memory-optimized tree G_q is computed for all sub-graph H_q using divide and

conquer approach in a recursive manner. Then by combining all memory optimized tree G_q of H_q based

on μ the memory optimized tree G is computed and obtain G as memory optimized tree of H. The overall

flow of proposed memory optimized RSMT construction is shown in Figure 1.

Figure 1. Memory optimized based rectilinear steiner minimum tree construction

3.2. Memory optimized division algorithm

The objective of memory optimized divide and conquer approach is to maximize the number of

divided subgraph. In existing model, for a given spanning tree 𝐺 and graph 𝐻, the division is obtained using

structure 𝐺0 with same parent as 𝐺. This leads to following problem. Firstly, 𝜇 is obtained on top of 𝐺0,

where 𝐺0 is generated based on only one level of nodes in 𝐺. The relationship of subgraph induced by

subtrees rooted at leaf nodes of 𝑎0 is complex or when the parent 𝑎0 at 𝐺 has limited number of child nodes,

after evaluating the division by contracting all SCCs (Strongly Connected Component), this might result in

availability of only few divided subgraphs. Secondly, 𝜇 is obtained by scanning graph 𝐻 on disk once and

evaluate set of edges�̅�, namely �̅�(�̅�𝑞 , �̅�𝑟) with �̅�𝑞 and �̅�𝑟 be the leaf node of 𝑎0 in 𝐺, whereas, the number of

leaf node 𝑎0 is less, then �̅� may be smaller than the�̅�, which is available in graph. As a result large amount of

�̿� is computed but not utilized during scanning edges. This reduces the I/O efficiency, which results in the

increase in computation time.

Our proposed model will overcome these problems by enlarging the size of 𝐺0 and its

correspondent 𝜇 with respect to memory size (i.e. whether they can fit in main memory). To satisfy memory

constraint, the model considers multiple levels of nodes in 𝐺 to generate 𝐺0 and it’s correspondent 𝜇.

The multi-level subtree 𝐺 is defined as a partitioned tree𝐺𝑝. Let us consider a tree 𝐺 with parent node𝑎0,

partitioned tree 𝐺𝑝that is a subtree of 𝐺must satisfy the following condition. Firstly, the parent of 𝐺𝑝 should

be 𝐺0. Secondly, for any node 𝑦, for instance the leaf nodes of 𝑦 in 𝐺 are 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛, if 𝑦 ∈ 𝑁(𝐺𝑝), then

𝑦 is either a node in 𝐺𝑝 with leaf nodes 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛 or a leaf node of 𝑦 in𝐺𝑝.

Int J Elec & Comp Eng ISSN: 2088-8708

Memory of I/O optimized rectilinear Steiner minimum tree routing for VLSI (Latha N. R.)

2963

To satisfy these constraints, consider a tree 𝐺 with parent 𝑎0 and memory constraint �̅�,

the partitioned tree 𝐺𝑝 is generated as follows. The 𝐺𝑝 initially is composed of one node𝑎0. Then the child

node 𝑦 are iteratively selected from 𝐺𝑝, where all leaf nodes of 𝑦 in 𝐺 as the leaf nodes of 𝑦 in 𝐺𝑝.Note𝜇 with

respect to 𝐺𝑝comprises of at least|𝑁(𝐺𝑝)|
2
edges. As a result, the execution is stopped when adding

node |𝑁(𝐺𝑝)|
2

> 𝑆.

The memory optimized division model is as presented in Figure 2. Here 𝐺0is constructed in

top-down fashion based on 𝐺𝑝. The algorithm first evaluates partition tree �̅�0of 𝐺 using above discussed

method and initialize 𝜇 to be�̅�0. Then it searches all edges (𝑥, 𝑦) in 𝐻 on disk and add

