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1. INTRODUCTION

The progress in structure and motion estimation (a.k.a. structure-from-motion) research has been
hectic, stimulated by recent breakthroughs in computer vision, the advent of digital photography and
the augmented reality [1-6]. This progress has the potential to substantially increase the use of the structure
from motion technique for a variety of applications, for example the growing application of unmanned aerial
vehicles for remote surveying for a numerous of ecological domain [7]. Wide-reaching marine assessments
using this technique have recently become possible in some cases like in [8, 9] with drone-based application.
The structure from motion technique can be used for topographic data collection in field and laboratory
studies [10] and as a means of digital preservation and for documenting archaeological excavations, cultural
material and architecture [11]. On the other side, structure from motion can be a good low-cost alternative to
generate high resolution topography [12], where light detection and ranging data is unaffordable or scarce.
Recently in the area of agriculture [13], the use of unmanned aerial systems (UAS) based on the structure
from motion technique as remote-sensing platforms have massive potential for obtaining detailed of crop
features. The structure and motion field of research is worried with the recovery of 3-D geometry of
the dynamic scene (the structure) when observed through a moving camera (the motion). Basically, structure
from motion involves three main steps: First extracting features in images and matching these features
between images, then modeling the camera-object relative motion and finally recovery of the 3-D structure
using the estimated motion and features.
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Keeping in view the above literature, several works have addressed structure estimation observer
based approach where full velocity parameters feedback of the calibrated camera was provided. Such as
in [14] where authors designed a nonlinear observer to estimate an unmeasurable state called depth with
known dynamics. That last one has been experimented on a mobile robot with an on-board camera. Authors
in [15] have introduced a nonlinear observer for a particular case of feature points on the object moving with
constant velocities and have approved in many practical scenarios. Although, in [16] a nonlinear observer is
defined to recover structure and motion with less restrictive assumptions on the moving object motion.
A reduced-order nonlinear observer is presented in [17] to estimate the range from a moving camera to
a feature point on a static scene. Furthermore, a design of complete order observers based on nonlinear
contraction theory and synchronization is given in [18] where angular and linear velocity measurements
are also noisy.

The information of the camera motion parameters has been unavoidable in the preceding cited
references. Various studies on structure from motion estimation are also available where the camera motion
is not known. Starting with [19], sliding mode observers were presented to estimate the motion parameters
and the structure of a moving object with the aid of a change-coupled device (CCD) camera. The advantage
presented by the proposed observers is that both rigid and affine motion parameters, constant or time-
varying, can be estimated correctly. In the uniqueness context, [20] introduced a developed nonlinear reduced
order observer which only requires one camera linear velocity to estimate a stationary object seen
by a calibrated camera. The methods described in [21, 22] present nonlinear observers based on a Robust
Integral Signed Error method (RISE) to estimate the unknown distance between the camera and the object
and the moving camera velocities. This problem was also investigated in [23] where a nonlinear reduced-
order observer is proposed to recover the feature point depth and camera linear velocity. Only the camera’s
angular velocity is assumed to be known. Authors described in [24] a new approach based on Extended
Kalman Filter to simultaneously recover camera pose and the structure of non-rigid extensible surfaces.
In order to extend the problem to a deformable domain, authors defined the object’s surface mechanics
by means of Navier’s equations. A recent paper [25] addresses the case where a novel complete-order
observer is designed to estimate the unknown motion parameters and feature depth in the presence of
measurement noise. The observer is derived from a differentiator based on the sliding-mode technique.

This paper, tackles the problem of motion and structure recovery for a class of system consisted on
a moving camera moving object. Naturally, motions are constructed in continuous time settings and
the motion parameters are assumed to be all time varying. The 3D position is estimated by using a set of
image data observed through a dynamic camera with varying focal length. The contributions of this paper are
first the analysis of the extent to which a scheme can be developed that is guaranteed to converge
by observing a single point and having an unknown object motion. In addition, for a more accurate treatment,
this paper extensively validates this approach for both static and dynamic object in the presence of
measurement noise.

The remainder of this paper is organized as follows: Necessary preliminaries and state dynamics
formulation are sought in Section 2. Section 3 presents the design of the Nonlinear Unknown Input Observer
NLUIO to estimate structure of a feature point where LMI-based formulation is developed to prove
asymptotic convergence. In Section 4 the simulation results are demonstrating the robustness of
the approach in the presence of measurement noise. Finally, concluding remarks are drawn in Section 5.

