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 In this paper, a two dimensional analytical model of the threshold voltage for 
HGD TFET structure has been proposed. We have also presented the analytical 

models for the tunneling width and the channel potential. The potential model 
is used to develop the physics based model of threshold voltage by exploring 
the transition between linear to exponential dependence of drain current on 
the gate bias. The proposed model depends on the drain voltage, gate dielectric 
near the source and drain, silicon film thickness, work function of gate metal 
and oxide thickness. The accuracy of the proposed model is verified by 
simulation results of 2-D ATLAS simulator. Due to the reduction of 
the equivalent oxide thickness, the coupling between the gate and the channel 
junction enhances which results in lower threshold voltage. Tunneling width 

becomes narrower at a given gate voltage for the optimum channel 
concentration of 1016/cm3. The higher concentration in the source (Ns) causes 
a steep bending in the conduction and valence bands compared to the lower 
concentration which results in smaller tunneling width at the source-channel 
interface. 
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1. INTRODUCTION  

As the conventional MOSFETs are scale to the sub-nanometer region, the close proximity between 

the source and drain reduces the gate control over channel which leads to several problems, such as high 

subthreshold swing (SS), high leakage current, and short channel effects (SCEs) [1-4]. Tunneling field-effect-

transistors (TFETs) are considered one of the attractive devices to replace the conventional MOSFETs in 

the sub-nanometer region [5, 6] due to its lower SS value (< 60 mV/decade) at room temperature.  

This advantage translates into low-voltage operation and results in low stand-by power dissipation which 
makes TFET more energy-efficient compared to the conventional MOSFETs [7-9]. Despite the better SS, there 

are two main drawbacks with TFETs; one is the low ON- current which degrades the performance and 

the other is the large ambipolar current [10]. 

Thus, to increase the ON-current and reduce the ambipolar current, researchers have introduced 

hetero-gate-dielectric (HGD) TFETs [11-15]. This device gives lower SS without scarifying the chip density. 

The HGD TFET has different dielectric material at the drain and the source side. The characteristics of HGD 

TFET device in terms of band bending channel potential, electric field, ON-current and SCEs experimentally 

and analytically have been studied extensively in the literature [16-19]. The threshold voltage of the TFET 

device is one of the most important electrical parameter. Researchers have extracted the value of threshold 
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voltage either using constant current method (at gate voltage for which ID=10-7 A) or transconductance change 

method [20, 21]. Since, the constant current method uses an arbitrary value; hence, it has no practical meaning. 

In the transconductance change method, the threshold voltage is defined as the gate voltage corresponding to 

maxima of the transconductance derivative. The main drawback of this method is that the plot has much 

numerical derivative noise which makes its impractical. Analytical models are helpful to design, simulate and 

provide a further insight on the working electrical characteristics of the device. Therefore, to understand 

the overall performance of a device compact analytical threshold voltage model of HGD TFET structure is 

needed but no analytical model is available in the literature for HGD TFET in best of our knowledge except 

few analytical models available for TFET [22-25].  

In this paper, compact analytical models for the channel potential, tunneling width and the threshold 
voltage of the HDG TFET have been derived using parabolic potential approximation method to solve  

the 2-D Poisson’s equation. The accuracy of the proposed models are validated by comparing the model results 

with the results available in the literature as well as 2-D ATLAS TCAD simulator results with a close 

agreement. It is observed that as the length of high-k region near the source reduces, the conduction band 

becomes shallow which makes band-to-band tunneling difficult and increases the threshold voltage.  

The structure of this paper is given as follows: Section 2 describes the analytical models for the channel 

potential, tunneling width and threshold voltage. Section 3 describes the simulation results whereas section 4 

concludes the paper. 

 

 

2. PROPOSED ANALYTICAL MODELS 
Figure 1 shows the schematic of the proposed n-channel HGD TFET and its coordinate system.  

The whole channel region is divided into two: High-k region near source to control the tunnelling current 

(relative permittivity of kr1 and oxide thickness, tox1=3 nm), Low-k region near drain (relative permittivity of 

kr2 and oxide thickness, tox2=3 nm) to minimize the ambipolar current. The doping concentration of  

p+ source region is 1020/cm3, channel region is 1016/cm3 and drain region n+ is 1018/cm3. L1 is the length of 

high-k region and (L-L1) is length of low-k region respectively where L is total gate length. The quantum 

confinement effect in the analysis is ignored because the film thickness (𝑡𝑠𝑖) is greater than 3 nm. Neglecting 

the fixed carrier oxide change, the 2-D Poisson equation for n-channel HGD TFET in High-k and Low-k (SiO2) 

regions are given as [18]. 
 