 (𝑢𝑥, 𝑢𝑦) = 𝜇(𝑥, 𝑦)into𝜇, if 𝑢𝑥 and 𝑢𝑦 belongs to𝑁(�̅�0). Then the model finds all 𝒯 in 𝜇 and top-down

methodology is used to generate𝐺0. After that 𝐺0and FIFO (First in First out) queue 𝒬is initialized. It first

pushes parent 𝑎0 of 𝐺 into 𝒬. Then the edges are iteratively added into 𝐺0until 𝒬 becomes null. In every

round, it first retrieves the top node 𝑥 in 𝒬 and pushes all leaf nodes 𝑦 of 𝑥 into 𝐺0(i.e. if 𝑦 is in the tree and 𝑥

is not a Steiner node). For each such instances (i.e. 𝑦 pushed into 𝐺0), it is further pushed into 𝒬 for further

expansion. Once 𝐺0 is computed, 𝜇 is updated. The 𝜇 𝑖𝑠 updated by popping (deleting) all nodes that are not

in 𝑁(𝐺0) from 𝜇. Lastly, divided subgraph 𝐻1, 𝐻2, 𝐻3, … , 𝐻𝑑 and subtrees 𝐺1, 𝐺2, 𝐺3, … , 𝐺𝑑 are evaluated.

Figure 2. Memory optimized division algorithm

3.2. Memory optimized merging algorithm

The merge algorithm presented in Figure 3 takes as input, a divided tree 𝐺0, 𝐺1,𝐺2, … , 𝐺𝑑 and

the corresponding 𝜇 and outputs a graph 𝐺. To perform the merge operation according to the algorithm in

Figure 3, the following issues must be solved. First issue is how to arrange 𝐺0, 𝐺1,𝐺2, … , 𝐺𝑑in the merged

tree 𝐺, such that 𝐺 is a tree of graph 𝐻. And Second issue is how to handle the Steiner node in

tree𝐺0, 𝐺1,𝐺2, … , 𝐺𝑑. The flow of merging algorithm is as shown in Figure 3.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 2659 - 2968

2964

Figure 3. Memory optimized merging algorithm

To solve the first issue, we use information of 𝜇 (i.e. 𝜇 is a graph that preserves the topology of

edges of all partitioned subgraphs). Then sort all the nodes in 𝜇 and rearrange the nodes in 𝐺0 based on

reverse topological order of correspondent nodes in 𝜇 and then merge all 𝐺𝑞(1 ≤ 𝑞 ≤ 𝑑) with 𝐺0to obtain

tree of 𝐻, we need to be assured that 𝜇 is a DAG and 𝑁(𝜇) = 𝑁(𝐺0). To solve the second issue, we merge all

trees𝐺0, 𝐺1,𝐺2, … , 𝐺𝑑, to obtain a tree 𝐺. For each Steiner node 𝑦 ∈ 𝑁(𝐺0), for instance root node of 𝑦 in 𝐺 is

𝑥, then delete edge (𝑥, 𝑦) from 𝐺, and for each leaf node 𝑢 of 𝑦 in 𝐺, we eliminate edge (𝑦, 𝑢) from 𝐺 and

add edge (𝑥, 𝑢) into 𝐺. This method aids in improving to validate that the resultant tree 𝐺 is tree of 𝐻.

The performance study of the proposed approach is presented in the next section.

4. RESULT AND ANALYSIS

 The MORSMT algorithm is implemented using C++ object oriented programming language.

The GCC compiler is used to compile the code. The eclipse Kepler IDE used for running the algorithm.

The system environment used to run the algorithm is Centos 7.0 Linux operating system, 3.2 GHz, Intel I-5

Quad core processor and 16GB RAM. The IBM benchmark [25] is considered for evaluation, which is as

shown in Table 2. The experiment is carried out to evaluate the performance of MORSMT over existing

approach [14] in terms of wirelength, memory utilization and computation time.

4.1. Wirelength performance

 Experiments are carried out to evaluate wirelength performance and 18 IBM circuit in ISPD98

benchmark is used. The information of benchmark is shown in Table 2. and there are 1.57 million nets in

total. The proposed MORSMT approach is compared with FLUTE [14] with default accuracy 𝐴 = 3 in terms

of wirelength performance, which is shown in Table 3. The outcome shows that MORSMT performs better

than existing approach in terms of wirelength reduction for all the cases. An average reduction of 0.026%

is achieved by MORSMT over existing approach.

4.2. Computation time performance

 The proposed MORSMT approach is compared with FLUTE [14] with default accuracy 𝐴 = 3 in

terms of computation time performance, which is shown in Table 4. The outcome shows that MORSMT

performs better than existing approach in terms of computation time reduction for all the cases. An average

improvement of 32.62% is achieved by MORSMT over existing approach.

Int J Elec & Comp Eng ISSN: 2088-8708

Memory of I/O optimized rectilinear Steiner minimum tree routing for VLSI (Latha N. R.)

