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 Spoken words convey several levels of information. At the primary level,  

the speech conveys words or spoken messages, but at the secondary level,  

the speech also reveals information about the speakers. This work is based on 

the high-level speaker-specific features on statistical speaker modeling 

techniques that express the characteristic sound of the human voice. Using 

Hidden Markov model (HMM), Gaussian mixture model (GMM), and Linear 

Discriminant Analysis (LDA) models build Automatic Speaker Recognition 

(ASR) system that are computational inexpensive can recognize speakers 

regardless of what is said. The performance of the ASR system is evaluated 

for clear speech to a wide range of speech quality using a standard TIMIT 

speech corpus. The ASR efficiency of HMM, GMM, and LDA based modeling 

technique are 98.8%, 99.1%, and 98.6% and Equal Error Rate (EER) is 4.5%, 

4.4% and 4.55% respectively. The EER improvement of GMM modeling 

technique based ASR systemcompared with HMM and LDA is 4.25% and 

8.51% respectively. 
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1. INTRODUCTION 

Most of ASR application modeling techniques make various mathematical assumptions about 

speaker-specific features. If voice data does not satisfy these attributes, incompleteness will occur at ASR 

modeling stage. Therefore, the mathematical model fits the features and is forced to derive recognition scores 

based on these models and test speech data. Converting audio segments into the functional parameter, after that 

modeling process started in ASR. In ASR modeling is a process flow to categories all speakers based on their 

characteristics. The model should also provide its meaning for comparison with unfamiliar speaker utterances. 

ASR modeling is called as robust when its speaker specific feature characterization process is not significantly 

affected by unwanted maladies, although these features are ideal if such features can be designed in such a way 

that interspeaker discrimination is maximum, then no intraspeaker variation exists and simple modeling 

methods can be sufficient. In short form, the non-ideal properties of the speaker specific feature extraction 

phase require different compensation techniques during the ASR modeling phase so that the effect of 

the disturbance variation present in the speech signal can be reduced during the testing of the speaker 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 2, April 2020 :  1859 - 1867 

1860 

recognition process. Most of the ASR modeling techniques do different mathematical hypotheses about 

the speaker-specific features. If assumed properties are not met from the speech data, then we are basically 

presenting flaws even during the ASR modeling phase. 

The normalization of speaker-specific features can reduce these problems to some extent, but not 

completely. As a result, mathematical models are compelled to adopt the characteristics and speaker 

recognition scores are obtained based on these models and test speech data. Thus, in this process, the properties 

of detecting artifacts are introduced and a family of score standardization techniques has been proposed which 

is proposed to complete this final stage mismatch [1]. In essence, the decline in acoustic signal affects 

the speaker-specific features, patterns, and scores. Therefore, it is important to improve the robustness of ASR 

systems in all three domains. It has been mentioned recently that speaker modeling techniques have improved 

and score normalization techniques are not much effective [2]. 

Probabilistic modeling techniques such as GMM and HMM are widely used for the speaker, language, 

emotion, and speech recognition. In the probabilistic model, each speaker/language/emotion is modeled as 

a probability source with an unknown but fixed probability density function. The training phase is a parameter 

that estimates the probability density function from a sufficient number of training samples. For ASR 

recognition, the possibility of test utterances on the model is calculated. GMM is a linear combination of 

multivariate Gaussian distributions that simulate 𝑃(𝑋 𝐶)⁄ . GMM can be converted to a post classifier using 

Bayesian rules [3]. There are other advantages, such as being able to train the model for a large amount of 

speech data and adapt it to the new data format. When using a model for ASR application such as GMM, 

the speaker-independent Universal Background Model (UBM) first uses voice data for training. UBM 

represents the distribution of feature vectors independent of speakers. When a new speaker is registered in 

the ASR system, the parameters of the background model are adapted to the feature distribution of the new 

speaker. The adaptive model is then used as an ASR speaker’s model. 

Statistical Language Modeling (LM) is the science of building a model to estimate the prior 

probability of word strings. Successful use of language model to model the rhythm of speaker and language. 

