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 This paper presents the implementation and evaluation of different 

convolutional neural network architectures focused on food segmentation.  

To perform this task, it is proposed the recognition of 6 categories, among 

which are the main food groups (protein, grains, fruit, and vegetables) and 

two additional groups, rice and drink or juice. In addition, to make  

the recognition more complex, it is decided to test the networks with food 

dishes already started, i.e. during different moments, from its serving to its 

finishing, in order to verify the capability to see when there is no more food 

on the plate. Finally, a comparison is made between the two best resulting 

networks, a SegNet with architecture VGG-16 and a network proposed in 

this work, called Residual Segmentation Convolutional Neural Network or 

ResSeg, with which accuracies greater than 90% and interception-over-union 

greater than 75% were obtained. This demonstrates the ability, not only of 

SegNet architectures for food segmentation, but the use of residual layers to 

improve the contour of the segmentation and segmentation of complex 

distribution or initiated of food dishes, opening the field of application of  

this type of networks to be implemented in feeding assistants or in  

automated restaurants, including also for dietary control for the amount of  

food consumed. 
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1. INTRODUCTION  

The recognition of patterns applied to food is a topic that has begun to take importance within 

machine vision systems, mainly focused on calorie control [1] or diet control [2]. However, that application 

has been a challenge because the dishes do not contain characteristic shapes or the ingredients used can differ 

by drastically changing the visual characteristics of a type of food. For the execution of this task, several 

developments have been implemented, such as those presented in [3-5], but the main problem is that these 

systems depend on the dish containing only one type of food, recognizing a specific dish without 

discriminating the ingredients [6] or being in a controlled or known environment [7, 8]. 

To increase the robustness of the food recognition systems, other techniques have begun to be 

applied in a way that allows recognizing different types of food in a single dish. Some developed examples 

are presented in [9] and [10]. The first one makes use of pairwise statistics to recognize different categories 

of food on a plate by means of the exploitation of local features, but it depends on being in a controlled 

environment with a white background. In the second one, a combination of segmentation of objects with 

perceptual similarities is used, in such a way that the algorithm recognizes and segments food types with 

respect to their characteristics, achieving an accuracy of 44% in the segmentation of 32 meals.  

Although these techniques already discriminate parts of the same dish, the performance is very low, which is 
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why researchers began to include artificial intelligence in this area, more specifically Deep Learning  

(DL) techniques [11]. 

Within DL, there is a technique called Convolutional Neural Network (CNN) [12, 13], which has 

had an exponential evolution, not only in its performance in the recognition of patterns in images but in its 

variations and application. In the work described in [14], a comparison is made between region-based CNN 

and a Deep CNN, to segment and locate food in a photo, while in [15], a Deep CNN is used with a variation 

in the structure of the fully connected layers to segment the food along with a multi-scale CNN to estimate its 

depth, achieving results with ranges between 70% and 75% accuracy in the estimation of food quantity. 

On the other hand, other architectures have been developed to achieve an improvement in  

the segmentation of objects, called Encoder-Decoder CNNs, or commonly known as SegNet [16], which is  

a CNN that consists of two stages. The first stage consists of an encoder in charge of generating 

the recognition of the object, however, it does not contain fully connected layers, i.e. its last convolution 

layer is connected directly to the second stage, which is a mirror of the encoder, called decoder, adding 

a direct connection between each section of the encoder's downsampling with its respective part of the 

decoder's upsampling, allowing having a better characterization of the image in the last layers. This type of 

network has had a great performance in tasks related to the segmentation of objects [17-19], even in the 

segmentation of medical images [20-23], which have the characteristic of not having sections with a specific 

shape or totally amorphous. However, this network has not been widely used in the task of food 

segmentation, for this reason, this work explores the possibility of being used and demonstrate its 

performance in this task. Although the food segmentation developments are mainly focused on the dietary 

control, this work expands the use of these systems to know the existence or not of food on a dish, so that it 

can be applied in future work to developments that require knowing the percentage of current food or 

autonomous systems of assisted feeding. Likewise, different architectures are implemented and evaluated to 

analyze their results with respect to an architecture proposed in the state of the art, exploring the use of 

residual layers in conjunction with the SegNet, which is called in this work ResSeg. 

The work is divided into 4 sections, including the present introduction. In section 2, the database 

prepared along with the proposed architectures is presented. Section 3 describes the results obtained from  

the training and testing of the networks, taking into account the use and non-use of the background label. 

Finally, in section 4, the conclusions reached are given. 

 

 

2. METHODOLOGY 

The work done focuses on the segmentation of 6 food groups, for this case, from the lunch meal, 

within which are the 4 main groups of foods (Protein, Vegetables, Fruits, and Grains) plus two subgroups, 

where Juice and Rice are located. This is done since, in the case of rice, in the common food menu of  

the Colombian region it is found in most dishes, and for juice, because it is the liquid part of lunch. It should 

be noted that the soup, which is also an essential element in the food of the region, is not taken into account. 