2965

Table 2. Benchmark details
Benchmark circuit case Number of nets Maximum degree Average degree

IBM1 14111 42 3.58

IBM2 19584 134 4.15

IBM3 27401 55 3.41

IBM4 31970 46 3.31

IBM5 28446 17 4.44

IBM6 34826 35 3.68

IBM7 48117 25 3.65

IBM8 50513 75 4.06

IBM9 60902 39 3.65

IBM10 75196 41 3.96

IBM11 81454 24 3.45

IBM12 77240 28 4.11

IBM13 99666 24 3.58

IBM14 152772 33 3.58

IBM15 186608 36 3.84

IBM16 190048 40 4.10

IBM17 189581 36 4.54

IBM18 201920 66 4.06

Average 106299 134 3.92

Table 3. Wirelength performance
Benchmark circuit case MORSMT FLUTE [14]

IBM1 444307 444553

IBM2 527382 527641

IBM3 761993 762276

IBM4 855986 856273

IBM5 2809615 2810816

IBM6 494144 495969

IBM7 994978 995265

IBM8 944096 944382

IBM9 1260914 1261199

IBM10 3190871 3191615

IBM11 1898961 1899367

IBM12 2914884 2915521

IBM13 2450087 2450577

IBM14 3180260 3180777

IBM15 2922395 2922778

IBM16 3500272 3500776

IBM17 5368916 5369659

IBM18 2145856 2146128

Average 2036995.389 2037531.778

Table 4. Computation time performance
Benchmark circuit case MORSMT FLUTE [14]

IBM1 90000 180000

IBM2 130000 220000

IBM3 163700 267000

IBM4 161100 269000

IBM5 410000 870000

IBM6 183000 277000

IBM7 193000 298800

IBM8 250000 320000

IBM9 219000 322000

IBM10 260000 347000

IBM11 298000 390000

IBM12 390000 510000

IBM13 410000 570000

IBM14 520000 640000

IBM15 517000 651000

IBM16 587000 690000

IBM17 1190000 1780000

IBM18 1090000 1880000

Average 392322.2 582322.2222

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 2659 - 2968

2966

4.3. Memory utilization performance

 To evaluate the performance of memory usage, valgrind [23, 24] has been used. The proposed

MORSMT approach is compared with FLUTE [14] with default accuracy 𝐴 = 3 interms of memory

utilization performance which is as shown in Table 5. The outcome shows that MORSMT performs better

than existing approach in terms of memory consumption for all the cases. An average reduction of 77.71% is

achieved by MORSMT over existing approach. The outcome shows that memory usage is directly dependent

on wire length and degree size.

Table 5. Memory utilization performance
Benchmark circuit case MORSMT FLUTE [14]

IBM1 109,264 398,908

IBM2 168,457 713,451

IBM3 180,996 711,893

IBM4 211,003 723,607

IBM5 224,661 1,188,898

IBM6 244,577 970,098

IBM7 337,674 1,248,799

IBM8 414,185 2,078,590

IBM9 411,154 1,595,039

IBM10 524,740 2,239,228

IBM11 531,886 1,789,611

IBM12 543,178 2,407,032

IBM13 659,237 2,551,928

IBM14 1,030,486 3,801,149

IBM15 1,284,495 5,603,960

IBM16 1,348,313 5,732,675

IBM17 1,414,806 6804778

IBM18 1,627,262 6982462

Average 625,910 2,641,228

5. CONCLUSION

This work presented a memory efficient RSMT construction. The proposed model is an

improvement of original FLUTE. FLUTE does not consider memory optimization in RSMT construction and

adopted breadth first search to find minimum spanning tree, which induced memory overhead. To address

this problem the proposed work adopts divide and conquer and depth first search to find the minimum

spanning tree. The experiments are conducted to evaluate the performance of proposed approach over

existing approach for varied benchmarks. The outcome shows significant performance improvement of

0.026%, 76.3%, and 32.62% over existing approach in terms of wirelength, memory overhead, and

computation time reduction respectively. The future work would consider presenting parallel memory

optimized RSMT construction and experiment will be carried out on multi-core environment such as CPU or

GPU to improve speedup performance.

ACKNOWLEDGEMENTS

The author would like to acknowledge and thank Technical Education Quality Improvement

Program [TEQIP] Phase 3, BMS College of Engineering.

REFERENCES
[1] M. R. Garey and D. S. Johnson, “Computers and intractability: A guide to the theory of NP-completeness,”

New York: Freeman, 1979.

