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 Titanium dioxide ( TiO2 ) is the most popular photocatalytic material. 

However, its operation is limited to UV light only. In this paper, we tried to 
improve the visible light responsiveness of TiO2 by doping Nickel (Ni) using 

the sol-gel method. By combining Ni-doped TiO2 powder with commercially 

available P25 TiO2  powder to make photocatalytic thin films, significant 

improvement in photocatalytic activity has been obtained. Furthermore, 
we also studied the relationship between the surface condition of 
photocatalytic thin films and their photocatalytic activity. The surface 
condition was improved by the multilayer electrophoresis deposition method. 

Based on experimental results, by combining 10 20 wt% Ni-doped TiO2 with 

P25 TiO2, we could significantly enhance the photocatalytic activity of P25 

TiO2. 
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1. INTRODUCTION  
Water quality pollution is becoming an environmental problem all over the world. The causes are 

domestic and industrial wastewater. Domestic wastewater is wastewater discharged from toilets, baths, and 

kitchen. Industrial wastewater is drainage from machine processing, food processing factories, etc. 

Researchers are motivated to solve wastewater problems [1-4]. A photocatalyst is a material that causes 

a chemical reaction using light energy. It has been used in the energy field, medical field, and environmental 

field [5, 6]. As photocatalyst materials, titanium dioxide (TiO2), cadmium sulfide (CdS), iron (III) oxide 

(Fe2O3), tungsten trioxide (WO3), zinc oxide (ZnO) are used. Among them, TiO2 is popularly used due to (1) 

physically and chemically stable, (2) high photocatalytic activity, (3) non-toxicity, and (4) low price [2, 7, 8]. 

The sunlight is an important element in the photocatalytic reaction [2, 9]. The light reaching the ground from 
the sun contains wavelengths in the range from 290 nm to 4000 nm. The range from 100 nm to 400 nm 

wavelength is called ultraviolet light (UV light), from 400 nm to 800 nm wavelength is called visible light 

[10]. TiO2 used as a photocatalyst has 3.2 eV bandgap, so the light having a wavelength shorter than 380 nm 

(UV light) is required for activating the photocatalytic activity of TiO2 [11]. The sunlight contains only about 

3 - 4 % UV light. Therefore, to increase the photocatalytic efficiency of TiO2, research for effective use of 

the sunlight is necessary [1, 12, 13]. 

In this research, we tried to improve the photocatalytic activity of TiO2  by doping nickel to its 

crystal structure. To make Ni-doped TiO2 , we used the sol-gel method [14]. Thin films of TiO2  were 
fabricated by the electrophoresis deposition (EPD) method. Thin films made of commercially available P25 

TiO2  powder combined with the handmade Ni-doped TiO2  powder were investigated to improve 

the photocatalytic efficiency. Methylene blue (MB) degradation experiment was used to characterize 

the photocatalytic efficiency of the fabricated thin films. 
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2. RESEARCH METHOD  

2.1.  Fabricating Ni-doped 𝐓𝐢𝐎𝟐 powder by sol-gel method 
The sol-gel process is a method for producing solid particles from molecules. Hydrolysis and 

polycondensation reactions are repeated in sol solution and gel state. Then, the gel is dried and undergone 

heat treatment. The advantage of this method is that it can be applied to organic and inorganic molecule 

hybrid materials. The preparation of TiO2  powder by this method can be represented by the following 

equation [15, 16]. 

 

𝑇𝑖[𝑂𝐶𝐻(𝐶𝐻3)2]4 + 2𝐻2𝑂 → 𝑇𝑖𝑂2 + 4(𝐶𝐻3)2𝐶𝐻𝑂𝐻 (1) 

 

To synthesize Ni-doped TiO2 powder by sol-gel method, we mixed 6 ml titanium tetraisopropoxide 

(Wako, Japan), 20 ml ethanol (Wako, Japan), 1 ml deionized water (Wako, Japan), and 0.029 g Ni(NO3)2 ∙
6H2O (Wako, Japan) in a glass beaker using a magnetic stirrer (ASONE, RS-6DN) rotating at the speed of 

500 rpm for 1 hour. Then, the prepared solution was dried at 100 oC for about 3 hours. After that, 

the obtained dried gel was ground in a mortar to become a fine powder. The powder was annealed at 650 ℃ 

for 1 hour with an electric furnace (ASONE SMF-1) to obtain crystalline Ni-doped TiO2 powder 
(light yellow color) [13, 17-19]. This powder is called as Ni-SP powder. 

