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 The conventional Hotelling’s 
2T  charts are evidently inefficient as it has 

resulted in disorganized data with outliers, and therefore, this study proposed 

the application of a novel alternative robust Hotelling’s 
2T  charts approach. 

For the robust scale estimator Sn, this approach encompasses the use of  

the Hodges-Lehmann vector and the covariance matrix in place of  

the arithmetic mean vector and the covariance matrix, respectively.  

The proposed chart was examined performance wise. For the purpose, 

simulated bivariate bootstrap datasets were used in two conditions, namely 

independent variables and dependent variables. Then, assessment was made 

to the modified chart in terms of its robustness. For the purpose,  

the likelihood of outliers’ detection and false alarms were computed. From 

the outcomes from the computations made, the proposed charts demonstrated 

superiority over the conventional ones for all the cases tested. 
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1. INTRODUCTION  

In manufacturing, Statistical control charts have been known as the most tool for monitoring  

the process of production. In monitoring the characteristics of product quality, in the beginning,  

the employment of control charts was facilitated. Considering the existence of various characteristics of 

quality in product quality determination, this approach is insufficient in terms of practicality. Nonetheless, 

multivariate control charts (MVCC) with the capacity in identifying the changes in covariance matrix Σ and 

the mean vector μ  in order to achieve optimal performance of the product [1, 2].  

The Hotelling’s 2T  chart is among the most common MVCC methods. [3, 4]. With the capacity in 

detecting multiple outliers, mean shifts and deviations in the dispersal of control distribution [5]. The statistic 
2

iT  employs the estimators x  and S  which are directly impacted by the presence of outliers in the case of 

false alarms, resulting in failure in imposing control in the processes of production. The increase in 

the complexity of the manufacturing of the products in addition to their characteristics that generally contain 

outliers, contribute to the failure of the chart in performing its designated task. 

In order to overcome the impact of outliers on the formed control chart, the application of robust 

estimators would be an appropriate solution. These robust estimators should be employed in place of  

the mean vector x  and the variance covariance matrix S  as in the conventional Hotelling’s 2T  chart. 
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Accordingly, a chart is considered robust if it could produce strong reaction to the changes to the production 

process, and this reaction is compelled by the controlled false alarms and the probabilities values of detection 

outliers are large enough and tends to 100%. 

The bootstrap method encompasses a nonparametric technique due to its independence from  

the presumptions of data parametric distribution. Nonetheless, in the monitoring of a single process, this 

technique can generate single variable control charts. In this regard, Phaladiganon et al. in [6] mentioned the 

possibility in integrating multivariate control charts with the charts of the bootstrap technique that have 

proven their effectiveness. 

Considering that it is possible to gather sample that is small in size, violation to the normality 

assumption distribution is possible. Besides that, in general, estimation to the in-control state of the control 

charts has to be carried out, but this will have adverse impact on the performance of the control chart.  

As indicated in Mostajeran et al. in [7], non-parametric bootstrap control charts are appropriate for  

an unidentified distribution or when making estimation on the process parameters from Phase I dataset or 

when it is impractical to gather sample of large size. 

For observation purpose, control charts generally require normal distribution. Non-parametric 

control charts including charts of sign control are appropriate for non-normal distributions case. For this 

situation, the parameters of control chart could be computed with the use of the algorithm of non-parametric 

bootstrap. In the situation where assumptions of distribution are not required, original observations could  

be employed. 

Jones and William in [8] are among those who have applied bootstrap in the formation of the control 

charts. In their study, bootstrap was described as a statistical technique which employs power of computing 

in place of the conventional parametric assumption. The proposed control chart was presented alongside  

the extensive results of computer simulation, and each control chart was assessed performance wise 

according to the average length of run. 

Niaki and Abbasi in [9], a novel bootstrap-based methodology for deriving the limits of control on 

the attributes was proposed and formulated. The use of the methodology allows the simultaneous creation of 

confidence intervals on the attributes. The performance of the proposed method was then examined,  

in accordance with the in-control and out-of-control average run length criteria. The authors also made  

a simulation based comparison with a comparable work performed by Bonferroni and Sidak, and the results 

of the proposed method appeared to be better. Lastly for attributes, the authors made comparison between  

the bootstrap method and the T2 control chart.  

