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 In the modern microprocessors that designed with pipeline stages,  

the performance of these types of processors will be affected when executing 

branch instructions, because in this case there will be stalls in the pipeline. 

In turn this causes in reducing the Cycle Per Instruction (CPI) of 

the processor. In the case of executing a branch instruction, the processor 

needs an extra clocks to know if that branch will happen (Taken) or not (Not 

Taken) and also it requires calculating the new address in the case of 

the branch is Taken. The prediction that the branch is T / NT is an important 

stage in enhancing the processor performance. In this research more than one 

method of branch prediction (hybrid) is used and the designed circuit will 

choose different types of prediction algoritms depending on the type of 

the branch. Some of these methods were used are static while the other are 

dynamic. All circuits were built practically and examined by applying 

different programs on the designed predictor algorithm to compute 

the performance of the processor. 
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1. INTRODUCTION 

Branch predictors now considered one of the basic units in the modern microprocessors that use 

pipeline stages in their design. This unit (BP) makes a prediction for the branch instructions that if the branch 

will be Taken or Not Taken. Previously when processors were designed without branch prediction unit,  

the processor requires more clock cycles by making a delay in the pipeline stages in each coming of branch 

instruction in order to know if that branch is Taken or Not Taken and also to calculate the target address in 

the case of Taken [1, 2]. 

In general 20% out of the instructions in a program is branch instructions; this means that is in every 

5 instructions there is one branch instruction [3]. Hence, predicting the behaviour of the branch  

(which is Taken or Not Taken) is very important and affects the performance of the processor. The penalty 

associated with mispredicted branches in modern pipelined processors has a great effect on performance.  

The performance penalty is increased as the pipelines deepen and the number of mispredicted instructions 

increases. For example, the AMD Athlon processor has 10 stages in the integer pipeline [4], while the Intel 

NetBurst microarchitecture used in the Pentium 4 processor is hyper-pipelined with a 20-stage branch 

prediction penalty [5]. The rest of this work will be as follows; in the next section a theoretical review for 

some types of static and dynamic branch prediction methods. Then a section will presents the designed 

branch prediction circuit and the following sections will presents results and conclusions respectively. 

 

 

2. THEORETICAL BACKROUN 

There are two kinds of branch prediction, one called static while the other is dynamic, and here 

a brief explanation for some types of branch prediction methods. 
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2.1. Static branch prediction 

If the technique of the used branch prediction circuit gives the same prediction for all types of 

branches is known as static branch prediction [6, 7]. While if the prediction changes with the running time, 

this is called a dynamic branch prediction. For example the processor i486 used static branch prediction 

algorithm, in which at each coming branch the prediction is always Not Taken [8]. But most of the branches 

are taken especially the branches of kind Loop, where the branch is taken for all the number of the loop 

except the last one the branch is Not Taken. As an example for a loop of 100 cycles, 99 of them are taken and 

only the last one is not taken. Hence, another technique of static branch prediction is used in Pentium 4 

processor which is Backward Taken/Forward Not Taken (BTFNT). This is done by counting the value of  

the new address if it is less than the current address then the prediction is Backward Taken and if the address 

is greater than the current address then the prediction is Forward Not Taken [9, 10]. The advantage of using 

static branch prediction algorithms is that they are very easy to implement and needs simple hardware circuit 

to be added to the designed processor.  

 

2.2. Dynamic branch prediction 

This type of branch prediction technique will take the advantage of the available information 

through the run time of branch behavior. The main idea in dynamic branch prediction is to take into account 

the state of the branch as the time is run which gives better prediction from the static branch 

prediction [11, 12]. One of the earliest methods used as a dynamic branch prediction is the algorithm 

presented by [13] (also known as Bimodal Predictor), which is shown in Figure 1. In this algorithm 

the prediction consists from table recording each previous prediction where it was taken or not taken. 

