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with high accuracy

Abedallah Rababah1, Moath Jaradat2

1Department of Mathematical Sciences, United Arab Emirates University, United Arab Emirates
1,2Department of Mathematics, Jordan University of Science and Technology, Jordan

Article Info

Article history:

Received Apr 14, 2019
Revised Oct 20, 2019
Accepted Oct 30, 2019

Keywords:

Approximation order
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ABSTRACT

In this paper, a new method for the approximation of offset curves is presented using
the idea of the parallel derivative curves. The best uniform approximation of degree 3
with order 6 is used to construct a method to find the approximation of the offset curves
for Bézier curves. The proposed method is based on the best uniform approximation,
and therefore; the proposed method for constructing the offset curves induces better
outcomes than the existing methods.
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1. INTRODUCTION
The offset curves appeared in the 19th century and are widely used in Computer Aided Design/Computer

Aided Manufactoring CAD/CAM applications, and has other applications in many computer fields. Many
studies on the offset approximation are carried out by many researchers. Hoschek [1] approximated the offset
curves using splines. Rational offset curves are approximatedby Farouki and Sakkalis [2] by constructing the
Pythagorean-hodograph (PH) curves. In [3], rational offset curves based on the quadratic approximation of
the circular arc are approximated. Recently, offset approximation curves based on the circular arc approxima-
tions are presented [4-6] yielding rational offset approximation which are the convolution of the unit normal
vector and the given curve. The offset approximation in this paper is based on the best uniform approxima-
tion of the circular arc and yields a polynomial offset approximation curve. The best uniform approxima-
tion of the circular arc of degree 3 presented in [7] where the error function is the Chebyshev polynomial of
degree 6, see also [8-16]. .

This offset method is constructed as follows: given a Bézier curve b(t) and its unit normal vector N(t)
which is a circular arc. Then we use the best uniform approximation of degree 3 to approximate the unit normal
vector of the given curve. Since the best uniform approximation is of high accuracy then it is anticipated that
the approximation of the normal vector is as of high accuracy. Thereafter, a special reparametrization of the
approximation to unit normal vector Na(t) is carried out to have the same length as the unit normal vector
N(t). In this method one step approximation is used so the error will be less than other methods. There are
three types of approximation with respect to the norm; L1 norm, L2 norm, and L∞ norm which is the best
uniform approximation that we are using in my paper. Cubic Bézier curves are commonly used in almost all
industrial companies; it is used in computer graphics, animation, modeling, CAD, CAGD, design, and many
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other related fields. In these and other applications in CG and CAGD, conic sections are the most commonly
used curves in any CAD system.

The Bernstein polynomials are one of the most important polynomials in mathematics. They serve
essential tasks in numerical, approximation and Bézier curves, because they form basis which are numerically
stable. The Bernstein basis polynomials of degree n are defined as [17-19]:

Bn
i (t) =

(
n

i

)
ti(1− t)n−i, t ∈ [0, 1], i = 0, 1, 2, ..., n, (1)

where the binomial coeffcients are given by (
n

i

)
=

n!

i!(n− i)!
.

The Bernstein polynomials are used as basis for the approximation and representation of curves and
are generalized to triangular surfaces [20,21]. The Bernstein polynomials are, in particular, important for the
construction of the Bézier curves that are defined as follow.

A Bézier curve of degree n is defined by

b(t) =

n∑
i=0

biB
n
i (t) =

(
x(t)

y(t)

)
, t ∈ [0, 1], (2)

where bi’s are the control points, and Bn
i (t) are the Bernstein polynomials of degree n.

For a given Bézier curve b(t) in (2), the offset curve br(t) with offset distance r ∈ R+ is given by

br(t) = b(t) + rN(t), (3)

where N(t) is the unit normal vector of b(t) given by

N(t) =
(y′(t),−x′(t))√
(x′(t))2 + (y′(t))2

. (4)

The error function e(t) is used to measure the error between N(t) and Na(t) and is given by

e(t) = (
y′(t)√

x′2(t) + y′2(t)
− y′a(t)√

x′2a (t) + y′2a (t)
)2 + (

x′(t)√
x′2(t) + y′2(t)

− x′a(t)√
x′2a (t) + y′2a (t)

)2

2. RESEARCH METHOD
In this section, we present a new method of offset curve approximation of the n-th degree Bézier curve

by a curve of degree 3. The best uniform approximation of the circular arc of degree 3 of order 6 is presented
in [7], see also [22-24]. The cubic approximation of circular arc p(t) has a parametrically defined polynomial
curve given by

p(t) =

(
−0.515647 + 5.99959t− 5.99959t2

−0.874847− 2.25031t+ 12t2 − 8t3

)
, t ∈ [0, 1]. (5)

Let b(t) be a regular planar Bézier curve of degree n given in (2) and N(t) be its unit normal vector
given in (4). As shown in Figure 1., given any Bézier curve b(t) then by the definition of the convolutio, the
tangent line of b(t) is parallel to the tangent line of N(t) which is the unit normal vector for b(t), ∀ t ∈ [0, 1].

Approximating offset curves using Bézier curves... (Abedallah Rababah)



1650 r ISSN: 2088-8708

Figure 1. Tangent of b(t) (thick) parallel to the tangent of N(t) (dashed)

Thus

b ∗ rN(t) = b(t) + rN(t) = br(t).