The fundamental frequency Fo and energy profiles are labeled as discrete classes and then modeled using two 

bigrams or trigrams [4]. Hidden Events LM contains special words that appear in the model’s N-gram. Instead, 

they correspond to the state of the HMM and can be used to simulate language events such as boundaries of 

unmarked sentences. Alternatively, these events may be associated with unnatural possibilities for adjusting 

LM (eg, rhythm) for other sources of knowledge. A special type of hidden event LM can simulate a nonsmooth 

speech by letting hidden events modify the word history [5]. 

Decision trees are also successfully used in prosodic modeling for ASR application [6].  

The decision tree model “progress” by system-generated question to the speaker at once. The features of  

the questions in each question and then the thresholds in the questions (eg normalized pitch greater than 

threshold value) preferably distinguish the class of nodes in the tree. In the test phase, the decision tree estimates 

the posterior probability of each class C of each sample X, resulting in 𝑃(𝑋 𝐶)⁄  [7]. One of the main drawbacks 

of decision trees is the greedy build process: at each step, the combination selects a single best variable and 

the best breakpoint, but considering multi-step prefetching of variable combinations than a good result. Another 

disadvantage is the fact that continuous variables are implicitly discretized by the partitioning process and 

information is lost along the way. The advantage of decision trees for other machine learning methods is that 

they are not black-box models, but can easily be represented as rules. In many applications, these models are 

more important than disadvantages, so these models are widely used in ASR application. 

Discriminant models such as Artificial Neural Networks (ANN) [8] and Support Vector Machines 

(SVM) are also used for prosodic modeling [9]. Deep Neural Network (DNN) [10], Extreme Learning Machine 

(ELM), and DNN-ELM have proved useful for prosodic-based speaker recognition [11]. The SVM model is 

an algorithmic implementation of the idea from the statistical learning theory [12] and focuses on the problem 

of constructing a consistent estimator from the speech data. Model performance and training set estimation 

method for unknown data set when only model characteristics are given Performance? Regarding 

the algorithm, the support vector machine establishes an optimal separation boundary between data sets by 

solving the constrained quadratic optimization problem [13]. By using different kernel functions, different 

degrees of nonlinearity and flexibility can be included in the model. Support vector machines are gained from 

advanced statistical ideas and can calculate the range of generalization error for them, so we have gained 

considerable research interest over the past few years. The performance of other machine learning algorithms 

equal to or better than those of other machine learning algorithms are reported in the medical literature.  

A disadvantage of the support vector machine is that the classification result is purely dichotomous and there 

is no possibility of giving class membership [14]. 
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2. MODELING BASED ON PROSODY IN AUTOMATIC SPEAKER RECOGNITION SYSTEM 

Prosody uses the appropriate method to obtain the global statistics of the speaker’s fundamental 

frequency 𝐹𝑜 value and the ASR system recognizing the task. The dynamics of the 𝐹𝑜 contour reflecting  

the person’s talking style has been shown to be able to help the speaker recognition the task. The 𝐹𝑜 motion of 

the speaker is modeled by fitting a piecewise linear model to the 𝐹𝑜 orbit to obtain a stylized 𝐹𝑜 profile. 

Using median F 0, the slope and duration represent each linear 𝐹𝑜 segment. These features are modeled 

by log-normal distribution, normal distribution, and shift exponential distribution, respectively. In order to 

investigate the possibility of speaker recognition using rhythm and idiom, NIST introduced extended data task 

telephone talk based on exchange corpus. Unlike traditional speaker recognition tasks, the extended data task 

provides multiple complete session planes (4/8/16 sides) for speaker training and testing the ASR system.  

In [15] the focus is on investigating various prosodic features. Fundamental frequency based on 

segment period and pause period. Periodic characteristics, or word characteristics, telephone periods and period 

sequences have been used to model the period. In [16], duration, pitch, and energy characteristics are calculated 

for each estimated syllable region. Syllable boundary obtained from the ASR system. These features are 

quantized and used to form N-grams called N-gram based syllable non-uniform extraction region features. 

In [17], continuous prosodic features were modeled using Joint Factor Analysis (JFA) for speaker 

recognition. The prosodic feature used is the pitch and energy profile over units of similar syllables, represented 

using bases of Legendre polynomials. Standard GMM is used for modeling. In addition, the effect of 

the speaker and session change is modeled in the same way as conventional JFA. Legendre polynomial 

coefficients of pitch and energy, together with the length of the segment, constitute a 13-dimensional prosody 

feature set for GMM and factor analysis modeling [17]. 