For this, the construction of our own dataset is made, as well as the proposal of different architectures and 

their comparison with the VGG-16 for semantic segmentation. Next, the development of the work is exposed. 

 

2.1. Database 

The elaborated dataset consists of images of basic food dishes, or commonly called "Executives" in 

the region. This dish consists of a portion of rice, a type of grain, a protein, a portion of fruit, a glass of juice, 

and mostly a portion of salad, and are taken on backgrounds with simple and complex textures. Additionally, 

not only images of freshly prepared dishes are taken, but as the person consumes it, pictures of it are taken, 

increasing its complexity for recognition, because in the dish, there are residues of sauces and the food 

portions begin to be separated or mixed. The pictures are taken in two restaurants, without control of 

the lighting and without a fixed distance between the plate and the camera, but mostly taken around 55 cm of 

distance. These images are adjusted to a standard size of 480x360 pixels, to avoid a high computational cost 

in training if higher resolutions are used. Each photo is manually labeled, obtaining a total of 236 images, 

where 200 are used for training and 36 for validation of networks. An example of the dataset can be seen in 

Figure 1 along with its labeling. It should be noted that no data augmentation has been performed. 

 

2.2. Proposed architectures 

In order to evaluate the food segmentation capacity with a small database as the one elaborated here, 

different architectures of CNNs were proposed, using configurations such as SegNet or Encoder-Decoder 

with variation in depth, and variants of this architecture, which contain residual layers. This was done  

in order to observe their performance and quality of the segmentation of each category. Each of  

the architectures is shown in Figure 2 and are described below. 
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(a) 

 

 
(b) 

 

Figure 1. Examples of the dataset, where (a) a recently prepared dish and (b) already started to be eaten,  

with their respective labels 
 

 

The first architecture is a SegNet of depth 3 (or SegNet D3), i.e. it is formed by an Encoder network 

that consists of 3 sets of layers. Each set contains 2 groups of convolution, in other words, a group is 

composed of a convolution layer, a batch normalization layer and a ReLU layer. At the end of each set,  

a downsampling or maxpooling layer is added. The Encoder is followed by a Decoder network that is 

basically a mirror of the encoder, with the difference that instead of having downsampling, the decoder has 

upsampling layers called unpooling layer. In order to improve the delineation of the segmentation by means 

of the retention of the details of the encoder’s early layers, the indices of each pooling layer are 

interconnected with the indices of their respective mirror unpooling layer, as defined in [16]. The second 

architecture, called SegNet D4, has a similar configuration as the previous one, with a slight variation in its 

depth, being of 4, that is, with an additional set of layers in both the encoder and decoder. For architecture 3, 

which is a modification of the SegNet D3, the filters’ size of the first set of the encoder and the last set of 

the decoder were varied, establishing them in 5x5 pixel squares, so that the network could learn in a better 

way textures and internal shapes of the food. Likewise, the number of filters were increased in some layers. 

In order to explore architectures different from conventional ones, it was proposed to use residual 

layers within each layer set. As reported in [24], the addition of this type of layer improves the accuracy of 

the network in conjunction with the quality of the segmentation with respect to the contour of the object 

thanks to the transfer of the features of early layers to deeper layers. For this reason, the following 

architectures, called E-Residual v.1 and v.2, consist of a SegNet of depth three with sets of layers composed 

of 3 groups of convolution, adding residual layers in each set of the encoder. However, due to  

the interconnectivity of the encoder with the decoder, the residual layer input is taken from the first group of 

convolution of the set, and its output is connected to the pooling layer input. The connections can be 

observed more graphically in Figure 3, where the output of the connection is the ReLU function. In this 

figure, “conv” refers to a convolution layer and “B-norm” to a batch normalization layer. The main 

difference between these two networks is the number of filters used per layer. 

To further strengthen the previous architectures, residual connections are added in the decoder.  

This variation is named Residual Segmentation Convolutional Neural Network or ResSeg, which has a depth 

of 3, or ResSeg D3. Finally, the last proposed architecture is a ResSeg with a depth of 5 sets (ResSeg D5). 

Its main characteristic that, in the first set of the encoder and last of the decoder, residual branches are not 

used, and filters of size 3 are used in the first convolution layer, except in stage 4, because it is necessary to 

adjust the output volume to avoid loss of information, due to the size of the image. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 :  1017 - 1026 

1020 

It should be noted that for the convolution layers with 3x3 filter size in every architecture, padding 

of 1 is used, in such a way that the size of the input volume of the layer is maintained. The network with 

which it will be compared to the performance of all proposed architectures is a SegNet version of 

the VGG-16 [25], since its depth, and in general, its architecture is similar to the proposed ones, but with 

a greater number of convolution layers and learning filters. 