2. STATE DYNAMIC FORMULATION

In this section an overview of the perspective relationships and basic kinematic is given modeling
a camera which moves and observes a moving object. Most of the concepts can be found, for example,
in [21] and [26]. Consider a scenario in Figure 1 where the motion of a single moving object is viewed
by a moving camera undergoing rotation and translation. The equation of a feature point in the object can be
presented in the reference frame as

x=[o]x+v Q)

Where, the state vector x(t) =[x (t) X,(t) xa(t)]T e[ ? is defined rather as x=[X /Z,Y /Z,l/Z]T , With :

X,Y and Z are the unknown Euclidean coordinates of feature point in the camera’s inertial frame.
X, (t) being perpendicular to the camera’s image plane is the inverse of an unmeasurable focal distance.
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[@]e0 > represent a skew symmetric matrix made from the angular motion of the moving camera

o(t) =[@ () @1 @,)] and given by

0 -o o
[0]=] &, 0 - (2
-0, o 0

V(t) Is a relative camera linear velocity, such thatv =v, -v,, wherev, =[v, v, v,] is the linear

camera velocity andv, :[vp1 Vi, vaT is the feature point velocity. Note that velocitiesv, andv, are
bounded and continuously differentiable.

Figure 1. Camera object motion model

The next development aimed to design of NLUIO observers is to estimate the structure of moving
object with respect to a moving camera. The relative motion of the feature point can be given by substituting
w(t)andv(t) into (1) as follows

X, ==X X+, + X, @) = Xy, + (Vg = XVe) X =V Xg + XV, %
Xy =) — X508 + XX, + X, + (Ve — XV )Xy =V X, + XV,

¥ =g — (X0 = X)X +V,o X
y=[x %]

®3)

The equations above are composed of unmeasurable coordinate x, and unknown motion information
of the moving scene. To recuperate the 3D structure, the state vector should be estimated. That’s why

the unknown motion parameters of both camera and object are separated in the following. We define
Gl(u’ y) a —X X0+, + Xlzwz — X0y

G,u, )l - _Xga)] X X0, + X0, (3.2)

Fl(Xl u)ll (Vc1 - X1Vc3)X3
F, (x,u) 0 (v, =X,V 5) X%, (3.2)
F (6, U) 0 =V X — (X0, — X,@, ) X,

3-D structure from motion recovery of a moving object with noisy measurement (Zoubaida Mejri)



120 0 ISSN: 2088-8708

D, U =V Xs + XV 5%,
D, U =V )X + X,V 3%, (3.3)

2
D, U V3%,

With G,(u,y), F(xu), F(x,u), F(xu), d(x), d,(x) and dy(x) €] andu=[v, a)]T is

a measurable input constituted by the angular and the linear camera velocities. Consequently, the dynamics
in (3) can be rewritten in nonlinear system form as follows

{X= f(x,u)+g(y,u)+Hd(t) (4)

y =Cx

Where x(t) e " is the state of the normalized Euclidean coordinates, d(t) €0 “is an unknown input which
contains the point velocities, y(t)e0 " the output, g(y,u)el® and f(x,u):0°—0 are nonlinear

functions. H e 0™ is the unknown input matrix andC 0 ™" is the output matrix.
Remark 1 (Observability) [27]: The nonlinear system in (4) is not observable if all the linear and
angular velocities of the camera are null. That meansv, (t) =0and &(t) = 0. In addition, where the moving

camera and the feature point of the moving object follow the same ray, it means that
Ver =V — X1(Vc3 _Vp3) =V — Vo = X%, (Vcs _va) =0
In our case, the dynamic system in (4) can be rewritten as follows

y=Cx ®)

{)‘(:Ax+ f(x,u)+g(y,u)+Hd
Where f(x,u)=f(x,u)—Ax and Aed*®.

Note that the nonlinear function f(x,u)is a Lipschitz function [28] and X is the estimated state
vector such that for the same positive constant o independent of x

If(xu) = f(Ru)|<afx-%| (6)

When the camera is moving with faster velocities the Lipschitz constant« is large. As regards to
the nonlinear function f (x,u) , it is also a Lipschitz function so there exists a positive Lipschitz constant 2
such that

00w~ £ (Ru) - AGx- R < (@ + )~ 7| "

Given an observable perspective system, the design purpose is to estimate the coordinates x(t) from the linear

and the angular camera velocities.
The overall structure of the proposed method is shown in Figure 2. After the state dynamic
formulation, the NLUIO for the structure estimation will be achieved in the following section

