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 The high integration of wind energy in power systems requires operating 
reserves to ensure the reliability and security in the operation.  
The intermittency and volatility in wind power sets a challenge for day-ahead 

dispatching in order to schedule generation resources. Therefore, 
the quantification of operating reserves is addressed in this paper using 
extreme values through Monte-Carlo simulations. The uncertainty in wind 
power forecasting is captured by a generalized extreme value distribution to 
generate scenarios. The day-ahead dispatching model is formulated as 
a mixed-integer linear quadratic problem including ramping constraints.  
This approach is tested in the IEEE-118 bus test system including integration 
of wind power in the system. The results represent the range of values for 
operating reserves in day-ahead dispatching. 
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1. INTRODUCTION  

The high penetration of wind power into the power systems represents major challenges for 

operation and planning. In particular, in power system operation the deviation between expected and real 

power production is compensated by operating reserves. Given the wind power intermittency, the operating 

reserves are crucial to cover up the sudden changes in electricity production, therefore, the operating reserves 

must be available and enough in quantity to be dispatched in real time. The operating reserves are quantified 

usually day-ahead, sometimes intra-day ahead, to guarantee the security and operational reliability.  

Wind forecasting errors bring great uncertainty to the systems operations, since the real-time wind 

power output may be very different from what is forecasted previously. The reliability of the system may be 
hampered in case of unforeseen decreases in wind power because the available ramping capability of on-line 

units in the system may not be sufficient to accommodate this change. For instance, a large upward ramp in 

wind power may be unfavorable in a system in which sufficient downward reserves from other resources are 

not available. Sometimes, during low load periods some units generates power according to ramp up and 

ramp down restrictions, in those cases, with low demand and high potential of wind power,  wind generation 

may be spilled to maintain a state of operation with units already generating. 

Therefore, the challenge is on the quantification of operating reserves under wind power uncertainty 

and intermittency on a day-ahead basis. The operating reserves should be enough to cope up extreme values 

of wind power generation. Given the importance about the integration of renewable resources, and 

particularly, wind power, this issue has been addressed in research with practical interest. The models 

includes the unit commitment formulation to integrate wind power along with thermal power, for instance,  
in [1] the authors propose a bioinspired algorithm to solve the problem given that the problem is nonlinear. 

Common formulations of day-ahead dispatching have been extended to account for the intermittent 
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characteristics in the wind power [2-6]. A probabilistic approach has been addressed to capture 

the intermittency in day-ahead dispatching models. In the unit-commitment formulation, a stochastic 

approach is used, particularly, the authors in [7] report about the use of scenarios for generation with 

distribution probability functions, the demand is considered constant. Formulations with a stochastic 

approach has been suggested to manage wind power uncertainty in power system operation [8-11] and in 

microgrids in [12]. The flexibility in power system operation will be a critical issue under high penetration of 

wind power to deal with uncertainty and intermittency. In [10], the authors proposed an approach based on 

a model to clear a network-constrained electricity market with offers made by wind generators. In [13] 
the optimal power flow approach is addressed to minimize the rescheduling including total congestion cost 

minimization. In [14] the authors propose a dispatching model to consider simultaneously wind power and 

demand response.  

The quantification of reserves under high penetration of wind power has been addressed in various 

electricity markets with different approaches, for instance, PJM (Pennsylvania, New Jersey and Maryland) in 

US classifies ancillary services as regulating and load-following reserves [15][13]. The operating reserves 

deals with the variability and intermittency of power wind from a power dispatching point of view, in fact, in 

[16], the authors affirm about the operational problems associated with renewable sources. In [17] an optimal 

reactive power scheduling problem is solved using an evolutionary search algorithm.  

This paper provides a methodology to identify the proper level of reserves in power systems with 

penetration of wind power using extreme value theory as a novelty to characterize low probability cases with 

high impact in the operation reliability. This paper deals with the uncertainty and variability introduced by 
wind power to determine reserves in day-ahead dispatching. The model proposed in this paper is based on 

a model for day-ahead dispatching as a mixed-integer linear quadratic optimization problem with unit 

commitment. The model takes into account startup and shutdown characteristics for thermal units.  

The quantification of operating reserves is addressed via generalized extreme value functions.  

We propose a quantification of ramp reserves in day ahead dispatching considering extreme values 

to characterize those high-impact low probability events. Therefore, in day-ahead dispatching or even in 

intra-day dispatching enough reserves has to be planned to compensate wind power volatility.  

The dispatching decision has to deal with the inherent uncertainty in order to dispatch economically 

the generation resources considering the system reliability at the same time. We propose the construction of 

wind power ramps trajectories through Monte-Carlo simulations to quantify the probability distribution of 

ramp reserves. Specifically, we propose a GEV (generalized extreme value) distribution function to produce 
wind power ramps trajectories considering 5% of the events are in the tails.  

 

 

2. MODELLING UNCERTAINTY WITH SCENARIOS 

In this section, we present the methodology and discussion about the generation of scenarios 

considering the uncertainty of wind power. Specifically, the generation of wind power trajectories for 

a 24-hour period to capture the uncertainty associated to wind power ramps. The use of GEV functions to 

generate trajectories capture low probability events as the intermittents power ramp given by wind power.  