Since N(t) is circular arc, the tangent line of N(t) is parallel to the tangent line of b(t), then the
approximation of N(t) is also circular arc and parallel to b(t). Note that, Na(s(t)) and b(t) have the same unit
normal vector. So, the offset approximation is given by

bar(t) = b ∗ rNa(s(t)) = b(t) + rNa(s(t)), t ∈ [0, 1]. (6)

The construction of the approximation Na(s(t)), t ∈ [0, 1] for the cubic Bézeir curve is considered.

Na(s) =

(
(−2.25031 + 24s− 24s2),−(5.99959− 11.9992s)√
(5.99959− 11.9992s)2 + (−2.25031 + 24s− 24s2)2

)
, (7)

where s = s(t), t ∈ [0, 1] is regular reparametrization to make both curves begin and end at the same points.
The curve defined by

bar(t) = b ∗Na(s(t)) = b(t) + rNa(s(t)), t ∈ [0, 1],

is the approximation of the offset curve by cubic Bézier curve where Na(s(t)) is as in (7).
The computation of the reparametrization, s = s(t), where t ∈ [0, 1] is considered. Na(t) and N(t)

have different parameters, both of them are circular arcs, but they do not have the same start and end points.
Figure 2. shows Na(t) and N(t) for a Bézier curve b(t). A reparametrization s = s(t) is presented, so that the
curve and its approximation begin and end at the same points.

Figure 2. N(t) (thick ) for Bézier curve and the approximation Na(t) (dashed)
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Let b(t) be the curve in (2) and N(t) be its unit normal vector. The reparametrization is

s(t) =
t

b
+

1− t

a
, t ∈ [0, 1],

where a, b are given by the follwing: the first step we find N(0) and N(1) for the given curve, b(t). We get to
solve the equations

Na(
1

a
) =

(
xa( 1a )

ya( 1a )

)
= N(0) =

(
x(0)

y(0)

)
(8)

Na(
1

b
) =

(
xa( 1b )

ya( 1b )

)
= N(1) =

(
x(1)

y(1)

)
. (9)

By the symmetry of the approximation of the circular arc, in equation (8), xa( 1a ) and ya( 1a ) equal to
zero at the same parameters, and (9), xa( 1b ) and ya( 1b ) equal to one at the same parameters, then a equals the
parameter in (8) and b equals the parameter in (9).

By solving the following equations

(−2.25031 + 24( 1a )− 24( 1a )
2)√

(5.99959− 11.9992( 1a ))
2 + (−2.25031 + 24( 1a )− 24( 1a )

2)2
= x(0)

and
−(5.99959− 11.9992( 1a ))√

(5.99959− 11.9992( 1a ))
2 + (−2.25031 + 24( 1a )− 24( 1a )

2)2
= y(0)

we get the value of the parameter a.
And by solving

(−2.25031 + 24( 1b )− 24( 1b )
2)√

(5.99959− 11.9992( 1b ))
2 + (−2.25031 + 24( 1b )− 24( 1b )

2)2
= x(1)

and
−(5.99959− 11.9992( 1b ))√

(5.99959− 11.9992( 1b ))
2 + (−2.25031 + 24( 1b )− 24( 1b )

2)2
= y(1)

we get the value of the parameter b.
Then the approximation of Na(t) for the cubic case is

Na(t) =

(
(−2.25031 + 24( tb +

1−t
a )− 24( tb +

1−t
a )2),−(5.99959− 11.9992( tb +

1−t
a ))√

(5.99959− 11.9992( tb +
1−t
a ))2 + (−2.25031 + 24( tb +

1−t
a )− 24( tb +

1−t
a )2)2

)
.

3. RESULTS AND ANALYSIS
The method is applied for the following cubic parametric curve:

(
x(t)

y(t)

)
=

(
27.2688t3 + 341.56752t2(1− t) + 351.1t(1− t)2 + 51.1(1− t)3

47.1461t3 + 338.8523975t2(1− t) + 333.324t(1− t)2 + 21.4(1− t)3

)
, (10)

where t ∈ [0, 1] and the unit normal vector is given by:

N(t) =

( (35.772(1−t)2+33.1704(1−t)t+24.8811t2)√
(35.772(1−t)2+33.1704(1−t)t+24.8811t2)2+(0.(1−t)2−57.1949(1−t)t−42.8962t2)2

(−(0.(1−t)2−57.1949(1−t)t−42.8962t2))√
(35.772(1−t)2+33.1704(1−t)t+24.8811t2)2+(0.(1−t)2−57.1949(1−t)t−42.8962t2)2

)
.

Approximating offset curves using Bézier curves... (Abedallah Rababah)



1652 r ISSN: 2088-8708

Figure 3. represents the graph of the cubic parametric curve and Figure 4. is the cubic parametric
curve with its offset curve computed by the formula. Figure 5. illustrates the parametric cubic curve with
the cubic approximation of the offset curve and the original offset curve. And Figure 6. illustrates the error
between the offset curve and the approximation of the offset curve.

Figure 3. The cubic parametric curve Figure 4. Cubic parameteric curve (thick)
and its offset curve (dashed)

By solving eqautions (8) and (9), we get

a = 2, b = 1.28862.

Figure 5. Cubic curve (thick) and its
offset curve (dashed) and the cubic
approximation of the offset curve

(dotted)

Figure 6. Error between offset curve
and the approximation offset curve

4. CONCLUSION
In this article, cubic approximation of offset curve is established. The method is based on the best

uniform approximation of the circular arc of degree 3 with order 6. The numerical examples reveal how
efficient this method is. The maximum error is 5× 10−16, thus the proposed method induced better outcomes
than the existing methods. The results in this paper can be used to improve the results obtained in [25], see also
the results in [26].
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