Dyl';:“gc c:'::” m | Statedynamic | ¥ +. € Nonlinear | x Structure
; 'l!” | formulation -f Observer NL UIO T estimation

Figure 2. Structure of the proposed structure estimation method
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3. OBSERVER FORMULATION
In this section, an asymptotically converging NLUIO is constructed, the state of which follows
the state of the dynamics system given in (5) as closely as possible further in the presence of an unknown
input. For the rest of the study it is going to be assumed that the following conditions [29] are satisfied:
— H is assumed to be column rank matrix
— rank(CH) =rank(H) = q.
Where g the number of the unknown input.
With above conditions, the NLUIO for system represented by (5) can be shown as follows
{z’: Nz + Ly + Mf (%, u) + Mg(y,u) @

X=z-Ey

Where X(t) 1" is an estimate of x(t) andz(t)e(" is the state observer. MatricesN e 0 ™", Le0 ™",
Eecl™Pand M e0 ™ are determined to design the observer such that x(t) eventually tends to X(t) in the
face of unknown input. Observer gain matrices equations can be expressed in alternate form

N <0
M=1+EC
9)
N = MA-KC
L =K(l +CE)-MAE
Where K and E are gain matrices of suitable dimensions subsequently designed.
The error equation for system (5) and NLUIO (8) is defined as follows
e(t)=X(t)—x(t)=z—-Ey—-x=2z—-Mx (10)

By substituting the system output presented in (5) into the error equation in (10), the dynamic error
é(t) will have the following form

é(t) =2— (1 + EC)x (11)
Then substituting (5) and (8) into (11), the dynamic error can be expressed as follows

é=Ne+N(l + EC)x+LCx+M (f(&u)- f(x,u))— MAXx— MHd
é=Ne+(NM +LC - MA)x+ M (f(&,u)- f(x,u)) - MHd (12)

To obtain matrices, the following steps should be followed: First using (9) the equation
NM +LC — MA =0 is satisfied, and if the matrix E satisfies (13)

MD = (I +EC)D =0 (13)
Then the equation of the error dynamics in (12) yields to

6= Ne+M(f(Xu)- f(x,u)) (14)
The condition in (13) can be written as

ECH =-H (15)
After that, a solution exists for matrix E using generalized inverse as follows

E=-H(CH)" +Y (I, ~(CH)(CH)") (16)
E=F+YG
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WhereY 0 ™ an arbitrary matrix, F =—-H(CH)"andG = (I, —(CH)(CH)").

Finally, by substituting E into (9) the only unknowns are matrices K andY . The following section
presents a theorem that gives a sufficient condition for choosing them.

3.1. LMl sufficient condition
Theorem: The error e(t)will converge asymptotically to O for any initial value e(0) and the NLUIO

in (8) is exponentially stable such that|le(t)| < [e(t,)|exp(-At) , where 2 e 0 =, if there exists P a positive
symmetric matrix P > 0 satisfying the following condition [8]

NTP+PN +(a’ + B )PMMTP + 21 <0 a7
Proof: Let’s define the Lyapunov function candidatev :0 * — 0 as follows
V =e'Pe (18)

This Lyapunov function verify the inequality below
2o (Pl <V < 2, (P €l (19)

Where 4,;,and A4, are the minimum and the maximum Eigen values of P . By expanding the Lyapunov
candidate function of (18) along the error equation in (14) the following expression is obtained

V =e"(NTP+PN)e+2e"PM (f(X,u) - f(xu))

V =e" (NTP+PN)e+2e" PM (f (X,u)— f(x,u))—2e" PMA(X - X)

V <e" (NTP+PN)e-+2[e" PM | Afle] +2[e” PM [ F (R,u) — F (x,u))
V <e" (N"P+PN)e+2[e"PM | afe]+2[e"PM | Be]

then using the bellow inequality, whereax e [0 * and el ™.
2a|e"PM|[e] < & | PM" + €] And 28" PM [ < 5° " M + e

after simplification, V. may be reconstructed as

V <e"(N"P+PN)e+(a’+3%)e' PMM Pe+2¢e’e
V <e" (N"P+PN+(a? + f*)PMM TP + 2l )e

Define the matrix Q <0 by Q=N"P+PN +(a® + f*)PMM P + 21 , hence the time derivative vV
is presented as

V <e'Qe (20)

Using (19) and (20), the upper bound for V(t) can be written as V() <V(t,) exp(-At) where
)
ﬂ’min(P)
(D: ﬂ’max(P)/ﬂ’mln(P) .

and the upper bound for et) is expressed by|e(t)]|< ¢|e(t,)|exp(-At) where

The condition ramkrlnc_A ﬂ:n+q, Vs el leads to the fact that (MA,C) is observable.