The application of a bootstrap-based multivariate T2 control chart was demonstrated in Phaladiganon 

et al. in [6]. This chart can competently monitor a process in data distribution that is non-normal or unknown. 

With the application of a simulation study, the authors evaluated the performance of the control chart 

proposed in their study. The kernel density estimation (KDE)-based T2 control chart and the conventional 

Hotelling's T2 control chart were compared in terms of performance, and from the results of the simulation 

study, the proposed method demonstrated better performance as opposed to the conventional T2 control chart. 

As opposed to the KDE-based T 2 control chart, the proposed method shows comparable performance. 

Gandy and Kvaløy in [10] proposed a method grounded upon the bootstrapping concept, where  

the data were bootstrapped and then employed in the estimation of the in-control state. The use of this 

method appears to be appropriate for diverse types of control charts. It is also applicable for charts that are 

based upon regression models. For non-parametric bootstrap, this method is deemed as robust. The author 

employed large sample properties of the adjustment. The advantages of using the proposed approach were 

demonstrated using a simulation study. 

Edopka and Ogbeide in [11], the authors employed a non-parametric approach in the assessment of 

the cumulative sum (Cusum) and the exponentially Weighted Moving Average (EWMA) control limits for 

certain dataset. In the determination of the control limits, the authors employed the underlying dataset 

conditional distribution. In evaluating the control limits and also in identifying the in-control and out of 

control of the distribution, the authors applied the method of bootstrap. Here, there was no rigid assumption, 

for instance, the normality condition for the statistical process control to be dispersed.  

In Mostajeran et al. [1], the authors demonstrated the application of a new bootstrap algorithm in  

the construction of Hotelling’s T2 control chart. In assessing the performance of the proposed method,  

the authors employed a simulation study. Then, the authors made a comparison between the results of  

the proposed method and those obtained from the conventional Hotelling’s T2 control chart and also  

the results of bootstrap reported by Phaladiganon with the application of in-control and out-of-control 

average run lengths respectively represented by ARL0 and ARL1,. 

In Mostajeran et al. [7], the authors presented the use of non‐parametric bootstrap multivariate 

control charts |S|, W, and G, and this method is grounded upon the use of bootstrapped data in the estimation 

of the in‐control state. In this study, the authors succeeded in obtaining satisfactory performance of bootstrap 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Gandy%2C+Axel
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Kval%C3%B8y%2C+Jan+Terje
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control charts. Comparison was also made between the performance of the proposed charts and that of  

the Shewhart‐type control charts. 

Based on Hotelling’s T2 statistic, Mostajeran et al. in [12] demonstrated the application of  

a bootstrap multivariate control chart and compared it with a Hotelling’s T2 parametric multivariate control 

chart, a multivariate sign control chart, and a multivariate Wilcoxon control chart. A simulation study was 

employed for the purpose. 

This study attempts to improve the performance of Hotelling’s 2T chart and therefore, a new 

method is proposed. In particular, modification on the sensitivities towards outliers is to be carried out. 

Further, in the construction of the new methodology, this study applies the robust estimator of location as 

follows: the Hodges-Lehmann estimator and the covariance matrix of the robust scale estimator 𝑺𝒏. 

Meanwhile, in resampling the data from the normally distributed data, the method of bootstrap is employed.  

Accordingly, the concept of Hodges-Lehmann estimator and the properties of the scale estimator of 

𝑺𝒏 will be highlighted in the next section (Section 2). This is followed by the description of the construction 

of the Hotelling’s 2T charts. Then, the ensuing section (Section 4) will describe the findings of simulation in 

a summary form. The final section concludes the paper. 

 

 

2. ROBUST LOCATION AND SCALE ESTIMATORS  

This paper demonstrates the application of a novel robust location estimator and three robust scale 

estimators. Aside from allowing easy implementation in the calculation and construction of the Hotelling’s 
2T  chart, these methods appear to be appropriate technically when dealing with multivariate data.  

The following section highlights the properties of each estimator. 

 

2.1.  Robust location estimator: hodges-lehmann estimator 

The location estimation for a sample containing n observations was first introduced in Hodges and 

Lehmann (1963). This estimator takes a median of the averages of the )1(
2

1 nn  potential observation 

pairs. As provided by Brown and Kildea (1978), the estimator is defined as follows: 

“A simple Hodges-Lehmann estimator for that jj YX   for j = 1, 2,…, n where jY  are i.i.d random 

vector’s symmetric about zero, with density function G and continuous bounded density g. The H-L 

estimator of θ is the median of 











nji
XX ji

,1,
2

 and an asymptotically equivalent estimator n̂  is  

the median of











nji
XX ji

,1,
2

.”  