 

 
 

Figure 1. Schematic of the n-channel HGD TFET device  
 
 

𝑑2𝜑𝑗(𝑥,𝑦)

𝑑𝑥2
+ 

𝑑2𝜑𝑗(𝑥,𝑦)

𝑑𝑦2
=  

−𝑞𝑁𝑐𝑗

𝜖𝑠𝑖
 (1) 

 

Where, the subscript j takes value 1 and 2 for High-k and Low-k regions respectively, 𝜑𝑗(𝑥,𝑦) is the 2-D 

electrostatic potential, 𝜖𝑠𝑖 is the dielectric constant of the silicon, 𝑁𝑐𝑗 = 𝑁𝑐  is the channel doping concentration. 

Assuming, a parabolic potential profile along the film thickness (i.e. along y-direction), the 2-D electrostatic 

potential in the channel can be expressed as [18]: 
 

𝜑𝑗(𝑥,𝑦) =  𝑎0 +  𝑎𝑗1𝑦 + 𝑎𝑗2𝑦2 (2) 

 

Where, 𝑎0𝑗 , 𝑎𝑗1, aj2 are constants and function of x-only. These constants can be determined by using 

the following Boundary Conditions (BCs): 
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𝑑2𝜑𝑗(𝑥,𝑦)

𝑑𝑦2
|

𝑦=0
= 0, 𝜑𝑗(𝑥,𝑦)|

𝑦=
𝑡𝑠𝑖
2

= 𝜙𝑠𝑗(𝑥), 
𝑑2𝜑𝑗(𝑥,𝑦)

𝑑𝑦2
|

𝑦=
𝑡𝑠𝑖
2

= −
𝐶𝑜𝑥1

𝜖𝑠𝑖
[𝑉′

𝐺𝑆𝑓𝑗
+ 𝜙𝑆𝑗(𝑥)] 

 

Where 𝜙𝑆𝑗(𝑥) is surface potential, 𝑉′
𝐺𝑆𝑓𝑗

= 𝑉𝐺𝑆 − 𝑉𝑓𝑏. 𝑉𝑓𝑏  is the flat-band voltage which is given as 

 

𝑉𝑓𝑏 = 𝜙𝑚 − [𝑥 +
𝐸𝑔

2
+

𝑘𝑇

𝑞
ln(

𝑁𝑐

𝑛𝑖
)] (3) 

 

𝜙𝑚   is the metal work function, 𝑥 is the silicon electron affinity and 𝐸𝑔 is forbidden gap of Si. Using,  

these Boundary conditions, we get  
 

𝑎0𝑗 = 𝜙𝑠𝑗(𝑥) − 𝑎𝑗2
𝑡𝑠𝑖

4

2
 , and 𝑎𝑗2 = −

𝐶𝑜𝑥𝑗

𝜖𝑠𝑖𝑡𝑠𝑖
(𝑉′

𝐺𝑆𝑓 − 𝜙𝑆𝑗(𝑥)) (4) 

 

Substituting (2) into (1), the surface potential 𝜙𝑆𝑗(𝑥), in the respective region, must satisfy the following 2-D 

scaling equation 
 

𝑑2𝜙𝑠𝑗(𝑥)

𝑑𝑥2
−

1

𝜆2
𝑗

𝜙𝑆𝑗(𝑥) +
𝜎𝑗

𝜆2
𝑗

= 0 (5) 

 

Where 𝜆𝑗 = √
𝜖𝑠𝑖𝑡𝑠𝑖

2𝐶𝑜𝑥𝑗
 is known as characterise length or scaling length, Coxj=(εoxj/toxj), 𝜎𝑗  is long channel surface 

potential and given as  
 

𝜎𝑗 = −
𝑞𝑁𝑐

𝜖𝑠𝑖

𝜆𝑗
2 − 𝑉′ 𝐺𝑆𝑓 

 

The general solution of the differential equation (5) is expressed as: 
 

𝜙𝑆𝑗(𝑥) = 𝐴𝑗𝑒
𝑥
𝜆𝑗 + 𝐵𝑗𝑒

−
𝑥
𝜆𝑗 + 𝜎𝑗  (6) 