 

2.1. Eigenvoice consideration in hidden markov models 

In the standard eigenvoice approach, voice data is collected from the number of speakers with  

the diverse scenario. When each HMM state is modeled as a mixture of Gaussian distributions, a set of speaker-

dependent HMMs are formed from each speaker. The speaker's voice is represented by the super vector 

composed of the concatenation of the mean vectors of all Gaussian HMM distributions. Therefore,  

the i-th speaker supervector is composed of R components, one Gaussian per distribution, and is expressed as 

 𝑥𝑖 = [𝑥𝑖1
, , 𝑥𝑖2

, , … . . 𝑥𝑖𝑅
, ]

,
∈ ℝ𝑑2. The similarity between any two speaker supervectors 𝑥𝑖 and 𝑥𝑗 is measured by 

their dot product as follows. 

 

𝑥𝑖
, 𝑥𝑗 = ∑ 𝑥𝑖𝑟

, 𝑥𝑗𝑟
𝑅
𝑟=1  (1) 

 

Principal component analysis (PCA) is then performed on the training speaker supervector and  

the resulting eigenvector is referred to as eigenvoice. In order to adapt to the new speaker, his/her supervector 

process deals with a linear combination of the top 𝑀 eigenvoices 𝑠 = 𝑠(𝑒𝑣) = ∑ [{𝑤1, 𝑤2, … . 𝑤𝑀}]′𝑉𝑚
𝑀
𝑚=1 . 

Usually, only a less than ten eigenvoices are taken into consideration so that few second of adaptation speech 

will be required. The mathematically computed eighteen eigenvoices are as: 0.180696, 0.168936, 0.082378, 

0.065117, 0.058677, 0.027971, 0.020124, 0.017375, 0.016086, 0.008081, 0.007063, 0.004332, 0.003474, 

0.003072, 0.002031, 0.001976, 0.00112, and 0.001062. The adaptation data 𝑜𝑡, 𝑡 = 1, … … . , 𝑇 to estimate 

unique eigenvoice weights by maximizing the likelihood of 𝑜𝑡. In mathematically one can find 𝑤 by 

maximizing the 𝑄 function as follows: 

 

𝑄(𝑤) = ∑ 𝛾1(𝑟)𝑙𝑜𝑔(𝜋𝑟) + ∑ ∑ 𝜉𝑡(𝑝, 𝑟)𝑙𝑜𝑔(𝑎𝑝𝑟) + ∑ ∑ 𝛾𝑡(𝑟)𝑙𝑜𝑔(𝑏𝑟(𝑜𝑡, 𝑤))𝑇
𝑡=1

𝑅
𝑟=1

𝑇−1
𝑡=1

𝑅
𝑝,𝑟=1

𝑅
𝑟=1  (2) 

 

State r initial probability and posterior probability of observation is represented by πr and 𝛾𝑡(𝑟) 

respectively at time t. State p posterior probability of observation sequence is represented by ξt(p, r) 

at time t and at state r at time 𝑡 + 1. 𝑏𝑟 is the rth Gaussian probability density function. 

Further 𝑄𝑏(𝑤) = ∑ ∑ γt(r)log(br(ot, w))T
t=1

R
r=1  is related to the new speaker supervector 𝑠 as follows: 

 

Qb(w) = −0.5 ∑ ∑ γt(r)[d1log(2π) + log|Cr| + ‖ot − sr(w)‖2Cr]T
t=1

R
r=1  (3) 

 

Covariance matrix of the Gaussian in eqn. (3) at state 𝑟 is represented as 𝐶𝑟. Here the estimation of 

eigenvoices is generalized by performing kernel PCA in its place of linear PCA. Subsequently, let 𝑘(. , . ) be  

a kernel with a corresponding mapping 𝜑. This maps the pattern 𝑥 of the specific speaker supervector space 𝜒 

to the 𝜑(𝑥) in the speaker specific feature space ℱ. Given a set of N patterns speaker supervectors 