 

 

 

 
 

Figure 2. Proposed architectures 
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Figure 3. Residual connection structure 

 

 

3. RESULTS AND DISCUSSIONS 

3.1. Performance without labeled background 

For the purpose of comparing the performance of the architectures, identical training parameters are 

set, so that they can learn under the same conditions. Taking into account the above, the initial learning rate is 

set to 10
-4

 with a drop factor of 0.5 per 100 epochs, using a batch size of 2 and a total of 400 epochs of 

training. Those parameters were set by doing iterative tests, with which better results were obtained during 

the training. With this, the behaviors shown in Figure 4 are obtained, where no network surpasses  

an accuracy of 50%, even having the VGG16 as the worst performer, with 30% accuracy. 
 

 

 
 

Figure 4. Training behavior of each architecture, using a database without labeled background 
 

 

Due to the low performance of the networks during their training, it is necessary to observe what 

they learned to understand their behaviors. For this, tests are made with test images, obtaining results like  

the one in Figure 5, where, despite being able to segment each type of food, they are not able to eliminate  

the background or parts of the dishes, causing large amounts of false positives to be generated from all foods, 

which makes the network inefficient. 
 

 

 
 

Figure 5. Comparison between ground truth and segmentation obtained from ResSeg D3 
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3.2. Performance with labeled background 

To solve the above problem, it is proposed to add an additional category called "Background", 

where each unlabeled part of the image becomes part of this category, generating images like the example 

shown in Figure 6. With this modification, it is proceeded to perform the training of each network again. 

However, a slight modification is made in the learning rate parameter, using an initial value of 10
-3

, with  

a drop ratio of 0.5 per 150 epochs, in such a way that the networks start with a rapid learning process, and 

then fine-tuning the parameters learned every certain number of epochs. This modification was decided after 

looking at the initial behavior of the networks compared to the first learning rate used, seeing that with 

a smaller learning rate, the networks tended to obtain accuracies lower than 70% after 200 epochs. With these 

parameters, a training behavior like the one shown in Figure 7 is obtained, having as the two best networks 

the ResSeg of depth 5 and the SegNet with VGG-16 architecture, with 94.1% and 95.5% accuracy, 

respectively, surpassing by more than 3% the modified SegNet D3, which was the only one to achieve more 

than 90% among the remaining networks. 
 

 

 
 

Figure 6. Ground truth with the additional category “Background” 
 

 

 
 

Figure 7. Training behavior of each architecture, using a database with labeled background 
 

 

3.3. Test performance of final trained architectures 

Since the architectures had better behavior during their training, it is proceeded to verify their 

performance with the test images. Table 1 shows the results obtained with each architecture.  

The architectures with the lowest performance were the SegNets to which the residual layers were added only 

in the encoder stage. On the other hand, there are networks with percentages of accuracy greater than 90%, 

with SegNet D4, modified D3, and ResSeg D5, with slight differences. However, an important factor for its 

evaluation is presented in the intercept over union (IoU), where the ResSeg obtained a higher relation, i.e. 

how well the network classifies the pixels of the classes, given by (1), where TP are the true positives,  

FP the false positives and the FN the false negatives, being the value shown in the table the average of all  

the classes of the evaluated dataset. 
 

 

Table 1. Architectures performance with the test database 

Network 
SegNet 

D3 

SegNet 

D4 

SegNet 

D3 M 

SegNet D3 

E-R v.1 

SegNet D3 

E-R v.2 

ResSeg 

D3 

ResSeg 

D5 

SegNet 

VGG16 

Mean Accuracy (%) 89.61 90.06 90.35 87.85 86.71 88.17 90.43 94.86 

Mean IoU 0.635 0.663 0.661 0.638 0.631 0.642 0.756 0.821 
Mean BF Score 0.547 0.568 0.590 0.567 0.554 0.567 0.707 0.768 

Mean Processing Time (ms) 163.9 183.3 260.3 317.6 203.3 210.0 264.1 354.1 
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 (1) 

 

Making a comparison between the two proposed ResSeg architectures, it can be seen that, with  

the increase in the depth of the network, the average accuracy increased by 2.26%. Likewise, the mIoU 

obtained a significant improvement, increasing by 0.114, like the parameter BF (boundary F1) which is 

defined as the precision in the alignment of the predicted boundary with respect to the ground truth, growing 

by 0.14, observing an increase in the processing time of only 50 ms. With this, it can be inferred that by 

increasing the depth to a certain degree, it can be easily reached the performance of the SegNet VGG16, even 

being able to have a better processing time.  