 

Where 𝐴𝑗 and 𝐵𝑗are constant and determined using the BCs: 
 

𝜙𝑆𝑗(𝑥=0)|
𝑠𝑜𝑢𝑟𝑐𝑒 𝑒𝑛𝑑

= 𝑉𝑏𝑖1  ,𝜙𝑆𝑗(𝑥=𝐿)|
𝑑𝑟𝑎𝑖𝑛

= 𝑉𝑏𝑖2 + 𝑉𝑑𝑠 

 
𝑑𝜑𝑠1

𝑑𝑥
|

𝑥=𝐿1
=

𝑑𝜑𝑠2

𝑑𝑥
|

𝑥=𝐿1
  , and 𝜙𝑆1(𝑥=𝐿1) = 𝜙𝑆2(𝑥=𝐿1) (7) 

 

Where, 𝑉𝑏𝑖2 =
𝑘𝑇

𝑞
ln(

𝑁𝑑

𝑛𝑖
), 𝑉𝑏𝑖1 = −

𝑘𝑇

𝑞
ln(

𝑁𝑠

𝑛𝑖
).  

Using, these four Boundary Conditions, we get;  
 

𝐴2 =
𝑞11−𝐵2

𝛾
, 𝐵2 =

𝑞12

𝛾𝑒
−

𝐿
𝜆2−𝛿𝑒

𝐿
𝜆2

, 𝐴1 = 𝛼𝐴2 + 𝛽𝐵2 + 𝑅11𝑒−
𝐿

𝜆1  and  𝐵1 = 𝑉𝑏𝑖1 − 𝜎1 − 𝐴1 

 

Where, 𝑅11 = √
𝜎1−𝜎2

2
 , 𝛼 =

1

2
𝜆1 [

1

𝜆1
−

1

𝜆2
] 𝑒

𝐿1(
1

𝜆2
−

1

𝜆1
)
 , 𝛽 =

1

2
𝜆1 [

1

𝜆1
+

1

𝜆2
] 𝑒

−𝐿1(
1

𝜆1
+

1

𝜆2
)
 , 𝑞11 = 𝑅11𝑒

−
2𝐿1
𝜆1 + 𝜎1 (𝑒

𝐿1
𝜆1 −

1

2
) +

𝜎2

2
− 𝑉𝑏𝑖1𝑒

−
𝐿1
𝜆1 , 𝑞12 = (𝑉𝑏𝑖2 + 𝑉𝑑𝑠 − 𝜎2)𝛾 − 𝑞11𝑒

𝐿

𝜆2 𝛾 = 2𝛼𝑆𝑖𝑛ℎ (
𝐿1

𝜆1
) − 𝑒

𝐿1
𝜆1 , 𝛿 = 2𝛽𝑆𝑖𝑛ℎ (

𝐿1

𝜆1
) − 𝑒

−
𝐿1
𝜆1  

 

Therefore, electrostatic potential in the respective region is given as;  
 

𝜑𝑗(𝑥,𝑦) = 𝜙𝑠𝑗 [1 +
𝐶𝑜𝑥𝑗

𝜖𝑠𝑖𝑡𝑠𝑖

(
𝑡𝑠𝑖

2

4
− 𝑦2)] +

𝐶𝑜𝑥𝑗

𝜖𝑠𝑖𝑡𝑠𝑖

𝑉𝑔𝑠𝑓 (
𝑡𝑠𝑖

2

4
− 𝑦2) (8) 

 

At the interface, 𝑦 =
𝑡𝑠𝑖

2
  (8) reduces to 𝜑𝑗 (𝑥,

𝑡𝑠𝑖

2
) = 𝜙𝑠𝑗(𝑥) . The centre potential is obtained for y=0 in (8).  