The significance of properties of this location estimator has 29% breakdown, symmetric about  

the parameter θ, about 0.955 asymptotic relative efficiency and it requires O ( 2n ) operation at minimum. 

 

2.2.  Robust scale estimator: nS  

In Rousseeuw and Croux [13], the estimator nS  for the sample nx,...,x1  was defined as follows: 

 

|}|{ jijin xxmedmedcS   for jinji  ;,...,2,1,  (1) 

 

Where: 1926.1c  denotes a correction factor in making Sn unbiased for predetermined samples. For Sn, its 

primary properties are as follows: carries 50% maximum breakdown, 58% efficient at normal distribution, 

limited function of influence, and encompasses an affine equivariance estimator. Accordingly, the work by 

Rousseeuw and Croux [13] presented more specifics regarding Sn. 

 

 

3. CONSTRUCTION OF THE ROBUST HOTELLING’S 
2T  CHARTS 

The proposed robust Hotelling’s 
2T  charts have simple construction. The location measure of 

Hodges-Lehmann estimator is employed in place of the parametric mean vector, while the variance 

covariance matrices, that is, nS  is employed in place of the variance covariance matrix S . 
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Given ipi xx ,...,1  for ni ,..,2,1  entails an n x p matrix where n denotes the size of the bootstrap 

individual observations, while p =2 denotes the amount of quality characteristics. Accordingly,  

the calculation of the Hotelling’s 
2T  charts follows the steps below: 

1. For each column within the n x p matrix, compute the Hodges-Lehmann estimator. 

2. Then, the robust variance
 
covariance matrices are computed, follows the steps as described below: 

Considering the symmetric characteristic of variance covariance matrix of 𝑆𝑛, the main diagonal 

encompasses the matrix of sample variance covariance signified by 𝑆𝑗𝑗 = 𝑆𝑗
2 where j=1 and 2, as 

demonstrated in [14-18]. For other elements of this matrix, they encompass the covariance between each 

pair of two variables including gj XX ,
 
whose computation follows the steps below:  

a. Calculate  𝑆𝑛(𝑋𝑗), 𝑆𝑛(𝑋𝑔), 𝑗 = 1,2; 𝑔 = 1,2  𝑗 ≠ 𝑔 

b. For ranks )X,(X gjcorr  between jX  and gX , calculate the spearman correlation [19]). 

c. For the scale estimator nS , repeat steps (i-ii). 

The computation of sample covariance between the variables jX  and gX  for 2× 2 variance
 

covariance matrix of  𝑆𝑛 is based on the formulas shown below: 

 

),( gjn XXS = )( jn XS )( gn XS )X,(X gjcorr  (2) 

 

3.  Finally, the new charts of the proposed Hotelling 𝑇2 are formed using the equation below: 

 

)()()(
1

n_

2 HLXSHLXXT in

T

iiSHL


   (3) 

 

Evaluated was made to the proposed robust Hotelling’s 
2T chart with the application of simulated 

datasets in 5000 replications. As for the simulation, it follows the settings as follows: 

a. The general likelihood of false alarm is established at α = 0.05,  

b. The number of variables encompasses p = 2, and, 

c. The sizes of sample n = 20, 30, 40, 50 and 100.  

Meanwhile, the chart is formed and assessed in two phases as follows:  

a. Phase I produces 5000 datasets from Np(0, Ip) in two circumstances, that is, Case A includes 

independent variables, while Case B contains dependent variables. Further, the estimators of Hodges 

and Lehmann (HL) and the robust scale covariance matrix for  𝑆𝑛 for the conventional and robust charts 

are calculated.  

b. Phase II includes the creation of fresh observation for each dataset in order to allow the performance  

of assessment.  

The performances of the new robust chart is evaluated concerning its false alarms and its likelihood 

of detecting outliers, and such performances are equivalent to the fraction of the amount of values of robust 

statistics for new observations which are greater than the upper control limit (UCL) to the amount  

of replications (5000). For all processes of computation, they are executed with MATLAB version 2015. 