It is shown in Figure 1 that the circuit of the branch prediction consists from a group of 2m counters where 

each one of them recording the previous state of the branch. Since there are 2m counters (entries) the address 

of the branch instruction (PC) should be hashed down to m bits. 
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Figure 1. Architecture of basic dynamic branch predictor algorithm 

 

 

The size of the used counter in this technique consists of 2-bits, which is best from using 1-bit.  

The MSB of the counter indicates the prediction state while the LSB of the counter indicates the past branch 

state. In the case of increasing the number of counter bits to 3, the improvement in the predictor algorithm is 

very small, so that it is always prefers to use 2-bits counter with less hardware from using a larger 

counter [1, 14]. 

Some of the researchers used the two-level predictor, which uses a history for the most branch 

outcomes. These outcomes are stored in a Branch History Register (BHR) which is a shift register where  

the outcome for each branch is shifted inside the shift register and the oldest outcome is shifted out and 

discarded [13, 15, 16]. Figure 2 shows the structure for the two-level branch prediction algorithms with 

global history. 
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It is clear from Figure 2 that level one consists from the circuit of the Global History Register 

(GHR) while level two is the circuit of the table which consists from the saturated counters. This table called 

the Pattern History Table (PHT). The prediction in this algorithm using the outcome of a 4 most recent 

branches with 2-bits from the branch address to compose a 6-bit which is the index to one of the 64 counters 

from the PHT. Also there exists another type of the two-level predictor, which is known as the Local History 

two-level predictor [17-19] shown in Figure 3. 
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Figure 2. Two-level predictor with global history 

 

Figure 3. Two-level predictor with local history 

 

 

This method is done by replacing the Branch History Register (BHR) by a set of counters which 

known as Branch History Table (BHT). The branch address is used to select one of the entries of the BHT 

and according to the selected number of these entries as shown in Figure 3. This address will select one of  

the existing entries (BHR) in the BHT, in which it will give the local history. The contents of the chosen 

BHR will be combined with the PC to index to one of the counters in the PHT. 

 

2.3. Hybrid Branch Prediction 

Because there are different types of branches exists in the programs, may be these types are 

correlated with different types of history. Hence some of the branches may be is better to use the global 

history algorithm while other branches are better to use with it the local history or any other algorithm 

correlated with local history algorithm. This difference in the type of prediction algorithms leads some of  

the researchers to use a Hybrid Branch Prediction (HBP) [20-25]. One of the earliest researchers who used 

the HBP is [17] who suggests what is called the Tournament Predictor as shown in Figure 4. It is clear from 

this figure that the Meta predictor (M) consists from a table of 2-bit counters which indexed to it by using 

the two lower order bits from the branch address. According to the content of these counters the multiplexer 

will select the predictor P0 in the case of the MSB=0, and choosing the predictor P1 in the case of MSB=1. 

The Meta predictor works to predict for which algorithm prediction method P0 or P1 is correct. 

When the branch outcome is available, the predictors P0 and P1 are updated according to their 

respective update rules. While the Meta predictor is updated according to different rules. The 2-bit counters 

will be used in the predictors are finite state machines (FSMs), where the inputs are typically the branch 

outcome and the previous state of the FSM. For the Meta predictor, the inputs are C0, C1 and the previous 

FSM state, where Ci is one if Pi predicted correctly. Table 1 lists the state transitions. 

When P1's prediction was correct and P0 miss predicted, the corresponding counter in M is 

incremented, saturating at a maximum value of 3. While, when P1 miss predicts and P0 predicts correctly, 

the counter is decremented, saturating at zero. If both predictors are correct, or both miss predict, the counter 

in M is unmodified. The prediction lookups on P0 and P1 with the state for M are all performed in parallel. 

When the prediction operations for the three predictors are done, the Meta predictor is used to choose one of  

the multiplexer lines P0 or P1. The processor Compaq Alpha 21264 [26, 27] used the HBP algorithm as 

shown in Figure 5. 
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Figure 4. The tournament selection mechanism 

 

 

Table 1. Tournament Meta predictor update rules 
C0 (P0 correct) C1 (P1 correct) modification toM 

0 0 do nothing 

0 1 saturating increment 

1 0 saturating decrement 

1 1 do nothing 
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Figure 5. Tournament hybrid for compaq alpha 21264 

 

 

3. SYSTEM DESIGN AND IMPLEMENTATION 

In this research the hybrid prediction method is used in the design of the used processor.  