In consequence, the matrix K can be obtained such that N = MA— KC is Hurwitz equality.
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Note that there is no systematic way to obtain the adaptable NLUIO parameters directly from
condition (10) and the expression in the theorem given by (17). This allows to reformulate them as LMIs.
Substituting N and M from (9) into (17) the following relationship can then be established

(MA-KC)P +P(MA-KC)+2I +(a’ + f*)P(1 + EC)(1 + EC)" P <0 (21)
Using the solution in (16), the inequality (21) becomes

A" (1+FC) P+P(1+FC)A+A'C'G'P] +RGCA-C'R’ —P,C 2
+21 +(* + *)(P+PFC+RGC)(P+PFC+PGC)" <0
Variables B =PY and P,=PK are given to make the resolution of the nonlinear matrix
inequalities easier. Exponential convergence to the object coordinates is achieved.

3.2. LMI formulation
For the NLUIO synthesis the following LMIs (23) have feasible solutions for P, K and Y invoking
the inequality in (22) transformed with schur’s complement.

[ XT ;/W}<O (23)
W -1

Where W =(P+PFC+PGC),

X =A"(I+FC) P+P(1+FC)A+A'C"G"R’ +PGCA-C'P ~P,C+2I

y=(a’+p%).

Using solution of LMI i.e. feasible values of Y = PP, and K = PP, observer matrices satisfying
the requisite conditions are found. The LMI feasibility can be solved using standard LMI approach [30].

4. RESULTS AND DISCUSSIONS

In contrast with previous research that assume noise-free measurements and demand prior
knowledge of the object and camera motion, the proposed method assume that the object velocity is
unknown. In the following, the performance of the NLUIO is validated through different numerical
simulations in the presence of measurement noise for both static and dynamic scenes. As the current
simulation results are restricted to tracking a single point feature. Two different object motion models are
considered, and the proposed NLUIO performance is evaluated for both cases. Whereas the usual speed of
the monocular camera is 30 frames/s, the NLUIO is valid for a continuous-time system. For the simulation

results, SIMULINK is used with sampling periodt, =10°s .The initial Euclidean coordinates of the object
feature are x(to):[5 2 1]T (m) . Since initial target feature point is not known at the NLUIO, thus
the system and observer start from different initial conditions. Initial condition for the observer is taken as
f(t,)=[-1 -05 -0.2] (m).

Matrices A,C and H are given by

0 -1
A=|1
0

o R N

100
C= AndD=[1 0 0]
010

0
0
Note, the third componentx, of the state, which is the unmeasurable distance between the camera

and the moving object. Clearly the estimation of the three-dimensional Euclidean coordinates can yield
the distance estimation. The comparison of RMS error values obtained with the proposed NLUIO with
different values of measurement noise was used to demonstrate the proposed method.

3-D structure from motion recovery of a moving object with noisy measurement (Zoubaida Mejri)
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3.1. Static scene
In this case, the object and the camera velocities parameters are chosen respectively by

1 0.5
v, = 2 (m/s), @=[0 0 —x/30] (radls) and v, =| O |(m/s)
0.2sin(zt/ 4) 0

Figure 3 shows the structure estimation of the object position in the single camera images. Figure 4
presents the error in the position estimation of the static object. Notice that the transient performance of

the proposed scheme is significantly less then 4 second. The RMS error values obtained by the proposed
NLUIO are given as follows

e; =0.1578, e, =0.0789 and e; = 0.0776.

Position X
N
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Error 1
o
(9] o
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o o
Error 2
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o
N
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©
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X
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>
S

Time(s) Time(s)

Figure 3. Time histories of the static object position Figure 4. Static object estimation error of the
in the single-camera images; solid line: estimated proposed method
and Dashed-dotted line: real state

Next, the measurements ofV, as shown in Figure 5 is assumed to be corrupted by adding a Band

Limited White Noise (BLWGN) with 5% of power, a correlation time of 0 and a covariance of infinity.
Figure 6 shows the structure estimation of the static object position in the single camera images in
the presence of measurement noise. The error in the position estimation of the static object is described in
Figure 7. Only the third component of RMS error is changed e; = 0.0816.

