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ABSTRACT

A novel numerical method is proposed for Korteweg-de Vries Fractional Equation.
The fractional derivatives are described based on the Caputo sense. We construct
the solution using different approach, that is based on using collocation techniques.
The method combining a finite difference approach in the time-fractional direction,
and the Sinc-Collocation in the space direction, where the derivatives are replaced by
the necessary matrices, and a system of algebraic equations is obtained to approximate
solution of the problem. The numerical results are shown to demonstrate the efficiency
of the newly proposed method. Easy and economical implementation is the strength
of this method.
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1. INTRODUCTION
Nonlinear partial differential equations appear in many branches of physics, engineering and applied

mathematics. In recent years, there has been a growing interest in the field of fractional calculus. Oldham and
Spanier [1], Miller and Ross [2], and Podlubny [3] provide the history and a comprehensive treatment of this
subject. Fractional calculus is the field of mathematical analysis, which deals with the investigation and appli-
cations of integrals and derivatives of arbitrary order, which can be real or complex. The subject of fractional
calculus has gained importance during the past three decades due mainly to its demonstrated applications in dif-
ferent areas of physics and engineering. Several fields of applications of fractional differentiation and fractional
integration are already well established, some others just started. Many applications of fractional calculus can
be found in turbulence and fluid dynamics, stochastic dynamical systems, plasma physics and controlled ther-
monuclear fusion, nonlinear control theory, image processing, nonlinear biological systems. It is important to
solve time fractional partial differential equations. It was found that fractional time derivatives arise generally
as infinitesimal generators of the time evolution when taking along time scaling limit. Hence, the importance
of investigating fractional equations arises from the necessity to sharpen the concepts of equilibrium, stability
states, and time evolution in the long time limit. There has been some attempt to solve linear problems with
multiple fractional derivatives. In [4], an approximate solution based on the decomposition method is given
for the generalized fractional diffusion-wave equation. In [5], the authors used the Sinc-Legendre collocation
method to a numerical solution for a class of fractional convection-diffusion equation.

The theory of nonlinear dispersive wave motion has recently undergone much study, especially
by Whitham [6]. It can be shown that the theory of water waves for the case of shallow water and waves
of small amplitude can be approximately described by the Korteweg-de Vries equation
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∂u(x, t)

∂t
+ (c+ u(x, t))

∂u(x, t)

∂x
+ β

∂3u(x, t)

∂x3
= 0, (x, t) ∈ IR× (0, T ) (1)

where c and β are given constants, and u gives the height of a wave above some equilibrium level.
Since the amplitude of these waves is assumed to be small, it can serve as a perturbation parameter.
These problems have been studied by many authors [7-9]. However, they used a formal perturbation
technique. Sometimes called multiscale expansion, or, using evens functions techniques, as in [10]. One aspect
that has been investigated is the linearized form of Equation (1):

∂u(x, t)

∂t
+ c

∂u(x, t)

∂x
+ β

∂3u(x, t)

∂x3
= 0, (x, t) ∈ IR× (0, T ) (2)

which has traveling wave solutions u(x, t) = a cos(kx− ωt), where a is constant and ω = ω(k) = ck − βk3.
The existence of traveling wave solutions to (2) already has been studied in [11]. If we drop the third derivative
term in (1), we have

∂u(x, t)

∂t
+ (c+ u(x, t))

∂u(x, t)

∂x
+ β

∂3u(x, t)

∂x3
= 0, (x, t) ∈ IR× (0, T )

which is a quasi-linear first-order wave equation whose wave speed depends on the amplitude and has the
implicit solutions u(x, t) = a cos[kx − k(c + u)t]. If c = 0;β = 1 in Equation k(1) we get another form of
Korteweg-de Vries equation

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
+ β

∂3u(x, t)

∂x3
= 0, (3)

This nonlinear equation admits traveling wave solutions of different types. One particular type of traveling
wave that arises from the Korteweg-de Vries equation is the soliton, or solitary wave. The same equation (3)
has also come up in the theory of plasma and several other branches of physics.