(𝑥1, 𝑥2, … … 𝑥𝑁−1, 𝑥𝑁) denote the mean of the 𝜑 -mapped feature vectors by �̅� =
1

𝑁
∑ 𝜑(𝑥𝑖)

𝑁
𝑖=1  and  

the centered map with �̃� = 𝜑(𝑥) − �̅� . Next step Eigen decomposition is performed on 𝐾 where 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 2, April 2020 :  1859 - 1867 

1862 

𝐾 = [𝑘(𝑥𝑖 , 𝑥𝑗)]
𝑖,𝑗

. 𝑣𝑚 is the 𝑚𝑡ℎ orthogonal eighnvector of 𝑁𝑋𝑁 dimension covariance matrix in the feature 

space is represented as 𝑣𝑚 = ∑
𝛼𝑚𝑖

√𝜆𝑚

𝑁
𝑖=1 �̅�(𝑥𝑖) by considering 𝐾 = 𝑈⋀𝑈′ where 𝑈 = [𝛼1, … … 𝛼𝑁−1, 𝛼𝑁] with 

𝛼𝑖 = [𝛼𝑖1, … . . 𝛼𝑖(𝑁−1), 𝛼𝑖𝑁]
′
and ⋀ = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝜆1, … … 𝜆𝑁−1, 𝜆𝑁). A computer generated 8𝑋8 orthogonal 

eighnvector 𝑣𝑚 is represented in Table 1. Two-dimension representation of utterances from TIMIT database 

evaluation using KPCA+linear solution and non-linear SVM shown in Figure 1. 

 

 

Table 1. A computer generated 8X8 orthogonal eighnvector vm 
 C1 C2 C3 C4 C5 C6 C7 C8 

R1 -1.0000 -0.8571 -0.7143 -0.5714 -0.4286 -0.2857 -0.1429 0.0000 

R2 -1.0000 -0.8571 -0.7143 -0.5714 -0.4286 -0.2857 -0.1429 0.0000 

R3 -1.0000 -0.8571 -0.7143 -0.5714 -0.4286 -0.2857 -0.1429 0.0000 

R4 -1.0000 -0.8571 -0.7143 -0.5714 -0.4286 -0.2857 -0.1429 0.0000 

R5 -1.0000 -0.8571 -0.7143 -0.5714 -0.4286 -0.2857 -0.1429 0.0000 

R6 -1.0000 -0.8571 -0.7143 -0.5714 -0.4286 -0.2857 -0.1429 0.0000 

R7 -1.0000 -0.8571 -0.7143 -0.5714 -0.4286 -0.2857 -0.1429 0.0000 

R8 -1.0000 -0.8571 -0.7143 -0.5714 -0.4286 -0.2857 -0.1429 0.0000 

 

 

 
 

Figure 1. Two-dimensio representation of utterances from TIMIT database evaluation using KPCA+linear 

solution and non-linear SVM 

 

 

2.2.  Gaussian mixture model (GMM) based high label feature modeling 

GMM has become the leading generation statistical model in the state of the art ASR system. GMM 

is an attractive statistical model because it can represent various probability density functions when estimating 

a sufficient number of parameters. The GMM, in general, contains a set of 𝑁 multivariate Gaussian density 

functions represented by the index 𝑘. The resulting probability density function for a particular speaker model 

𝑖 is a convex combination of all density functions. GMM is built using standard multivariate Gaussian 

density,but introduces component index k as a latent variable with discrete probability 𝑝(𝑘 𝑖⁄ ). The weights 

are represented as 𝑤𝑘
𝑖 = 𝑝(𝑘 𝑖⁄ ). Complies with the GMM density function and the conditions that characterize 

the past contributions of the corresponding component as ∑ 𝑤𝑘
𝑖𝑁

𝑘=1 = 1. Each Gaussian density represents 

a conditional density function 𝑝((𝑥𝑡|𝑘, 𝑖)). According to Bayes’ theorem, the joint probability density 

function 𝑝((𝑥𝑡|𝑘, 𝑖))is given by the multiplication of the two. The sum over all densities results in the multi-

modal probability density of GMMs as follows: 

 