 

2.2.  Fabricating 𝐓𝐢𝐎𝟐 thin film by EPD method 
EPD method is a method used for depositing minute particles on a conducting substrate by an 

external electric field. Based on this method, a thin film with controllable thickness can be produced. 

Under an applied external electric field, TiO2 particles in a colloid solution are positively charged and moved 

to the negatively charged electrode [20-23]. Commercially available P25 TiO2 powder (particle size: 20 nm) 

and a suitable amount of fabricated Ni-SP powder were mixed with ethanol at the speed of 700 rpm for 

1 hour by a magnetic stirrer to make a colloid solution for EPD. Figure 1 shows the setup used for conducting 
EPD. An aluminum plate (used as the anode electrode (20 × 20 × 1 mm)) and an FTO glass (used as 

the cathode electrode (20 × 20 × 1.8 mm)) were placed at 10 mm in parallel into the prepared colloid 

solutions. To conduct EPD, a constant current of 0.12 mA (generated by a current source, ADVANTEST 

R6144) was applied to the two electrodes.  

To make single-layer thin films, EPD was conducted 100 seconds continuously. On the other hand, 

to make multilayer thin films (four layers), EPD was conducted four times; each time lasted 25 seconds 

followed by drying at 60℃ for 1 minute. The deposited areas on FTO substrates were 10×20 mm. 

After completing deposition, as-fabricated thin films were annealed in the air at 400℃ (5℃ minute⁄  heating 

rate) for 1 hour. Both single-layer and four-layer thin films had the same thickness of about 15 µm. 

Moreover, a scanning electron microscope (SEM, HITACHI S4300) was used to observe Ni-SP powder, 

single-layer thin film surface, and multilayer thin film surface. An X-ray diffraction spectroscopy (XRD, 
PANalytical) was used to measure crystalline morphology and quantitative analysis of P25 powder and 

Ni-SP powder. A UV-vis spectrophotometer (SHIMAZU, UV-3600) was used to evaluate the light 

absorption band of the fabricated thin films.  

 

 

 
 

Figure 1. Setup for conducting EPD 
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2.3.  Photocatalytic activity and photocatalytic degradation of MB 

The operation principle of TiO2 working as a photocatalyst is shown in Figure 2. Assuming that 

TiO2  is put in a solution containing organic matters. When UV light irradiates to photocatalytic TiO2 , 

electrons are excited from the valence band to the conduction band. Positive holes are present in the valence 

band (hVB
+

) and electrons are present in the conduction band (eCB
−) a shown in (2). Positive holes deprive 

electrons of the (OH) group of water in contact with the photocatalyst surfaces. Hydroxide ions are deprived 

of electrons and become hydroxyl radicals. Hydroxyl radicals take electrons from nearby organic matter to 

change from an unstable state to a stable state as shown in (3). Electrons in the conduction band reduce 

oxygen to superoxide anions (O2
−・) a shown in (4). Hydroxyl radical and superoxide anion are called 

reactive oxygen and they have strong oxidizing power. They attack organic matter presence near the surfaces 

of the photocatalyst. Ultimately, this process causes complete degradation of organic matters into harmless 

molecules [3, 24]. 

 

TiO2 + hγ → hVB
+ + eCB

− (2) 

 

H2O+ hVB
+ →  OH・+ H+ (3) 

 

O2 + eCB
− → O2

− (4) 

 

 

 
 

Figure 2. Photocatalytic operation principle of 𝑇𝑖𝑂2  

 

 

The photocatalytic activity of the fabricated thin films was evaluated based on their MB degradation 

rates. MB photocatalytic decomposition can be represented as shown in (5). This experiment was performed 

using 10 µM MB dye solution illuminated by a UV light source (TOSHIBA, FL20S-BL lamp), which 

illuminates UV light and little visible light (400 - 500 nm). As shown in Figure 3, small transparent plastic 

containers were filled with 5 ml of the MB solution. Then, the fabricated thin films were immersed in these 
containers. After that, they were irradiated by the UV lamp with a 5 cm distance from the lamp. Every one-

hour interval, 1 ml solution was taken out of each container for measuring the transmittance by a UV-vis 

spectrophotometer. After the measurement, we returned the taken-out solution to the corresponding container 

for further photocatalytic degradation experiments. We repeated the measurement six times in total.  

The absorbance (ABS) can be expressed as shown in (6) using the measured transmittance. The MB 

degradation rate is proportional to the absorbance, which is calculated using a shown in (7) [1, 2, 25]. 
 