From analysis it is observed that surface potential is smaller than the centre potential particularly  

at the source and drain ends respectively. Tunnelling barrier width (𝑤𝑏) is an important parameter to determine 

the threshold voltage of the TFET. Tunnelling width exhibits a transition from strong dependence to weak 

dependence on the gate voltage at threshold voltage. 𝑤𝑏 is the lateral distance between the source channel 
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interface (𝑥 = 0) and the point in the channel when surface potential changes by (
𝐸𝑔

𝑞
). Neglecting source/drain 

depletion region due to heavy doping, the tunnelling width is obtained after solving eqn. (8) and given as;  

 

𝑤𝑏

𝜆1

= ln [
ᵹ1

2
{1 + √1 −

4ᵹ

ᵹ1
2 }] (9) 

 

Where, ᵹ = (
𝐵1

𝐴1
) and ᵹ1 =

(𝐴1+𝐵1−
𝐸𝑞

𝑞
)

𝐴1
 

The physical definition of threshold voltage Vth for TFETs is the gate voltage which indicates 

the transition between the strong control and weak control of the tunneling energy barrier width at the source 

tunnel junction [20]. Tunneling barrier width exhibits a transition from strong dependence to weak dependence 

on gate voltage at gate threshold voltage. At this inflection point, x = 𝑤𝑏 and the surface potential reaches to 

value of 𝑉𝑑𝑠 +
𝑘𝑇

𝑞
ln

𝑁𝑑

𝑁𝑐
 [23]. Substituting 𝑥 =̃ 𝑤𝑏 in eqn. (8) and equating it to value of 

𝑘𝑇

𝑞
ln

𝑁𝑑

𝑁𝑐
, the analytical 

expression for the threshold voltage is;  

 

Vth =  
h11 − √h11

2 − L ∗ h12

2
 (10) 

 

Where,  ℎ11 =
(

𝐸𝑞

𝑞
)+ᵹ11ᵹ14+ᵹ12ᵹ13−(𝛼11ᵹ12+ᵹ11+ᵹ11ᵹ14−ᵹ13)

ᵹ12+ᵹ14−ᵹ12ᵹ14
,  ℎ12 =

𝛼11ᵹ11+𝛼11ᵹ13−𝛼11(
𝐸𝑞

𝑞
)−ᵹ11ᵹ13

ᵹ12+ᵹ14−ᵹ12ᵹ14
 

 

𝛼11 = 𝑉𝑑𝑠 +
𝑘𝑇

𝑞
ln

𝑁𝑑

𝑁𝑐
−

𝑞𝑁𝑐

𝜖𝑠𝑖
𝜆1

2 − 𝑉𝑓𝑏 , ᵹ11 = 𝛼𝜉13 + 𝛽𝜉11 + 𝑅11𝑒
−

𝐿1
𝜆1 , ᵹ12 =  𝛽𝜉12 − 𝛼𝜉14, ᵹ13 = 𝑉𝑏𝑖1 −

𝑞𝑁𝑐

𝜖𝑠𝑖
𝜆1

2 − 𝑉𝑓𝑏 −

ᵹ11, ᵹ14 = (1 − ᵹ12), 𝜉11 = (
𝜂12

𝜂14
) , 𝜉12 = (

𝜂13

𝜂14
), 𝜉11 =

𝜂11−𝜉11𝛿

𝛾
, 𝜉11 = (

𝑒
−

𝐿1
𝜆1+𝜉12𝛿

𝛾
), 𝜂11 = (𝑅11𝑒

−
2𝐿1
𝜆1 − 𝑉𝑏𝑖1𝑒

−
𝐿1
𝜆1) +

(
𝑞𝑁𝑐

𝜖𝑠𝑖
𝜆1

2 − 𝑉𝑓𝑏) (𝑒
−

𝐿1
𝜆1 −

1

2
) +

1

2
(

𝑞𝑁𝑐

𝜖𝑠𝑖
𝜆1

2 + 𝑉𝑓𝑏), 𝜂12 = (𝑉𝑏𝑖2 + 𝑉𝑑𝑠)𝛾 − (
𝑞𝑁𝑐

𝜖𝑠𝑖
𝜆2

2 + 𝑉𝑓𝑏) 𝛾 − 𝜂11, 𝜂13 = 𝛾 − 𝑒
−

𝐿1
𝜆1, 𝜂14 =

𝛾𝑒
−

𝐿

𝜆2 − 𝛿𝑒
𝐿

𝜆2  

 

 

3. RESULTS AND ANALYSIS  

The proposed analytical models are simulated for the following values; L=50 nm, tox1=tox2=3 nm, 

tsi=10 nm, Vds=0.7 V, Ns=1020 /cm3, Nd=1018 /cm3, Nc=1016 /cm3 unless and until specified. As seen from 

Figure 2, a sharp band bending occurs for tox1=3 nm and tox2=5 nm due to reduction of equivalent oxide 

thickness which enhances the coupling between the gate and the channel junction. 
 