𝑝(𝑥𝑡| ⊖𝑖) = ∑ 𝑝(𝑘| ⊝𝑖)
𝑁
𝑘=1 ∙ 𝑝(𝑥𝑡|𝑘,⊖𝑖) = ∑ 𝑤𝑘

𝑖 ∙ 𝒩{(𝑥𝑡|𝜇𝑘
𝑖 , Σ𝑘

𝑖 )}𝑁
𝑘=1  (4) 

 

Where μk is the mean vector and Σk is the covarience matrix. Each component density is completely determined 

by μk and Σk. The parameter set ⊝𝑖= {𝑤1
𝑖 , 𝑤2

𝑖 , … . . , 𝑤𝑁
𝑖 , 𝜇1

𝑖 , 𝜇2
𝑖 , … . . 𝜇𝑁

𝑖 , Σ1
𝑖 , Σ2

𝑖 , … . . Σ𝑁
𝑖  } where eighting factor 

including specific speaker model 𝑖 of mean vector and covariance matrix. 
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Figure 2 illustrates the likelihood function of the GMM, including seven Gaussian distributions with 

covariance matrices of two dimensional mean and feature vectors are chosen 𝑥1 and 𝑥2 denote the elements of 

the feature vector. Computer generated log-likelihood completed training speaker 1 model is represented 

as -6.067379, -4.288333, -4.253459, -4.241043, -4.230592, -4.218451, -4.203952, -4.188224, -4.173566,  

-4.161955, -4.153866, -4.148612, -4.145268, -4.143124, -4.141712, -4.140738. A computer generated 8𝑋8 

training feature vectors of a speaker by Gaussian Mixture Models is represented in Table 2 and Table 3 

represent testing feature vectors of same speaker with different text. Figure 2 shows a likelihood function for 

a GMM with seven Gaussian densities. 
 

 

 
 

Figure 2. A likelihood function for a GMM with seven Gaussian densities 

 

 

Table 2. A computer generated 8X8 training feature vectorsof a speaker by Gaussian mixture models 
 C1 C2 C3 C4 C5 C6 C7 C8 

R1 4.0646 2.7960 3.3696 2.5665 1.4115 1.4582 1.3393 0.7637 

R2 4.8317 3.5756 3.3678 2.8608 0.9304 0.8075 0.9295 1.1848 

R3 3.7562 3.4273 3.8380 2.7522 1.3471 0.9934 1.4731 1.6576 

R4 5.0021 3.3969 3.4032 2.2354 0.4914 0.8931 2.0563 1.4244 

R5 4.1528 3.3462 3.8148 3.4006 1.8268 1.0450 1.5436 1.1512 

R6 3.8352 3.1605 4.3616 2.8652 1.7510 1.0464 1.6336 1.3007 

R7 4.1610 3.3430 4.4114 1.7857 1.1003 1.5388 1.3885 1.6549 

R8 3.5921 3.7265 4.1634 2.5118 1.8623 1.5231 1.5569 1.4148 

 

 

Table 3. 8X8 testing feature vectors of a speaker by Gaussian mixture models 
 C1 C2 C3 C4 C5 C6 C7 C8 

R1 3.2927 2.0086 4.7630 3.1760 1.4675 0.9331 1.7318 1.3194 

R2 3.6418 2.6172 5.1925 2.5124 0.5417 1.2929 1.9916 0.9756 

R3 2.9897 1.6382 5.2565 4.0006 1.3647 1.8824 1.9576 1.0245 

R4 3.4203 2.3760 4.4596 2.5434 1.0803 1.4107 1.8440 1.3208 

R5 3.4864 2.9604 3.9410 3.2120 1.5138 1.5098 2.2160 1.2051 

R6 4.0004 2.2980 4.2781 3.0504 1.8364 1.0121 1.2600 1.1491 

R7 3.0806 2.0417 4.0331 3.6395 1.9743 1.8195 1.3774 1.0800 

R8 2.9109 2.3116 4.6019 3.5167 2.3270 1.1858 2.6674 1.3994 

 

 

