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  Empirical mode decomposition (EMD) is an effective noise reduction 

method to enhance the noisy chaotic signal over additive noise. In this paper, 

the intrinsic mode functions (IMFs) generated by EMD are thresholded using 

multivariate denoising. Multivariate denoising is multivariable denosing 

algorithm that is combined wavelet transform and principal component 

analysis to denoise multivariate signals in adaptive way. The proposed 

method is compared at a various signal to noise ratios (SNRs) with different 

techniques and different types of noise. Also, scale dependent Lyapunov 

exponent (SDLE) is used to test the behavior of the denoised chaotic signal 

comparing with clean signal. The results show that EMD-MD method has 

the best root mean square error (RMSE) and signal to noise ratio gain 

(SNRG) comparing with the conventional methods. 
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1. INTRODUCTION  

Chaotic signals have many properties such as aperiodicity, sensitivity to initial conditions, and 

wideband spectrum that make them suitable to use in many applications areas such as secure  

communication [1], image encryption [2], speech encryption [3] and other applications. However, when 

the chaotic signals corrupted with a noise become very hard to find Lyapunove exponent, correlation 

dimension, Kolmogorov entroy and other chaotic system parameters [4]. Therefore, removes the noise from 

the chaotic signals in affective way are the main challenges and the great significant in this research.  

In the last years, different techniques are introduced to remove the noise from the chaotic signals. 

The most famouse method using wavelet transform [5-7] in which the chaotic signal is denoised by 

decomposing it into detail and approximate components and then the details are smoothed using adaptive 

thresholds. To find optimum threshold for each scale in wavelet domain, genetic algorithm is suggeseted 

in [8]. In [9-11] dual wavelet transform are used as an extension to wavelet trsform to remove the noise from 

chaotic signal where optimal decomposition scale and adaptive selecting wavelet coefficients are determined. 

While wavelet transform contains only time domain locality, synchrosqueezed wavelet transform (SWT) 

conatins coth time and frequency properties is used with hierarchical threshold to enhance the chaotic 

signal [12]. Another most famouse denoising technique is empirical mode decomposition (EMD) [13] in 

which the signal is decomposed into many signals of amplitude and frequency modulated with zero mean 

value that are called intrinsic mode functions (IMFs) and then at certain threshold select which mode is used 

to reconstruct the denoised signal. EMD is improved in [14, 15] by using ensemble empirical mode 

decomposition (EEMD) and EEMD and singular value decomposition (SVD) respectively. Another 

impvemnt to EMD is depicted in [4] in which zero-crossing scale thrsholding enhancement algorithm is used 

to enhance noisy chaotic signal. Other denoising chaotgic techniques which are combined EMD and 

independent component analysis (ICA) are depicted in [16, 17].    
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In this paper, a new denoising technique that is combined both EMD and multivariate denoising 

using wavelet and principal component analysis (MD-WPCA) to denoise the chaotic signal corrupted by 

certain additive noise is proposed and named EMD-MD algorithm. MD-WPCA is an extension of wavelet 

denoising to multivariate signals that is proposed in [18] to denoise multivariate signals instead of univariate 

signal and it is combined wavelet transform and principal component analysis (PCA). In this paper, inspired 

by MD-WPCA, an intrinsic mode functions (IMFs) generated by EMD are properly adapted and thresholded 

to denoise the chaotic signal. Furthermore, scale dependent Lyapunov exponent (SDLE) function is used as 

a measure to find the amount of enhancement factor for the proposed system comparing to the clean 

chaotic signal.  

The rest of this paper is followed as: Section 2 provides the block diagram of the suggested 

algorithm. Section 3 provides performance evaluation of noise reduction method. The simulation results of 

noise reduction are summerized in Section 4. Furthermore, Section 5 contains the conclusion. 
 

 

2. EMD BASED CHAOTIC DENOISING INSPIRED BY MULTIVARIATE DENOISING  
(EMD-MD)   

Figure 1 show the block diagram of EMD based chaotic denoising inspired by multivariate 

denoising (EMD-MD). In this system, the clean chaotic signal x(n) is corrupted by a noise w(n) with length 

N, then the noisy chaotic signal r(n) is given by: 

 

r(n)=x(n) + w(n), n=1,…,N.        (1) 

 

The objective is to separate the clean chaotic signal from the noise signal and recover the interest clean 

chaotic signal. In the first step, the signal x(n) is decomposed into a set of L basis function called intrinsic 

mode functions (IMFs), ci(n),i=1,…,L, using EMD algorithm [4, 13, 14]. Two conditions are required in each 

IMFs [13, 14]: First, the extrema number and zero crossing number must be equal or differ at most by one. 