 

 
 

Figure 2. Band diagram for different combination of oxide thickness in two regions 

 

 
The surface potential mainly varies within 10 nm from source-channel interface that is entirely in 

high-k region whereas away from tunneling space (mainly in low-k region) it remains almost constant which 

reflects that tunneling is only controlled by high-k dielectric. This finding suggests that the optimum tunneling 

length is set to be at 10 nm for higher ON current. Figure 3(a) predicts that the surface potential takes larger 

value when the channel concentration is 1016/ cm3. The effect of Nc on surface potential mainly occurs in high-
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k region for x≤10 nm. This result gives the optimum value of the channel doping in the HGD TFET device. 

From Figure 3(b) it is observed that electric field takes larger value when high-k region is occupied by higher 

dielectric material and the lateral electric field reduces along the channel and takes minimum value in 

the middle of the channel. The stronger electric field near the source-channel interface enhances tunneling 

probability whereas lower electric field near drain lowers the ambipolar current. The comparison results of 

the tunneling width of our proposed model with the 2-D Silvaco simulator and ref [16] results are shown in 

Figure 4. A slight difference between proposed and ref [16] results is due to structural difference whereas 

a good agreement with the Silavco 2-D simulation results is observed. For the fair comparison, the simulation 
is performed for the same value of the parameters as reported in the ref. [16]. The surface potential close to 

the source end becomes more abrupt due to increased doping concentration ratio between the source and drain 

regions, which results in improved electrical characteristics and narrow tunneling width which results in lower 

threshold voltage irrespective of the channel length Figure 5(a). As the length of high-κ region reduces, 

conduction band becomes shallow which makes band-to-band tunneling difficult and increases the threshold 

voltage Figure 5(b). Table 1 gives the comparison results of the proposed threshold voltage model with ref [13] 

results. The two results show close proximity with slight difference due to dual material gate in ref. [13]. 

For fair comparison we have taken L=50 nm, L1=8 nm, kr2=21, kr1=3.9, metal work function 4.0 eV and 

4.4 eV as suggested in ref. [13]. Increased relative dielectric constant in high-κ region results in stronger control 

of gate over the channel which gives larger carrier tunnel from source to channel and hence lowers the threshold 

voltage irrespective of the metal type Figure 5(c). This reduction is more for lower work function gate metal 

due to larger band overlap which reduces the tunneling width and increases the tunneling probability at 
the source side. Figure 5(d) shows the comparison between proposed model results and 2-D ATLAS simulator 

results with an excellent matching for the higher dielectric gate material due to controlled leakage current. 

Figure 5(e), shows an excellent matching between two results for Vds=0 V due to absence of DIBL effect 

whereas appreciable difference is observed for L≤20 nm and Vds=0.7 V due to the negligence of SCEs in 

proposed model. 
 

 

  
  

(a) (b) 

  

Figure 3. (a) Surface potential along channel for different channel concentration, 

(b) Variation of electric field along channel for different relative permittivity combination 
 

 

 
 

Figure 4. Comparison of tunneling width for proposed model, Silvaco 2-D simulator and ref. [16] results 
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(a) 

 

(b) 

 

  
 

(c) 

 

 

(d) 

 

 
 

(e) 

 
Figure 5. (a) Threshold voltage of HGD TFET device versus channel length for different concentrations 

combination in the source and drain regions, (b) Threshold voltage variation with tox for different 

tunneling length (L1), (c) Threshold voltage variation with relative permittivity in region I for two gate 

metals, (d) Comparison of threshold voltage with proposed model and 2-D ATLAS simulator results, 

(e) Comparison of threshold voltage with proposed and 2-D ATLAS simulator  

 

 

Table 1. Threshold Voltage comparison with ref. [13] results 
Φm1 (eV) Φm2 (eV) Threshold voltage (V) 

Proposed Ref [13 

4.0 4.0 0.349 0.34 

4.4 4.4 1.10 0.74 
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4. CONCLUSION  

A two dimensional analytical model of threshold voltage has been proposed using parabolic 

approximation. The proposed model shows a good agreement with the 2-D ATLAS simulator results. 

As the gate voltage increases, the tunneling width reduces which lowers the threshold voltage.  

Threshold voltage of the device also reduces as the dielectric constant of the tunnel space region increases and 

the length of high-k region increases.  
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