2.3.  Linear discriminant analysis (LDA) based high label feature modeling 

LDA is a commonly employed technique in statistical pattern recognition that aims at finding linear 

combinations of feature coefficients to facilitate discrimination of multiple classes. It finds orthogonal 

orientation in place of most effective functions in class discrimination. By introducing the original features in 

these guidelines, the accuracy of classification improves. Let us indicate the set of all development utterances 

by D, utterance features indicated by ws,i, these features obtained from the ith utterance of the speaker s,  

the total number of utterances belonging to s is indicated by ns and the total number of speakers in D is indicated 

by S. Class covariance matrices between Sb and within Sw are given by 
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𝑆𝑏 =
1

𝑆
∑ (�̅�𝑠 − �̅�)(�̅�𝑠 − �̅�)𝑇𝑆

𝑠=1  (5) 

 

𝑆𝑤 =
1

𝑆
∑

1

𝑛𝑠
∑ (𝑤𝑠,𝑖 − �̅�𝑠)(𝑤𝑠,𝑖 − �̅�𝑠)

𝑇𝑛𝑠
𝑖=1

𝑆
𝑠=1  (6) 

 

Where the speaker dependant mean vector is given by w̅s = 1 ns ∑ ws,i
ns
i=1

⁄  and speaker independent mean 

vector is given by w̅ =
1

S
∑

1

ns
∑ ws,i

ns
i=1

S
s=1  respectively. The LDA optimization is therefore to maximize 

between class variance, whereas reducing within the class variance. The exact estimation can be obtain from 

this optimization by solving generalized eigenvalue problem: 
 

𝑆𝑏𝑉 =∧ 𝑆𝑤𝑣 (7) 
 

The diagonal matrix containing of eignvector is indicated by ∧. If the matrix Sw in eqn. (6) is invertible then 

the solution can be easily found by Sw
−1Sb. ALDA matrix of dimension R × k is as follows: 

 

𝐴𝐿𝐷𝐴 = [𝑣1 … … . . 𝑣𝑘] (8) 
 

k eigenvectors v1 … … . . vk obtained by solving eqn. (7). Thus, the LDA change of the utterance feature w is 

obtained in this way: 
 

𝛷𝐿𝐷𝐴(𝑤) = 𝐴𝐿𝐷𝐴
𝑇 𝑤 (9) 

 

A computer generated 8X8 ΦLDA(w) matrix of dimension RXk by LDA Models is represented in Table 4. 

 

 

Table 4. A computer generated 8X8 𝛷𝐿𝐷𝐴(𝑤) matrix of dimension 𝑅𝑋𝑘 
 C1 C2 C3 C4 C5 C6 C7 C8 

R1 -0.5302 -0.6328 -0.6402 -0.5861 -0.5306 -0.5137 -0.5403 -0.5678 

R2 -0.6601 -0.7932 -0.8189 -0.7774 -0.7347 -0.7332 -0.7773 -0.8138 

R3 -0.6949 -0.8420 0.8846 -0.8622 -0.8389 -0.8565 -0.9219 -0.9783 

R4 -0.6594 -0.8031 -0.8484 -0.8308 -0.8124 -0.8399 -0.9289 -1.0271 

R5 -0.6314 -0.7653 -0.7968 -0.7584 -0.7169 -0.7325 -0.8374 -0.9885 

R6 -0.6698 -0.8029 -0.8170 -0.7446 -0.6615 -0.6450 -0.7462 -0.9332 

R7 -0.7548 -0.8985 -0.9072 -0.8157 -0.7044 -0.6588 -0.7423 -0.9333 

R8 -0.7876 -0.9328 -0.9467 -0.8688 -0.7722 -0.7314 -0.8065 -0.9806 

 

 

LDA assumes normal distribution data for all classes, statistically independent features and the same 

covariance matrix. However, this only applies to LDA as a classifier. If these assumptions are violated,  

the dimensionally reduced LDA can work reasonably. Even for classification tasks, LDA seems powerful 

enough to be used for data distribution in ASR applications. The speaker feature modeling histograms with 

normal fit eigenvector obtained from the LDA is illustrated in Figure 3. 