[2] F. K. Hwang, “On Steiner minimal trees with rectilinear distance,” SIAM J. Appl. Math., vol. 30, no. 1, pp. 104–114,

Jan 1976.

[3] F. K. Hwang, D. S. Richards, and P. Winter, “The Steiner tree problem,” in Annals of Discrete Mathematics,

Amsterdam, The Netherlands: Elsevier, 1992.

[4] D. M. Warme, P. Winter, and M. Zachariasen, “Exact algorithms for plane Steiner tree problems: A computational

study,” in Advances in Steiner Trees, D. Z. Du, J. M. Smith, and J. H. Rubinstein, Eds. Norwell, MA: Kluwer,

pp. 81–116, 2000.

[5] “GeoSteiner—Software for Computing Steiner Trees,” [Online]. Available: http://www.diku.dk/geosteiner

[6] V. Vani and G. R. Prasad, “An improved augmented line segment based algorithm for the generation of rectilinear

Steiner minimum tree,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 3,

pp. 1262-1267, June 2017.

Int J Elec & Comp Eng ISSN: 2088-8708

Memory of I/O optimized rectilinear Steiner minimum tree routing for VLSI (Latha N. R.)

2967

[7] H. Zhou, “Efficient Steiner tree construction based on spanning graphs,” in Proc. Int. Symp. Phys., pp. 152–157,

2003.

[8] H. Zhou, N. Shenoy, and W. Nicholls, “Efficient spanning tree construction without Delaunay triangulation,” Inf.

Process. Lett., vol. 81, no. 5, pp. 271–276, 2002.

[9] A. Kahng, I. Mandoiu, and A. Zelikovsky, “Highly scalable algorithms for rectilinear and octilinear Steiner trees,”

in Proc. Asian South Pacific Des. Autom. Conf., pp. 827–833, 2003.

[10] H. Chen, C. Qiao, F. Zhou, and C.-K. Cheng, “Refined single trunk tree: A rectilinear Steiner tree generator for

interconnect prediction,” in Proc. ACM Int. Workshop Syst. Level Interconnect Prediction, pp. 85–89, 2002.

[11] C. Chu, “FLUTE: Fast lookup table based wirelength estimation technique,” In Proc. IEEE/ACM Intl. Conf. on

Computer-Aided Design, pp. 696–701, 2004.

[12] C. Chu and Y.-C. Wong, “Fast and accurate rectilinear Steiner minimal tree algorithm for VLSI design,” in Proc.

Int. Symp. Phys, pp. 28–35, Des 2005.

[13] Y-C. Wong and C. Chu, “A scalable and accurate rectilinear Steiner minimal tree algorithm,” IEEE International

Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 29-34, 2008.

[14] C. Chu and Yiu-Chung Wong, “FLUTE: Fast lookup table based rectilinear Steiner minimal tree algorithm for VLSI

design,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 1,

pp. 70-83, 2008.

[15] H. Zhanga, D-Y. Yea, W-Z. Guo, “A heuristic for constructing a rectilinear Steiner tree by reusing routing resources

over obstacles,” Integration, vol. 55, pp. 162–175, 2016.

[16] P. P. Saha, S. Saha and T. Samanta, “An efficient intersection avoiding rectilinear routing technique in VLSI,”

International Conference on Advances in Computing, Communications and Informatics (ICACCI), Mysore,

pp. 559-562, 2013.

[17] K. Ma, Q. Zhou, Y. Cai, C. Zhang, and Z. Qi, “A Steiner tree construction method for flexibility and congestion

optimization,” International Conference on Communications, Circuits and Systems (ICCCAS), Chengdu,

pp. 519-523, 2013.

[18] T. H. Wu, A. Davoodi, and J. T. Linderoth, “GRIP: Global routing via integer programming,” in IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 1, pp. 72-84, Jan 2011.

[19] W. W. Kai, N. Ahmad, M. H. Jabbar, “Variable body biasing (VBB) based VLSI design approach to reduce static

power,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 6, pp. 3010-3019,

Dec 2017.

[20] U. F. Siddiqi, S. M. Sait, and Y. Shiraishi, “A game theory-based heuristic for the two-dimensional VLSI global

routing problem,” Journal of Circuits Systems and Computers, vol. 24, no. 6, pp. 1550082:1-1550082:19, 2015.