 

 

4. RESULTS  

The outcomes generated by the conventional Hotelling’s 
2T and the modified robust  

Hotelling’s 
2T charts, correspondingly labeled as 𝑇�̅�−𝑆

2  and  𝑇𝐻𝐿−𝑆𝑛
2  are shown in Tables 1-2. For Case A 

which contains independent variables are, the results demonstrate the superiority of performance of  

the modified Hotelling’s 
2T  chart over the traditional Hotelling’s 

2T  chart particularly with respect to false 

alarms. Additionally, according to the outliers’ detection, comparable result is identifiable. In this regard,  

the modified Hotelling’s 
2T  chart fully supersedes the conventional Hotelling’s 

2T .  
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Table 1. False alarm rates and outliers’ detecting probability for the conventional and the modified 

hotelling‘s T2control charts, where: p=2 and α=0.05, ε denotes the percentage of outliers and several values 

of non-centrality parameters 3 and 5 in case A (case with independent variables) 
 n 𝜀 µ 𝑇�̅�−𝑆

2  𝑇𝐻𝐿−𝑠𝑛
2  

Case(A) 20 0 (0,0) (3.4) (3.04) 

  0.1 (3,3) 
(2.54) 

49.7 

(6.18) 

70 

   (5,5) 
(3.48) 

94 

(5.02) 

98.5 

  0.2 (3,3) 
(2.74) 

4.22 

(4.14) 

40.74 

   (5,5) 
(1.42) 

29.66 

(3.06) 

84.48 

 30 0 (0,0) (2.16) (5.78) 

  0.1 (3,3) 
(1.66) 

42.54 

(2.64) 

87.8 

   (5,5) 
(2.04) 

92.02 

(2.6) 

99.96 

  0.2 (3,3) 
(0.5) 

2.08 

(0.94) 

65.5 

   (5,5) 
(0.26) 

15.24 

(0.78) 

96 

 40 0 (0,0) (2.84) (1.86) 

  0.1 (3,3) 
(1.66) 

40.62 

(0.46) 

57.8 

   (5,5) 
(1.02) 

97.3 

(0.46) 

98.84 

  0.2 (3,3) 
(0.52) 

0.82 

(0.18) 

28.9 

   (5,5) 
(0.12) 

16.1 

(0.80) 

84.16 

 50 0 (0,0) (5.26) (7.84) 

  0.1 (3,3) 
(1.94) 

60.06 

(2.26) 

86.26 

   (5,5) 
1.02 

99.6 

2.18 

99.98 

  0.2 (3,3) 
(0.54) 

4.86 

(1.04) 

67.24 

   (5,5) 
(0.12) 

54.7 

0.9 

98.1 

 100 0 (0,0) (12.06) (16.44) 

  0.1 (3,3) 
(1.04) 

76.4 

(8.7) 

96.48 

   (5,5) 
(0.14) 

100 

(8.58) 

100 

  0.2 (3,3) 
(2.88) 

4.3 

(4.74) 

80.8 

   (5,5) 
(0.08) 

87.72 

(4.56) 

99.86 

 

 

As also can be observed, the modified Hotelling’s 
2T chart shows improved rates of false alarms 

with the increase of the sizes of samples (n). Furthermore, for the alternative chart, the probabilities rates for 

outliers’ detection increase with the increase of sample size. However, for the control chart of the modified 

Hotelling‘s 
2T , the changes of the rates values of the outliers’ detection probability appears to be smaller as 

opposed to the changes demonstrated by the charts of the conventional Hotelling‘s 
2T especially when  

the outliers’ percentage increases from 0.1 to 0.2 notwithstanding the shifted mean and the size of sample.  

As can be construed from the generated result, the modified chart is more robust in reacting to changes in  

the process of production. 

For Case B that contains dependent variables as shown in Table 2, the rates of false alarms and 

those of outliers’ detection of the robust charts appear to be superior compared to the exact rates in  

the conventional chart when there are outliers notwithstanding the n, 𝜀 and 𝜇 . Notably, the false alarms rates 

decreases with the increase of the sample size (n). Also, the probability detection rates appear to be 

increasing nearly 100%. 
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Table 2. Rates of false alarm and probability of detecting outliers for the traditional and the modified 

hotelling‘s T2control charts when p=2 and α=0.05, ε is the percentage of outliers and several values  

of non-centrality parameters 3 and 5 in case of dependent variables case (B) 
 n 𝜀 µ 𝑇�̅�−𝑆