 

 

 
 

Figure 3. The speaker feature modeling histograms with normal fit eigenvector with LDA 
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3. ACOUSTIC DATA FEATURE EXTRACTION 

The speaker specific features refer to parameters extracted from phrase segments/periods within  

a 20-25 ms frame. The most common short-term acoustic features are Mel Frequency Cepstrum Coefficients 

(MFCC) and Linear Predictive Coding (LPC) based features [18,19,20]. In order to obtain these coefficients  

from the speech recording, the speech samples are first divided into short overlapping segments. The signals 

obtained at these segments / frames are then multiplied by a window function (e.g. Hamming and Hanning) to 

obtain a Fourier power spectrum. In the next step, the logarithm of the spectrum is calculated and  

a mel-space filter bank analysis of non-linear intervals is performed. Logarithmic operations expand  

the range of coefficients and break up the multiplicative components into additional components [21]. In filter 

bank analysis, spectral energy (also called filter bank energy coefficient) is generated for each channel to 

represent different frequency bands. 

Filterbanks, like the human auditory system, are designed to be more sensitive to frequency changes 

at the bottom of the spectrum. Finally, the MFCC is obtained by performing a discrete cosine transform (DCT) 

on the filter bank energy parameters and retaining many preamble coefficients [22, 23]. DCT has two important 

properties. (i) to compress the energy of the signal into multiple coefficients, and (ii) to be highly correlated 

with the coefficients. For these reasons, using DCT to remove specific dimensions improves  

the efficiency of the model and reduces some harmful components [24]. Furthermore, the uncorrelated 

properties of the DCT help to assume that the models of feature coefficients are not relevant. In summary,  

the following sequence of operations-power spectrum, logarithm, DCT-produces a signal with a well-known 

cepstral representation [25].  

 

 

4. EXPERIMENTAL SETUP 

The experiment uses the TIMIT set of database. The proposed algorithm implemented in MATLAB 

and results were compared with those of the Eigenvoice consideration in HMM, GMM and LDA. A total 1000 

utterances of the TIMIT database of 6 sec, 4 sec and 2 sec voice were put to train and test the ASR system. 

For the above cases, ASR recognition efficiency has been calculated “Efficiency” = Number of utterance 

correctlyidentified/Total Number of utterance under test. Table 5 shows that the efficiency of the ASR system 

for HMM, GMM and LDA respectively. It can be observed from this table that use of GMM has highest 

efficiency compared to other modeling techniques.  Figure 4 show the equal error rate (EER) of HMM, GMM, 

and LDA based modeling technique. The ASR efficiency of HMM, GMM, and LDA based modeling technique 

are 98.8%, 99.1%, and 98.6% and EER are 4.5%, 4.4% and 4.55% respectively. The EER improvement of 

GMM modeling technique based ASR system compared with HMM and LDA is 4.25% and 8.51% 

respectively. 

 

 

 
 

Figure 4. Equal Error Rate of ASR system of HMM, GMM and 

LDA based modeling technique for 2 sec of voice data 
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Table 5. Efficiency of the ASR system for HMM, GMM and LDA respectively 

 HMM GMM LDA 

 Efficiency in % EER in % Efficiency in % EER in % Efficiency in % EER in % 

6 sec 99.6 4.9 99.9 4.7 99.1 5.1 

4 sec 98.8 4.9 99.5 4.7 98.2 5.1 

2 sec 98.8 4.9 99.1 4.7 98.6 5.1 

 

 

5. CONCLUSION 

This paper presented the research, development and evaluation of ASR system based on HMM, GMM 

and LDA modeling techniques. GMM models provide a simple but effective representation that offers 

inexpensive and high recognition accuracy for a wide range of speaker recognition tasks. An experimental 

evaluation of the performance of the speaker recognition system has been done on publicly available TIMIT 

database. For the 1000, voice samples of the TIMIT database spaker recognition accuracy 99.1%, 98.8% and 

98.6 for GMM, HMM and LDA was obtained for 2 sec of voice length. The EER improvement of GMM 

modeling technique based ASR system compared with HMM and LDA is 4.25% and 8.51% respectively. 

As experimental results showed that, speaker recognition performance is at practically usable levels 

for specific applications such as access control authentication. The main limiting factor in less controlled 

situations is the lack of robustness to transmission impairments such as noise and mic variability. Much more 

to address these limitations, such as exploring areas such as understanding and modeling the impact of 

impairments on spectral characteristics, applying more sophisticated channel compensation techniques, and 

exploring features that are less sensitive to channel degradation efforts are underway. 
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