The identification of ramps events are important to quantify reserves to compensate wind power ramps 

during the operation. 

The most critical situations arise with extreme values of wind power ramps. Recent studies [18] has 
demonstrated that real-world wind power ramps exhibit heavier tails. In particular, the historical data from 

wind power generation in ERCOT (Electric Reliability Council of Texas) reveals that less than 5% of hourly 

wind power ramps had a magnitude greater than three standard deviations [19], [20]. Those extreme values in 

the tails will require operating reserves during operation to compensate the deviations and to guarantee wind 

power integration. To quantify operating reserves considering the uncertainty associated to wind power 

ramps, we use extreme value theory to generate wind power trajectories with heavier tails.  The wind power 

ramps can be suitable modeled by a generalized extreme value distribution (GEV) function given by, 
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Where the parameters satisfy, 

 
,         (3) 

 

The model has three parameters:   is a location parameter,   is a scale parameter and   is a shape 

parameter. According to the parameter  , there are three classes of distributions widely known as 

the Gumbel, Fréchet and Weibull families, or type I, II and III, respectively [21]. Specifically, if 0   then 

the distribution is a type I function, if 0   then the distribution is a type II function, and if 0   then 

the distribution is a type III function. The parameter   indicates the tail behavior, in other words, 

the distribution of wind power ramp events behind a threshold value given by . In particular, the tail 

behavior for wind power ramp is given by type II distribution. In order to appreciate the tails in the GEV, 

Figure 1 shows a contrast of a Gaussian distribution and a GEV distribution. 

 

 

 
 

Figure 1. Gaussian distribution and GEV distribution 

 

 

We use a Monte-Carlo framework to generate trajectories for a 24-hour period under the assumption 

than 5% of hourly wind power ramps had a magnitude greater than three standard deviations. Figure 2 and 

Figure 3, represents the wind power trajectories around a mean value to represent extreme values in the left 

and right tail respectively. The mean value corresponds to bid made by the wind power producer. 

 

 

  
 

Figure 2. Wind power scenarios with values in 

the left tail 

 

Figure 3. Wind power scenarios with values in 

the right tail 
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For GEV distribution, extreme quantiles of the annual maximum distribution are given by the inverse of (1), 

 

      1  log 1  pz p





    
 

 (4) 

 

The p quantile implies that with  confidence wind power ramp is no greater than . More precisely, 

the level  is expected to be exceed on average once every  years. 

 

 

3. DAY-AHEAD DISPATCHING FORMULATION 

 

  ,i t
PC   Production cost function for unit i at time t 

 ,i tP  Generation of unit i at time 

 ,w tP  Wind power forecast for unit w at time t 

 
 

t
DP  Power demand at time t 

 
 

t
LP  Power losses at time t 

T  Number of periods in the planning horizon 

G  Number of generating power units 

W  Number of wind power units 

  .
 
i tC     Cost of load-following for unit i at time t 

 ,
 
i t   Load-following ramping for unit i at time t 

 
 limit
i  Load-following ramping limits for unit i 

 ,
 min

i tP  Lower limit of power generation of unit unit i 

 ,
 max

i tP  Upper limit of power generation of unit unit i 

 ,i tu  Binary commitment state for unit i at time t 

 ,
 
i t
upC  Startup cost for unit i at time t 

 ,
 
i t
downC  Shutdown cost for unit i at time t 

 ,i tl  Binary startup variable for unit i 

 ,i tk  Binary shutdown variable for unit i 

t  Index for time 

 

The day-ahead dispatching is formulated as a mixed-integer linear quadratic optimization problem. 

The objective function is composed of production cost of power generation, cost for load-following (up and 

down), and costs for startup and shutdown of each generating unit (5). The operating costs of wind units are 

zero. The constraints includes the power balance constraint (7). The load following ramping limits are given 
by the restriction (8). The integer constraints indicating the binary startup and shutdown states are in (9).  

The power unit generating limits in (10). The constraint about the capacity limits, the tap changing and phase 

shifting for transformers are given in (11). 
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 ,  ,  ,

 min  max i t i t i tP P P   

 

(10) 

  ,   

  L, , 0i t t t

DH P P P    (11) 

 

 

4. CASE OF STUDY 

We propose to quantify the operating reserve in day-ahead dispatching performing an optimal power 

flow for the wind power trajectories generated with GEV functions according to the premise: than 5% of 

hourly wind power ramps had a magnitude greater than three standard deviations. In particular, we use 

the IEEE 39-bus test system, this system includes 10 generators, 46 branches and 19 loads. The data of 

the generators is listed in Table 1. The system load curve for a 24-hour period has a peak load of 4531 MW at 

hour 20 as shown in Figure 4. 
 