2  𝑇𝐻𝐿−𝑠𝑛
2  

Case(B) 20 0 (0,0) (0.08) (22.2) 

  0.1 (5,5) 
(0.5) 

88 

(8.26) 

98.78 

  0.2 (5,5) 
(0.42) 

22.7 

(4.94) 

88.1 

 30 0 (0,0) (0.06) (1.34) 

  0.1 (5,5) 
(0.24) 

76.7 

(0.6) 

98.36 

  0.2 (5,5) 
(0.14) 

8.54 

(0.26) 

85.96 

 40 0 (0,0) (0) (0.5) 

  0.1 (5,5) 
(0.02) 

90.5 

(0) 

87.36 

  0.2 (5,5) 
(0) 

8.94 

(0.0) 

39.26 

 50 0 (0,0) (0) (0.36) 

  0.1 (5,5) 
(0.04) 

95.78 

(0.06) 

96.18 

  0.2 (5,5) 
(0) 

28.02 

(0.18) 

80.16 

 100 0 (0,0) (0) (5.12) 

  0.1 (5,5) 
(0.02) 

99.88 

(1.76) 

99.98 

  0.2 (5,5) 
(0) 

71.58 

(0.58) 

98.42 

 

 

5. EMPIRICAL CASE  

We used the example from Vargas, Queensberry data sets in order to compare and evaluate results 

of the performance of both the conventional and modified control charts. Their data comprises of two 

characteristics, random variables, namely 
1X  and 

2X  on 30 different products taken from the production 

process. In Vargas, Queensberry data set’s two variables were used. The observations of both random 

variables are shown in Table 3 (Appendix). The table also shows the values of the new Hotelling’s T2 

statistics along with the conventional T2 statistics.  

We calculated the UCL using the simulation for the robust and the conventional T2 charts to be 8.03 

and 6.4619 respectively. We set the value of all UCL for the robust charts and the conventional for α=0.05. 

This case has false alarm probability with 30 observations. The final results show that in the case of 

conventional chart, the production process is not in control at two observations, the second and twentieth 

observations, whereas the process is out of control only on second observation in case of robust charts.  

 

 

6. CONCLUSION AND DISCUSSION 

The modified robust alternatives Hotelling‘s 𝑇2chart demonstrates superiority in performance as 

opposed to the conventional Hotelling‘s 𝑇2chart particularly concerning false alarms. Also, as opposed to  

the conventional Hotelling‘s 𝑇2chart, the modified robust alternatives Hotelling‘s 𝑇2chart appears better at 

outliers detection.  
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Appendix 
 

Table 3. The two variables X1and X2 of vargas data set with the values of T 2 statistics using  

the conventional and the winsorized MOM estimator 

Product No 
1X  

2X  
2

0T  T2
HL-Sn 

1 0.567 60.558 0.807 0.763 

2 0.538 56.303 12.975 22.034 

3 0.53 59.524 0.1373 0.331 

4 0.562 61.102 1.8375 2.208 

5 0.483 59.834 1.5697 1.742 

6 0.525 60.228 0.33 0.351 

7 0.556 60.756 0.977 1.083 

8 0.586 59.823 0.904 0.955 

9 0.547 60.1530 0.1269 0.072 

10 0.531 60.64 0.801 0.9687 

11 0.581 59.785 0.7192 0.785 

12 0.585 59.675 0.910 1.0676 

13 0.54 60.489 0.483 0.52 

14 0.458 61.067 5.2413 6.585 

15 0.554 59.788 0.073 0.11 

16 0.469 58.64 3.5357 4.6365 

17 0.471 59.574 2.2696 2.539 

18 0.457 59.718 3.2442 3.5497 

19 0.565 60.901 1.398 1.5629 

20 0.664 60.18 6.8326 6.906 

21 0.6 60.493 1.8978 1.767 

22 0.586 58.37 3.3564 5.667 

23 0.567 60.216 0.427546 0.332 

24 0.496 60.214 1.1838 1.343 

25 0.485 59.5 1.4968 1.7537 

26 0.573 60.052 0.48432 0.41376 

27 0.52 59.501 0.28989 0.50 

28 0.556 58.476 2.0635 3.8619 

29 0.539 58.666 1.38596 2.693 

30 0.554 60.239 0.24043 0.1697 

 