C16H18N3SCl + 25.5O2
Photocatalysis (TiO2)
→               16CO2 + 6H2O+ HCl + H2SO4 + 3HNO3 (5) 

 

Absorbance (ABS) = ln(𝑇0 𝑇𝑡⁄ ) (6) 

 

where,T0: initial transmittance and Tt: Transmittance at a given time 

 

MB degradation rate (%) = (𝐴𝐵𝑆0 − 𝐴𝐵𝑆𝑡) 𝐴𝐵𝑆0⁄ × 100 (7) 

 

where, 𝐴𝐵𝑆0 and 𝐴𝐵𝑆𝑡 are the concentrations of the MB solution at time 0 and t, respectively 
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Figure 3. Top diagram: experimental setup of the MB degradation experiment. 

Bottom diagram: before light exposure (left) and after light exposure (right) 

 

 

3. RESULTS AND ANALYSIS  

3.1.  Powder characterization 
SEM images at different magnification of Ni-SP powder shown in Figure 4. SEM images of Ni-SP 

powder are shown in Figure 4. The diameter of Ni-SP particles is estimated about 100 nm. Therefore, Ni-SP 

particles are about 5 times larger than P25 particles (20 nm diameter). Figure 5 shows the XRD measurement 

data of Ni-SP and P25 powders. These powders have strong diffraction peaks in anatase and rutile crystal 

forms. Anatase peaks recognized at 25.27°, 37.76°, 38.56°, 48.05°, 53.88°, 55.00°, 62.19°, 68.73°, 70.34°, 

75.12° [26]. Generally, TiO2 anatase causes photocatalytic reactions. Furthermore, Ni-SP powder showed 

two peaks at 33.13° and 49.48° that were absence in P25 powder. These are two peaks of NiTiO3 [27]. 

Based on the result of the quantitative analysis of XRD data, Ni-SP contained 74 % of anatase, 12 % of 

rutile, and 14 % of NiTiO3 while P25 contained 79 % of anatase and 21 % of rutile. From these results, it can 

be inferred that the nickel-doped TiO2 was successfully synthesized by the sol-gel method. 

 

 

 
 

Figure 4. SEM images at a different magnification of Ni-SP powder 

 

 

 
 

Figure 5. XRD diffraction patterns of Ni-SP and P25 powders 
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3.2.  Single-layer thin films 

3.2.1 Single-layer thin films of P25 and Ni-SP 
UV-vis spectra of the single-layer thin films of P25 and Ni-SP are shown in Figure 6. The P25 thin-

film absorbed only light with wavelength shorter than 400 nm (UV light). This light-absorbing characteristic 

is originally possessed by TiO2 . On the other hand, the Ni-SP thin-film absorbed light with wavelength 

shorter than 400 nm and wavelength from 400 to 500 nm. From this result, it can be confirmed that doping Ni 

to TiO2 can extend the absorption band of TiO2 to little visible light.  
The MB degradation rates of the single-layer thin films of P25 and Ni-SP are displayed in Figure 7. 

A surprising result has been obtained. Although the Ni-SP thin film could absorb a larger light band than 

the P25 thin film, the higher degradation rate was obtained with the P25 thin film with 62.31 % after 6-hour 

light exposure while the Ni-SP thin film showed the lower degradation rate of 47.83 % after 6-hour light 

exposure. This result may be attributed to larger particle size of Ni-SP (5 times) leading to lower surface 

area; and lower anatase crystal ratio than P25 (anatase is the main cause of photocatalytic reaction). 

 

 

  
Figure 6. UV-vis spectra of single-layer thin films of 

P25 and Ni-SP 

Figure 7. Photocatalytic degradation rates of MB dye 

by single-layer thin films of P25 and Ni-SP 

 
 

3.2.2. Combining Ni-SP with P25 to improve the overall photocatalytic activity 
To utilize the larger light absorption band of Ni-SP, we tried to enhance the overall photocatalytic 

activity by combining Ni-SP with P25. Table 1 shows single-layer thin-film samples made of different ratios 

of Ni-SP and P25 powders. The SEM images of the surfaces of samples A, C, E, and G are shown in Figure 8 

(A), (C), (E), and (G), respectively. Because of the single-layer structure, many cracks could be observed on 

these samples’ surfaces [28]. 