A comparison of the architectures in different dishes and environments can be seen in Figure 8, 

where there are freshly served dishes, started to be eaten and finished. Similarly, tables with flat color and 

complex textures are used in such a way that it is more difficult to differentiate it from food. When the dishes 

are freshly served, such as number 4, the networks tend to generate a good classification and segmentation of 

the food, although they have parts of the table that are recognized as some type of food, except ResSeg D5 

and VGG16. In the same way, when the plate is almost empty (column 5), they generate a good 

classification, even of parts not labeled in the ground truth, although they also manage to label leftovers of 

sauce located in the upper part of the plate. In the first column, the networks tend to be wrong mainly in  

the segmentation of the juice, mainly by its color, with the exception of the last two architectures, even 

though part of the meat sauce was labeled as meat in the ground truth, these two were able to identify which 

was the protein and separate it from the sauce. 

 

 

 
 

Figure 8. Different tests of the architectures with the test dataset 
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The most complex image is located in column 2, where there is a plate that has already been started 

and a background with a complex texture. In this, the first 6 architectures generate a large number of false 

positives, especially protein due to the dark color of the texture. The ResSeg D5 network, although its 

amount of false positives is largely less than other networks, tends to be wrong where the candy is (which is 

not part of any category). On the other hand, VGG16 was able to discriminate this and avoid in large quantity 

false positives caused by the environment. In general terms, the two best architectures are the ResSeg D5 and 

SegNet VGG16, which are able to eliminate the noise that does not belong to the dish to a large extent and to 

segment with good precision the types of food. 

On the other hand, although the VGG16 has better overall performance, when making  

the comparison between this network and the ResSeg D5, especially with freshly served dishes,  

the ResSeg has a better behavior regarding the delineation of the contours of the segmented sections,  

as shown in Figure 9. The ResSeg is able to segment empty spaces between parts of the same food, as can be 

seen in the left part of the dish, where a noodle leaves an empty space, which is filled by the VGG16. It even 

has a better segmentation of the vegetable category. This allows you to have a better idea of the amount of 

food that is actually on the plate. 
 

 

 
 

Figure 9. Comparison of boundary segmentation performance between ResSeg D5 and VGG16 
 

 

3.4. Cases of wrong segmentation for ResSeg D5 

The ResSeg D5, although it has a good behavior especially when there is food still on the plate, 

has a difficulty when there is no food but there are residues of sauces that can simulate the texture of the rice 

by the division and color of the dish, causing it to generate a confusion of quantity of food. It can be seen in 

Figure 10a, where according to their activations, the network activates areas mainly where the sauce is 

located. This can be caused by convolutions from pixel to pixel (filters of size 1), since they can divert their 

learning towards active but little relevant parts, taking into account that prior to these there are only 2 layers 

of convolution and do not use a large number of filters in the layers, considering the number of possible 

details that may be in the empty plates. 

Another similar situation happens but this time when complex backgrounds are presented, such as 

the one presented in Figure 10b. Here, the network, despite having been able to correctly identify the main 

food dish with some mistakes in the fruit plate, presents segmentation of the protein category in the table,  

due to the texture it has, making it look like ground meat, also being activated where the sweet is, and inside 

the glass as if it were rice. Although this does not happen to a large extent, when lighting is low, this error 

tends to appear. 
 

 

  
(a) (b) 

 

Figure 10. Cases of wrong segmentation 

Original Ground Truth SegNet VGG16 ResSeg D5 
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4. CONCLUSIONS 

In this paper, it was explored the use of residual layers for the task of food segmentation in 

convolutional neural networks, within which an architecture with performance close to one of the most used 

networks in segmentation was implemented, which was named ResSeg. Different architectures with different 

configurations were structured in the location of the residual layers, making comparisons with basic 

segmentation networks, showing that having a shallow depth, the residual layers make the architecture 

perform less than those architectures that do not use them, even with the same depth, as shown in Table 1.  

On the other hand, when increasing the depth of the network, in the case of comparison between ResSeg D3 

and D5, the performance improves greatly, by more than 2% in the average accuracy, and up to 11%  

the performance of the mIoU. 

The correct labeling of the database plays a fundamental role in the training of architectures, since, 

as evidenced in section 3.1, not having a label corresponding to the background, makes the performances of 

these be critically impaired, taking into account everything not labeled as parts of the other categories.  

For this reason, it is important to include an additional label that includes the parts not related to  

the categories in the image. Although the ResSeg D5 has a high performance, exceeding 90% accuracy, 

it still remains below the SegNet VGG-16, however, when processing images with freshly served food, 

the contour of the segmented sections improves, avoiding segmenting empty spaces between the same types 

of food and better delineating the contours between each category, as shown in Figure 9. In future work, 

it is proposed to increase the capacity of the network by adding a greater depth in each phase of 

the encoder/decoder with 3x3 filters. This can improve its accuracy, since it would allow it to learn in a better 

way the characteristics of the complex textures of the environment to avoid the confusion that may be 

generated by the layers with 1x1 filters, implementing new configurations. 
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