[21] U. F. Siddiqi and S. M. Sait, “A game theory based post-processing method to enhance VLSI global routers,” IEEE

Access, vol. 5, pp. 1328–1339, 2017.

[22] K. V. Rajkumar, A. Yesubabu, and K. Subrahmanyam, “Fuzzy clustering and fuzzy C-means partition cluster

analysis and validation studies on a subset of CiteScoredataset,” International Journal of Electrical and Computer

Engineering (IJECE), vol. 9, no. 4, pp. 2760-2770, Aug 2019

[23] J. Seward and N. Nethercote, “Using valgrind to detect undefined value errors with bit-precision,” in Proc. of

the USENIX Annual Technical Conference, pp. 2–2, 2005.

[24] N. Nethercote, R. Walsh, and J. Fitzhardinge, “Building workload characterization tools with valgrind,” IEEE

International Symposium on Workload Characterization, San Jose, CA, pp. 2-2, 2006.

[25] C. J. Alpert, “The ISPD98 circuit benchmark suite,” in Proc. Int. Symp. Phys., pp.80–85, Des 1998. [Online].

Available: http://vlsicad.ucsd.edu/UCLAWeb/cheese/ispd98.html

[26] Y. Han, K. Chakraborty, and S. Roy, “A global router on GPU architecture,” in IEEE International Conference on

Computer Design (ICCD), pp. 1–6, 2013.

[27] H. Shojaei, A. Davoodi, and J. Linderoth, “Congestion analysis for global routing via integer programming,” in

IEEE International Conference on Computer-Aided Design (ICCAD), pp. 256–262, 2011.

[28] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra, “PaRSEC: Exploiting

heterogeneity for enhancing scalability,” Computing in Science & Engineering, vol. 15, no. 6, pp. 36–45, 2013.

[29] E. Agullo, P. R. Amestoy, A. Buttari, A. Guermouche, J. L’Excellent, and F. Rouet., “Robust memory-aware

mappings for parallel multifrontal factorizations,” SIAM J. Scientific Computing, vol. 38, no. 3, 2016.

[30] G. Aupy, C. Brasseur, and L. Marchal, “Dynamic memory-aware task-tree scheduling,” In Proceedings of

the International Parallel and Distributed Processing Symposium (IPDPS), IEEE, pp. 758–767, 2017.

[31] M. Jacquelin, L.Marchal, Y. Robert, and B. Uçar, “On optimal tree traversals for sparse matrix factorization,”

In Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International, IEEE, pp. 556–567, 2011.

[32] M. Sergent, D. Goudin, S. Thibault, and O. Aumage, “Controlling the memory subscription of distributed

applications with a task-based runtime system,” In Proceedings of the International Parallel and Distributed

Processing SymposiumWorkshops, pages 318–327. IEEE, 2016.

[33] K. Ma, Q. Zhou, Y. Cai, C. Zhang and Z. Qi, "A Steiner tree construction method for flexibility and congestion

optimization," 2013 International Conference on Communications, Circuits and Systems (ICCCAS), Chengdu,

pp. 519-523, 2013.

[34] Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.M., Weikum, G., “STAR: Steiner-tree approximation in

relationship graphs,” In: Proc. of IEEE International Conference on Data Engineering, IEEE, Washington DC,

USA, pp. 868-879, 2009.

https://ieeexplore.ieee.org/xpl/conhome/4522566/proceeding
https://ieeexplore.ieee.org/xpl/conhome/4522566/proceeding
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 2659 - 2968

2968

BIOGRAPHIES OF AUTHORS

Latha N. R. is an Assistant Professor in the Department of Computer Science and Engineering,

B.M.S. College of Engineering, Bangalore. She received B.E degree in Information Science and

Engineering from Visvesvaraya Technological University in 2005 and M.Tech degree in

Computer Science and Engineering from VTU in 2009. She is currently pursuing Ph.D. degree in

VTU in the area of Parallel Computing.

Dr. Prasad G R is a Professor in Department of Computer Science & Engineering, BMSCE,

Bangalore. He holds a Ph.D from National Institute of Technology, Karnataka, Surathkal,

INDIA. He received his M.Tech degree in Computer Science & Engineering from Bangalore

University in 1999 and B.E Degree in Computer Science & Engineering from Bangalore

University in 1995. His research interests include Reconfigurable computing, Computing

Accelerators.