In recent years, there has been a growing interest in the field of fractional calculus. Oldham and
Spanier [1], Miller and Ross [2], and Podlubny [3] provide the history and a comprehensive treatment of
this subject. Fractional calculus is the field of mathematical analysis, which deals with the investigation and
applications of integrals and derivatives of arbitrary order, which can be real or complex. Many applica-
tions of fractional calculus can be found in turbulence and fluid dynamics, stochastic dynamical systems,
plasma physics and controlled thermonuclear fusion, nonlinear control theory, image processing, nonlinear
biological systems, for more see [12] and the references therein. Indeed, it provides several potentially useful
tools for solving differential equations. It is important to solve time fractional partial differential equations.
It was found that fractional time derivatives arise generally as infinitesimal generators of the time evolution
when taking along time scaling limit. Hence, the importance of investigating fractional equations arises from
the necessity to sharpen the concepts of equilibrium, stability states, and time evolution in the long time limit.
In general, there exists no method that yields an exact solution for nonlinear fractional partial differential
equations. There has been some attempt to solve linear problems with multiple fractional derivatives.
In the present paper, we consider the fractional Korteweg-de Vries Equation

∂αu(x, t)

∂tα
+ (c+ u(x, t))

∂u(x, t)

∂x
+ β

∂3u(x, t)

∂x3
= 0, (x, t) ∈ IR× (0, T ) (4)

with the initial condition

u(x, 0) = f(x), x ∈ IR (5)

Following [13], we construct the solution using different approach, that is based on using
collocation techniques. The method combining a finite difference approach in the time-fractional direction,
and the Sinc-Collocation in the space direction, where the derivatives are replaced by the necessary matrices,
and a system of algebraic equations is obtained to approximate solution of the problem.

Many researchers have used various numerical methods to solve Korteweg-de Vries Equation.
Al-Khaled [14], uses Sinc-Galerkin method to find a numerical solution of the Korteweg-de Vries Equation.
The method results in an iterative scheme of an error of order O(exp(−c/h)) for some positive constants c, h.
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In [15], the KdV equation is transformed into an equivalent integral equation, and a Sinc-collocation procedure
is developed for the integral equation.

In this paper, following the same idea as in [13], we will use Sinc-methodology to study the solution
of equation (4). We will present a simple numerical method that uses finite differences to replace the first-order
time derivative with a fractional derivative of order α, with 0 < α ≤ 1. The physical interpretation of the
fractional derivative is that it represents a degree of memory in the diffusing material. The Sinc-collocation
method will be used in the space direction. The main idea is to replace differential and integral equations by
their Sinc approximations. The ease of implementation coupled with the exponential convergence rate have
demonstrated by viability of this method.

To enable us to follow the solution of the Fractional Burgers’ equation [17, 20, 23], many definitions
and studies of fractional calculus have been proposed in the last two centuries. These definitions include,
Riemman-Liouville, Weyl, Reize, Campos, Caputa, and Nishimoto fractional operator. The Riemann-Liouville
definition of fractional derivative operator Jαa which is defined in [1]. The Riemann-Liouville derivative
has certain disadvantages when trying to model real-world phenomena with fractional differential equations.
Therefore, we shall introduce a modified fractional differentiation operatorDα proposed by Caputo’s (see, [2]).
Sinc function that will be used in this project, are discussed in Stenger [15] and by Lund [24].

2. CONSTRUCTION OF THE SCHEME
In this section, finite difference method scheme and Sinc-Collocation method is used for solving the

Fractional Burgers’ equation (4). In the analysis of the numerical method that follows, we will assume that
problem (4)-(5) has a unique and sufficiently smooth solution.

2.1. Fractional time-derivative
This sub-section is devoted to a description of the operational properties of the purpose of acquaint-

ing with sufficient fractional calculus theory. Many definitions and studies of fractional calculus have been
proposed in the last two centuries. These definitions include, Riemman-Liouville, Weyl, Reize, Campos,
Caputa, and Nishimoto fractional operator. As mentioned in [19], the Riemann-Liouville derivative has certain
disadvantages when trying to model real-world phenomena with fractional differential equations. Therefore,
we shall introduce now a modified fractional differentiation operator Dα proposed by Caputo in his work on
the theory of viscoelasticity [22]. The Caputo fractional derivative is considered in the Caputo sense. For more
details on the geometric and physical interpretation for fractional derivatives of both Riemann-Liouville and
Caputo types see [22].

Definition 1 For m to be the smallest integer that exceeds α, the Caputo fractional derivatives of order α > 0
is defined as

Dαu(x, t) =
∂αu(x, t)

∂tα
=


1

Γ(m−α)

∫ t
0
(t− τ)m−α−1 ∂

mu(x,τ)
∂τm dτ, m− 1 < α < m

∂mu(x,t)
∂tm , α = m ∈ N

For mathematical properties of fractional derivatives and integrals one can consult the above
mentioned references.