UV-vis spectra of samples A (Ni-SP only), E (combining Ni-SP and P25), and G (P25 only) are 

shown in Figure 9. Obviously, sample E showed the combining characteristics of samples A and G with high 

light absorbance in UV light and little absorbance in visible light (400 – 500 nm). Figure 10 shows the MB 

degradation rates as a function of light exposure time obtained with samples A - G. In the same light 
exposure period, sample E (P25 83 wt% and Ni-SP 17 wt%) showed the highest MB degradation rate of 

68.84 %. Meanwhile, sample A (Ni-SP only) showed the lowest MB degradation rate of 47.83 %. 

In addition, samples B, C, D, F, G showed the MB degradation rates of 51.61 %, 56.03 %, 62.80 %, 67.55 %, 

62.31 %, respectively. Comparing sample E and sample G, the MB degradation rate has been improved about 

10.0 %. Based on this experiment, it can be confirmed that by mixing about 10 - 20 wt% Ni-SP to P25, 

we could enhance the overall photocatalytic activity of the commercial P25 powder. 

 

 

Table 1. Single-layer samples made of different ratios of Ni-SP and P25 powders 

Sample  P25 (wt%) Ni-SP (wt%) Layer 
A 0 100 Single layer 

B 16 84 Single layer 

C 50 50 Single layer 

D 66 34 Single layer 

E 83 17 Single layer 

F 91 9 Single layer 

G 100 0 Single layer 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Enhancing the photocatalytic activity of commercial P25 TiO2 powder… (Yoshiki Kurokawa) 

1787 

 
 

Figure 8. SEM images of some single-layer thin films ((A), (C), (E), 

and (G) represent samples A, C, E, and G, respectively) and four-layer thin films ((AA), (CC), (EE), 

and (GG) represent samples AA, CC, EE, and GG, respectively) 

 

 

  
Figure 9. UV-vis spectra of samples A, E, and G Figure 10. Photocatalytic degradation rates of MB 

dye by samples A – G 

 

 

3.3.  Multilayer thin films (four layers) 
In order to reduce cracks on the thin-film surface, we fabricated multilayer thin films with a four-

layer structure. Table 2 shows multilayer thin-film samples made of different ratios of Ni-SP and P25 

powders (the same ratios as samples in Table 1. The MB degradation experiment was also conducted using 

these multilayer thin films. Figure 8 shows SEM images of the surfaces of samples A, C, E, G, AA, CC, EE, 

GG. The single-layer thin films had many cracks on their surface Figure 8 (A), (C), (E), and (G). 
These cracks caused to reduce the surface area of these thin films. On the other hand, there was almost no 

crack observed on the surfaces of the four-layer thin films Figure 8 (AA) (CC) (EE) (GG). It can be 

confirmed that the multilayer fabrication method can improve the quality of the thin films. 

 

 

Table 2. Multilayer samples made of different ratios of Ni-SP and P25 powders 
Sample P25 (wt%) Ni-SP (wt%) Layer 

AA 0 100 Four layers 

BB 16 84 Four layers 

CC 50 50 Four layers 

DD 66 34 Four layers 

EE 83 17 Four layers 

FF 91 9 Four layers 

GG 100 0 Four layers 
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The MB degradation rates of samples AA – GG are shown in Figure 11. Similar to the single-layer 

thin films, sample EE (P25 83 wt% and Ni-SP 17 wt%) also had the highest MB degradation rate of 75.83 %. 

Meanwhile, sample AA (Ni-SP only) also had the lowest MB degradation rate of 54.47%. The MB 

degradation rates of samples BB, CC, DD, FF, GG were 54.96 %, 61.13 %, 65.61 %, 75.23 %, 67.30 %, 

respectively. By combining Ni-SP with P25, the MB degradation rate could be improved 12.6 % (comparing 

sample EE with sample GG). All samples with four layers achieved higher MB degradation rates than that of 

the single-layer samples. If comparing sample E and sample EE, the MB degradation rate has been improved 

by about 10.0 % (from 68.84 % to 75.83 %).  
 

 

 
 

Figure 11. Photocatalytic degradation rates of MB dye by samples AA-GG 

 

 

4. CONCLUSION  

In this paper, we used Ni-doped TiO2  powder fabricated by the sol-gel method to enhance  

the photocatalytic activity of commercial P25 TiO2 powder. Multilayer EPD fabrication method was also 
utilized to improve the quality of the thin films, as a result, the higher MB degradation rates have been 

obtained. The handmade Ni-SP powder showed visible light absorbance (400-500 nm). Because of large 

particle size (~ 100 nm), Ni-SP thin films achieved low photocatalytic activity if compared with P25 thin 

films. However, by combining a suitable amount of Ni-SP with P25, significant improvement in 

photocatalytic activity could be obtained. 
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