The processor is a MIPS (Microprocessor without Interlocked Pipelined Stages) pipelined processor with five 

pipeline stages. The design of this type of processor is a part from the work in the subject advanced computer 
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technology for the MSc course study. This designed algorithm was synthesized using the Xilinx ISE 

(Integrated Software Environment) design suite 14.7, and using the Vertex-4 Kit with operating frequency of 

50MHz. The branch prediction algorithm is designed for the MIPS Processor to be as follows: 

- In the case of Unconditional branch and Call/Return, a static algorithm of Always Taken is used. This is 

because of its simple design and also for its less miss prediction penalty. 

- In case of the branch is Conditional, a dynamic algorithm which is the Two-Level algorithm is used  

as shown in Figure 2. 

- Finally in the case of branch of type Loop, the predictor will be dynamic branch predictor of type 

Bimodal as shown in Figure 1. 

- For the two types (two level and bimodal) of dynamic branch prediction a 1024 2-bits counters were used, 

which is in this case approximately the effect of aliasing not exists. At start all the 2-bit counters will be 

saturated (its value is 11). For the two-level predictor a 32 Branch History Register is used in the Branch 

History Table. 

- A selector is used to select the type of the prediction algorithm from the three designed algorithms P0, P1, 

and P2 according to Table 2. 

 

 

Table 2. Prediction type selection 
Selector o/p Predictor 

00 P0 

01 P1 

10 P2 

 

 

The Prediction Type Circuit (PTC) shown in Figure 6 is used to decide the type of the prediction 

algorithm according to the executing branch instruction. Figure 6 shows the designed hybrid algorithm. 

As shown from Figure 6, the input to the Prediction Type Circuit is bits 0:5 and bits 26:31 from the branch 

address, this group of bits known as function and Op Code respectively. The Prediction Type Circuit 

examines these two sets of bits and decides the type of branch instruction, and hence the output depends on 

the type of the branch, then the selector selects one of the predictors according to Table 2. 

 

 

 
 

Figure 6. Structure of the designed branch prediction algorithm 

 

 

4. RESULTS 

In order to test the designed hybrid branch predictor algorithm and to compare it with different 

branch prediction algorithms, three different programs were written and executed using the MIPS pipelined 

processor with the following cases: 

- Without using any BP algorithm. 
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- Using the designed HBP algorithm. 

- Using static BP hardware algorithm that always NT. 

- Using the Bimodal dynamic BP algorithm with 1024 2-bits counters.  

Table 3 shows the different recorded results. It is clear from Table 3 that the hybrid Branch 

Prediction algorithm gives best results and this is because of using more than one algorithm, where each 

algorithm is suitable for certain types of branch instructions. Also it is clear that using BP algorithm of any 

type (static or dynamic) gives better results than not using branch prediction algorithm 
 

 

Table 3. Execution time for different BP algorithms 

Program 

Execution 

Time 

 No Branch 

Prediction 
Static Not 

Taken 

Dynamic 

Bimodal 

Hybrid BP 

Test program 1 273 ns 250 ns 218 ns 202 ns 
Test program 2 366 ns 314 ns 297 ns 272 ns 
Test program 3 507 ns 471 ns 432 ns 411 ns 

 

 

5. CONCLUSION 

There are different kinds of branch instructions, so that, there is a certain algorithms were suitable 

for some types for branches while other kinds of branches are suitable for other types of Branch Prediction 

Algorithms. Hence, three different predictors were used in this work in the same structure which is known as 

a Hybrid Branch Predictor. This predictor is tested by using a designed 32-bits pipelined MIPS processor 

using the Xilinx vertex-4 kit. Different test programs were written to test the designed hybrid branch 

predictor algorithm with the MIPS processor and the results compared with other types of prediction 

algorithms and it is found that the HBP gave the best results. 
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