Vex

L L L L L
0 2 4 6 8 10 12 14 16 18 20
Time(s)

Figure 5. The measurments of the camera velocities in the presence of noise
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Figure 6. Time histories of the static object position in

the single-camera images in the presence of noisy

camera velocity; solid line: estimated and Dashed-dotted

line: real state

Error 1

Error 3
o
(

Time(s)

Figure 7. Static object estimation error of
the proposed method in the presence of noisy
camera velocity

In addition to the previous measurement noise of V., the proposed observer is validated for
robustness by the addition of a Band Limited White Noise (BLWGN) with 5% of power to the object
velocity. Figure 8 shows the structure estimation of the dynamic object coordinates with noisy object and
camera velocities and Figure 9 describes the error in the position estimation of the dynamic. The NLUIO then
yields uniformly asymptotically convergent estimates of the three-dimensional Euclidean coordinates of
the feature point. In the presence of noise in the motion parameters, the estimated state X, is corrupted

directly by the source of noise, therefore the third component of RMS error increases and becomes

e; =0.2048.

40

: : : : : : : : :
2OWM

Position X

Position Y
(&1
Error 2
S
o o

Position Z
o
L é ]

Time(s)

Figure 8. Time histories of the static object position in
the single-camera images in the presence of noisy
camera and object velocities; solid line: estimated and
Dashed-dotted line: real state

3.2. Dynamic scene

Error 1

L
0 2 4 6 8 10 12 14 16 18 20
2 T T T T T T
Co1f 1
[
i g M”\’W\W—V
1 1 . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20

Time(s)

Figure 9. Static object estimation error of
the proposed method in the presence of noisy
camera and object velocities

In this case, only the performance in the presence of measurement noise for both camera and object
velocity is studied. The same values of measurement noise are used. The object and the camera velocities are

chosen respectively as:

3-D structure from motion recovery of a moving object with noisy measurement (Zoubaida Mejri)
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1 0.2+cos(2t/4)
v, = 2 (m/s), @=[0 0 -z/30] (rad/s) andv, = 0 (m/s).
0.2sin(xt/4) 0

Figure 10 presents the structure estimation of the dynamic object position and Figure 11 shows
the error in the position estimation of the object with noisy camera velocity. These results demonstrate that
the proposed NLUIO based object structure estimation method can achieve satisfactory performance even
with camera velocities. This observer gives better estimates for a significant level of noise even changing
scene. RMS error values are given as follows:

el =0.1578, e2 = 0.0789 and e3 = 0.0816.

40 T T T T T T T T T 0.5
5 T 0
<
< -
Z20f : 2
kg -0.5
o 11 | | | | | .
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
10 T T T T T T T T T 0.5
> ~N
= sl ]
g° g o
8 of ] & /ﬁ
. A N NN SRS SN NN NN S 05

Error 3
o

Position Z

Time(s) Time(s)

Figure 10. Time histories of the dynamic object position Figure 11. Dynamic object estimation error of
in the presence of noisy camera velocity; solid line: the proposed method in the presence of noisy
estimated and Dashed-dotted line: real state camera velocity

Figure 12 shows the structure estimation of the dynamic object position with noisy object and
camera velocities and Figure 13 shows the structure estimation error of the dynamic object. Here again,
only the third component of RMS error are changed e; =0.0992. However, the presence of noise on both
camera and object velocities can significantly degrade the performance of NLUIO. Therefore, it can be seen
that the practical situation does require a more robust nonlinear observer for the considered problem.

o
=]

Position X
& '
!
Error 1
o
(3] o

Position Y
o
j
L
Error 2
o

Position Z
& o
Error 3
N o
}

Time(s) Time(s)

Figure 12. Time histories of the dynamic object Figure 13. Dynamic object estimation error of
position in the presence of noisy camera and object the proposed method in the presence of noisy
velocities; solid line: estimated and Dashed-dotted camera and object velocities

line: real state
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5. CONCLUSION

The robust NLUIO has been designed for a nonlinear camera-object system. Furthermore,
the stability of the error systems has been demonstrated to estimate structure from motion of a feature point.
The sufficient condition for existence of the designed nonlinear observer is derived. In order to facilitate
the NLUIO design, the obtained condition is formulated in terms of LMIs. This paper extensively validates
the proposed method for both static and dynamic scenes. Simulation results are promising and much has to be
done to assess the performance of the proposed method against measurement noise. An interesting direction
for future research is improving the proposed method to test it with experimental data and considering
a trajectory of a moving object along a plane.
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