 

Table 1. Generator Data for the IEEE 39 Bus system 

Gen # 
      

1 6.9 6.9 920 736 0 250 

2 6.9 6.9 920 736 0 678 

3 6.9 6.9 920 736 0 650 

4 6.9 6.9 920 736 0 632 

5 6.9 6.9 920 736 0 508 

6 6.9 6.9 920 736 0 650 

7 6.9 6.9 920 736 0 560 

8 6.9 6.9 920 736 0 540 

9 6.9 6.9 920 736 0 830 

10 6.9 6.9 920 736 0 1000 

 

 

 
 

Figure 4. System load curve 

 

 

The cost data are quadratic functions as reported in [22-24]. Table 2 lists the cost functions for 

the ten conventional generators. This quadratic cost functions characterize more appropriately the cost 

structure of thermal generation in power systems.  

 

 

Table 2. Cost Functions 
Gen  Cost Function [$] 

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

C  C  vC wC minP maxP

2
1 0.00194 7.85 310C P P  

2
2 0.0035 8.5 260C P P  

2
3 0.00482 7 78C P P  

2
4 0.00128 6.4 459C P P  

2
5 0.0024 6 80C P P  

2
6 0.0032 5.8 400C P P  

2
7 0.0053 6.24 120C P P  

2
8 0.00185 8.4 60C P P  

2
9 0.0025 5.75 450C P P  

2
10 0.00142 8.2 510C P P  
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5. SIMULATION RESULTS 

In this section, we provide simulation results to quantify operating reserves with high penetration of 

wind power. The day-ahead dispatching model for the IEEE-39 bus test system is a mixed-integer linear 

quadratic optimization problem. We use GUROBI 7.5.1 [25] under the platform of Matpower [26] as solver. 

The simulations were completed by a PC with Intel Core i7 - 3537U CPU @ 2.00 GHZ with 8.00 GB RAM. 

We run a day-ahead dispatching to obtain results from scenarios to capture wind power uncertainty. We run 

the wind power scenarios for both tails. The cost function, in Figure 5, reveals values in the right tail given 

the wind power modelling with generalized extreme values, corresponding to scenarios with high operating 

costs. The parameters for the generalized extreme function are   0.346,    4041.57,    513638.        

Figure 6 reveals values in the left tail, corresponding to scenarios with high penetration of wind power. 

The generalized extreme values parameters are  0.224,    4821.49,    528257,       it represents 

the cost function in terms of a GEV function. 

 

 

  
 

Figure 5. Operating cost for the IEEE 39-bus test 

system with values in the right tail 

 

Figure 6. Operating cost for the IEEE 39-bus test 

system with values in the left tail 

 

 

For wind power, the percentage of cases beyond three sigmas for each period is reported in Table 3. 

In hour two, there is a five  percentage (5%) of cases where the wind power output is beyond three sigmas in 

the right tail. Wind generation is a variable energy resource with changing availability level over the time 
(variability), which cannot be predicted with perfect accuracy (uncertainty) [27] As wind power increases, 

the additional variability and uncertainty introduced in the system will cause an increase of operating 

reserves in the system [19]. In order to proposed a operaing reserve function in MW related to the power 

system, we quantified the operating reserve up in the left stage and  the operating reserve down in 

the right stage.  

 

 

Table 3. Percentaje of cases in each hour beyond three sigmas  
Period [Hour]  Cases (%) Period [Hour]  Cases (%) Period [Hour]  Cases (%) 

1 4.2 9 4.6 17 1.6 

2 5 10 1.4 18 2.6 

3 3.4 11 2.6 19 1.8 

4 4 12 2.6 20 2.8 

5 3.2 13 2.2 22 3.2 

6 4.2 14 2 22 3.4 

7 4 15 2.8 23 1.6 

8 2.2 16 1.8 24 2 

 

 

In addition, we plot downward ramping reserves and upward ramping reserves under the modelling 

of wind power using generalized extreme values to quantify reserves. Figure 7 shows the downward ramping 

reserves, the mean value is 2600 MW, but, the key result is about the values in the right tail. We observe 

values around 3100 MW. This values indicates that the operation planning in day-ahead dispatching may 
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require 3100 MW to mitigate the wind power uncertainty. Figure 8 shows the upward ramping reserves.  

In both cases, there is values in the tails. The operating reserves are adjusted to a GEV function type II, 

the parameters of scale, location and shape are indicated in Table 4 for downward and upward operating 

reserves. 

 

 

  
 

Figure 7. Downward ramping reserve quantities for 

the right tail in the IEEE 39-bus test system 

 

Figure 8. Upward ramping reserve quantities for 

the left tail in the IEEE 39-bus test system 

 

 

Table 4. Operating reserves function 
 ε β µ 

Left Tail -0.215 200.1 2537.5 

Right Tail -0.224 164.3 2617.5 

 

 

6. CONCLUSION  

This paper provides insights about the dispersion related with wind power and an aproach to 

quantify the reserves needed to mitigate the intermittency. This paper proposes a mixed integer linear 

quadractic problem to characterize day-ahead dispatching. The results offers evidences that wind power 

uncertainty have great impact on the scheduling of generating units in the day-ahead market with 

implications on ramping reserves. The operating reserves follow a generalized extreme value (GEV) 

distribution if the wind power follow a GEV function type II as its suggest by the analysis of wind data of 

wind plants. The approach proposed in this paper allows to deduce the expected distribution function for 

operating reserves. 
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