Second, the average value of the upper and lower envelopes defined by the local maxima and minima must 

be zero.  One of the most famous algorithms to find each IMFs is called sifting process that is iterative 

process. The procedure of sifting algorithm can be summerized in briefly as [4, 13, 14]: 

1) Compute local maxima, maxj, j=1, 2,… and local minima, mink, k=1,2,…. in r(n).  

2) Using cubic spline interpolation to construct the upper and lower envelope, max(n)=𝑓𝑚𝑎𝑥(𝑚𝑎𝑥𝑗 , 𝑛) and 

min(n)= 𝑓𝑚𝑖𝑛(𝑚𝑖𝑛𝑘, 𝑛) respectively. 

3) Find the envelope mean, 𝑒(𝑛) = [𝑚𝑎𝑥(𝑛) + 𝑚𝑖𝑛(𝑛)]/2. 

4) If e(n) satisfies the IMF conditions, assign 𝑐𝑖(𝑛) = 𝑒(𝑛) for ith IMF and update r(n) as  

 

𝑟(𝑛) = 𝑟(𝑛) − 𝑐𝑖(𝑛).   

 

5) If r(n) remains approximately unchanged then back to step (1) and stop.  

6) After obtaining an IMFs, 𝑐𝑖(𝑛),  subtract  𝑐𝑖(𝑛) from the signal r(n)=r(n)- 𝑐𝑖(𝑛) and back to step (1) if r(n) 

is not constant or trend the residual signal, 𝜌(n). 

Consequently, the original signal, r(n), is recovered by the following equation: 

 

 𝑟(𝑛) = ∑ 𝑐𝑖(𝑛)𝐿
𝑖=1 + 𝜌(𝑛)       (2) 

 

In the next step, the IMFs signals are passing through MD-WPCA algorithm to get the denoised 

version of the IMFs signals. MD-WPCA is proposed by Aminghafari [18] to remove noise from multivariate 

noisy signals by combined principal component analysis (PCA) and univariate wavelet thresholding. 

Given the IMFs signals from the previous step, ci(n), and the residual 𝜌(𝑛) and denoted by C(i) where C(i) is 

the matrix form of ci(n) , C(i) ∈ 𝑁 × (𝐿 + 1).  The MD-WPCA algorithm is outlined in the following steps: 

1) Apply the DWT at a level J for each column of C to obtain the (J+1) detail coefficients matrices  

Dj, j=1,…,J at level 1 to J and the approximate coefficients AJ of L+1 channels, where  

Dj  ∈ 𝑁2−𝑗 × (𝐿 + 1),  j=1,..,J matrices and AJ ∈ 𝑁2−𝐽 × (𝐿 + 1) matrix.    

2)  Find the noise covariance estimate ∑𝑐 by applying the minimum covariance determinant (MCD) to  

D1 (∑𝑐=MCD(D1)). Then find an orthogonal matrix V by computing the singular value decomposition 

(SVD) of ∑𝑐 ( ∑𝑐 = 𝑉Λ𝑉𝑇), where 𝛬 = diag(𝜆𝑖 , i = 1, . . , 𝐿 + 1)  and 𝜆𝑖, i=1,..,L+1 are the eigenvalues 

for each channel.     

3) Next, change the basis using V for each detail Dj  by using the following multiplication, Ej=DjV, j=1,..,J, 

and apply the universal threshold  𝑡𝑖 = √2𝜆𝑖 log (𝑁) , i=1,..,L+1 for  the ith column of Ej to obtain �̂�𝑗.  

4) Find the PCA of the matrix AJ and select the suitable number LJ+1 of useful principal component.   
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5) Change the basis of �̂�𝑗 using 𝑉𝑇 and then make an inverse DWT to obtain the enhanced multivariate 

signals �̃�𝑖(𝑛). 

6) Apply PCA to �̃�𝑖(𝑛) and return the most significant principal components.   

The final step, the denoised chaotic signal �̃�(𝑛) is recovered from �̃�𝑖(𝑛) according to: 

 

�̃�(𝑛) = ∑ �̃�𝑖(𝑛)𝐿+1
𝑖=1 , n=1,…,N.       (3) 

 

 

 
 

Figure 1. The proposed chaotic denoising system 

 

 

3. PERFORMANCE EVALUATION OF NOISE REDUCTION METHOD 

Let us defined 𝑥(𝑛) and �̃�(𝑛)  as the clean and denoised chaotic signal respectively. In order to 

compare between the different noise reduction methods, there are different formulas that are used as 

a performance evaluation measurement such as signal to noise ratio (SNR) [9, 10], root mean square error 

(RMSE) [6, 8, 10] and signal to noise ratio gain (SNRG) [8, 10]. The formulas of these measures are 

defined as: 
 

𝑆𝑁𝑅 = 10 × log10 [
𝑣𝑎𝑟(𝑥(𝑛))

𝑣𝑎𝑟(�̃�(𝑛)−𝑥(𝑛))
]        (4) 

 

𝑅𝑀𝑆𝐸 = √
1

2𝑁
∑ (𝑥(𝑛) − �̃�(𝑛))

2𝑁
𝑛=1        (5) 

 

𝑆𝑁𝑅𝐺 = 𝑆𝑁𝑅 − 𝑆𝑁𝑅𝑖          (6) 
 

where 𝑣𝑎𝑟(𝑥(𝑛)) is the variance of clean chaotic signal, 𝑣𝑎𝑟(�̃�(𝑛) − 𝑥(𝑛)) is the variance of the error 

between clean and denoised chaotic signal that is equivalent to the noise and SNRi is the input signal to noise 

ratio that is considered in the range (0-30) dB with step about 5 dB.        

Other measure that help us to know whether the noisy chaotic signal is perfectly denoised or not is 

the scale dependent Lyapunov exponent (SDLE) [19, 20]. The algorithm of SDLE is summarized in 

algorithm 1.  

 

Algorithm 1: Scale dependent lyapunov exponent (SDLE)  

Input: The signal x(n). 

Ouput: The SDLE Λ(𝑡). 

1. Create the suitable vectors Vi from a time series signal x(n), n=1,..,N using 
𝐹𝑖 = [𝑥(𝑖), 𝑥(𝑖 + 𝜏), . . , 𝑥(𝑖 + (𝑚 − 1)𝜏)], 𝑖 = 1, . . , 𝑁𝑝 

where 𝑁𝑝 = 𝑁 − (𝑚 − 1)𝜏 is the reconstructed vectors number, m is the embedding 

dimension and 𝜏 is the delay time. 

2. Check whether pairs of vectors (Fi, Fi) satisfy the high dimensional shell 

inequality,     𝜀𝑘 ≤ ‖𝐹𝑖 − 𝐹𝑗‖ ≤ 𝜀𝑘 + Δ𝜀𝑘, k=1,2,3,.. 

where 𝜀𝑘 and Δ𝜀𝑘 are the radius and the width of the shell respectively that are arbitrarily 

chosen small distances and ‖. ‖ is the norm function.  Also, the following condition is 

needed:  |𝑖 − 𝑗| ≥ (𝑚 − 1)𝜏 

3. The SDLE in term of time t, Λ(𝑡) is given by:  

Λ(𝑡) =
〈𝑙𝑛‖𝐹𝑖+𝑡+∆𝑡−𝐹𝑗+𝑡+∆𝑡‖−𝑙𝑛‖𝐹𝑖+𝑡−𝐹𝑗+𝑡‖〉

∆𝑡
, where ∆𝑡 is the sampling time.  
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4. SIMULATION RESULTS 

In this simulation, Lorenz [5], Chen [21] and Rossler [22] are used as chaotic systems to test 

the proposed method. The chaotic system equations of Lorenz, Chen and Rossler with their setting 

parameters are described in (7), (8) and (9) respectively: 

Lorenz system [5]: 
 

𝑑𝑥 𝑑𝑡⁄ = 𝜎 (𝑦 − 𝑥)        

𝑑𝑦 𝑑𝑡⁄ = 𝑥(𝛼 − 𝑧) − 𝑦

𝑑𝑧 𝑑𝑡⁄ = 𝑥𝑦 − 𝛽𝑧           

              , 𝜎 = 10, 𝛼 = 28, 𝛽 = 8/3.     (7) 

 

Chen system [21]:  
 

𝑑𝑥 𝑑𝑡⁄ = 𝑎 (𝑦 − 𝑥)        

𝑑𝑦 𝑑𝑡⁄ = 𝑥(𝑐 − 𝑎) − 𝑦

𝑑𝑧 𝑑𝑡⁄ = 𝑥𝑦 − 𝑏𝑧           

             ,a=35, b=3 and c=28      (8) 

 

Rossler system [22]: 
 

𝑑𝑥 𝑑𝑡⁄ = −𝑦 − 𝑧                     

𝑑𝑦 𝑑𝑡⁄ = 𝑥 + 𝑎𝑦                       

𝑑𝑧 𝑑𝑡⁄ = 𝑏𝑥 − 𝑐𝑧 + 𝑥𝑧           

      , a=0.38, b=0.3 and c=4.82     (9) 

 

The differential equations of these systems are solved using a 4th order Runge-Kutta method with a step size 

of 0.001 sec with 50000 numbers of samples. The different simulation scenarios are depicted below. 

Figure 2 and Figure 3 show SNRG and RMSE tests of EMD-MD method respectively to remove 

AWGN in Lorez, Chen and Rossler chaotic system. The performance evaluation are applied to only x(n) 

signal of these chaotic systems. The range of SNRi is (0-30 dB) with step 5 dB. From these two figures, 

it can be noticed that SNRG for all types of chaotic systems has at least 17 dB gain over unenhanced system. 

Also, Lorenz system has the lowest RMSE values compared with Chen and Rossler for different SNRi.   
 

 

  
 

Figure 2. The SNRG measures for different types of 

chaotic systems when EMD-MD algorithm  

and AWGN are used 

 

Figure 3. The RMSE measure for different types of 

chaotic systems when EMD-MD algorithm  

and AWGN are used 
 

 

In this simulation, different types of noise are used to test the ability of the proposed system to 

remove noise. The selected additive noises are AWGN, Factory, Babble, Pink and HFchannel noise that are 

extracted from Noisex-92 database [23]. The range of SNRi is (0-30 dB) with step 5 dB.  Figure 4 and 

Figure 5 show SNRG and RMSE tests of EMD-MD method respectively to remove noise in Lorenz chaotic 

system with different types of noise (AWGN, Factory, Babble, Pink and HFchannel). It can be seen that from 

these figures, Factory noise has the worst SNRG performance about 4 dB and the worst RMSE performance 

compared with other noises. AWGN and Pink noise approximately have the same performance. 

Also, HFchannel noise has the best SNRG performance about 26 dB and the best RMSE performance 

compared with other noises.    
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Figure 4. The SNRG measure for different noise 

types when EMD-MD algorithm and Lorenz chaotic 

system are used 

 

Figure 5. The RMSE measure for different noise 

types when EMD-MD algorithm is applied to 

Lorenz chaotic system 
 

 

Table 1 shows the comparison of the prposed method with different denoised techniques. 

The parameter of simulation is setting as: the scale J=4, wavelet family=db10 and the threshold is soft 

threshold, the sampling time=0.01. From this table it can be seen that the proposed method has the best SNR 

and RMSE values comparing with other methods. The SDLE curve for the noise free Lorenz signal and 

denoised Lorenz signal using EMD-MD technique for SNRi=(0, 5, 15, 20) dB is shown in Figure 6. 

Here m=5 and 𝜏=4. From these figures, it can notice that the curve of denoised signal SDLE is go away from 

the curve of clean signal when SNRi is decreased or noise level is increased. Therefore, the SDLE measure 

gives good estimation about the level of noise in the noisy chaotic signal and distinguish noise from 

chaos signal. 
 

 

Table 1. The comparison of the prposed method with different denoised techniques 
Method Chaotic signal SNRi [dB] SNR [dB] RMSE 

Wavelet soft threshold ( Han et al. 2007) [5] Lorenz 14 23.18 0.3840 

Dual wavelet and spatial correlation ( Han et al. 2009) [9] Lorenz 14 24.6039 0.3217 

Adaptive dual-lifting wavelet (Y. Liu and X. Liao 2011) [10] Lorenz 14 24.6631 0.319 

Proposed method Lorenz 14 25.0361 0.2809 

Improved EEMD (X. Wei et al. 2016) [15] Lorenz 15 24.732  

Proposed method Lorenz 15 25.119 0.2740 

Improved EMD (M. Wang et al. 2018) [16] Chen 15 23.3726 0.5779 

Proposed method Chen 15 25.901 0.2680 

 

 

 
 

Figure 6. The SDLE curve for the noise free Lorenz signal and denoised Lorenz signal  

for various values of SNRi (0,5,15,20) dB. Here m=5, 𝜏=4 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Chaotic signals denoising using empirical mode decomposition inspired by … (Fadhil Sahib Hasan 

1357 

5. CONCLUSION  

In this paper, the proposed Multivariate Denoising (MD) depends on wavelet and principal 

component (MD-WPC) thresholded empirical mode decomposition (EMD) based chaotic signal denoising is 

investigated and named (EMD-MD). In EMD-MD, the MD-WPC is suggested to threshold the intrinsic mode 

functions (IMFs) of the noisy chaotic signal. The proposed system is tested for different types of chaotic 

signals, Lorenz, Chen and Rossler system, and different types of noise, AWGN, Factory, Babble, Pink and 

HFchannel. The prposed method is comparing with conventional chaotic denoising techniques. The results 

show that EMD-MD has the best SNRG and RMSE values. Furthermore, scale dependent Lyapunov 

exponent (SDLE) is used to distinguish the evel of noise comparing to the clean chaotic signal.  
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