2.2. Discretization the time-fractional derivative
Consider the one-dimensional time-fractional Burgers’ equation (4). Following [16], we introduce

a finite difference approximation to discretize the time-fractional derivative. Let tk = k∆t, k = 0, 1, ...K,
where ∆t = T/K is the time step. Now by using the definition of Caputo time-fractional derivative, and since
0 < α ≤ 1, in Definition 1, we take m = 1, then for k = 0, 1, ...,K, we have
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∂αu(x, tk+1)

∂tα
=

1

Γ(1− α)

∫ tk+1

0

∂u(x, s)

∂s

ds

(tk+1 − s)α
=

1

Γ(1− α)

k∑
j=0

∫ tj+1

tj

∂u(x, s)

∂s

ds

(tk+1 − s)α

=
1

Γ(1− α)

k∑
j=0

u(x, tj+1)− u(x, tj)

∆t

∫ tj+1

tj

ds

(tk+1 − s)α
+ rk+1

∆t

where rk+1
∆t is the truncation error, that takes the form

rk+1
∆t ≤ cu

1

Γ(1− α)

k∑
j=0

∫ tj+1

tj

(tj+1 − tj − 2s)

(tk+1 − s)α
ds+O(∆t2)

It has been proved in [16] that rk+1
∆t ≤ cu∆t2−α, where cu is a constant depending only on u. Set ξ = tj+1−s,

and since tk = k∆t, k = 0, 1, ...,K, we have: As s = tk, then ξ = tk+1 − tk = ∆t(k − j) = tk−j ,
and as s = tj+1, then ξ = tk−j . Therefore,

∂αu(x, tk+1)

∂tα
≈ 1

Γ(1 − α)

k∑
j=0

u(x, tj+1) − u(x, tj)

∆t

∫ tk−j+1

tk−j

dξ

ξα
=

1

Γ(1 − α)

k∑
j=0

u(x, tk−j+1) − u(x, tk−j)

∆t

∫ tj+1

tj

dξ

ξα

=
1

Γ(2 − α)

k∑
j=0

u(x, tk−j+1) − u(x, tk−j)

∆t

[
(tj+1)1−α − (tj)

1−α
]

=
1

Γ(2 − α)

k∑
j=0

u(x, tk−j+1) − u(x, tk−j)

∆t

[
(∆t)1−α[(j + 1)1−α − (j)1−α]

]
To simplify the above result, we introduce the notations bj = (j + 1)1−α − j1−α, j = 0, 1, 2, ...,K,
and we define the discrete fractional differential operator

∂αu(x, tk+1)

∂tα
≈ 1

(∆t)αΓ(2− α)

k∑
j=0

bj

[
u(x, tk−j+1)− u(x, tk−j)

]
(6)

In equation (4), replace t by tk+1, and plug in into equation (6), we obtain the approximation

1

Γ(2− α)(∆t)α

k∑
j=0

bj

[
u(x, tk−j+1)−u(x, tk−j)

]
= −β ∂

3u(x, tk+1)

∂x3
−(c+u(x, tk+1))

∂u(x, tk+1)

∂x
, k = 0, 1, ...,K,

or,
k∑
j=0

bk−j

[
u(x, tj+1)− u(x, tj)

]
= (∆t)αΓ(2− α)

(
− β ∂

3u(x, tk+1)

∂x3
− (c+ u(x, tk+1))

∂u(x, tk+1)

∂x

)
(7)

Let uk(x) be an approximation to u(x, tk), and call ν = Γ(2 − α)(∆t)α, then for k = 0, 1, ...,K, the above
equation becomes

k∑
j=0

bk−juj+1(x) =

k∑
j=0

bk−juj(x) + ν
(
− β d3

dx3
uk+1(x)− (c+ uk+1(x))

d

dx
uk+1(x)

)
(8)

Sinc collocation linked with finite differences for... (Kamel Al-Khaled)



516 r ISSN: 2088-8708

2.3. Sinc-Collocation
The goal of this sub-section is to recall notations and definitions of the Sinc function that will be used

in this paper. These are discussed in [15, 24, 21]. The sinc function is defined on the whole real line, by

sinc (z) ≡
{

sin(πz)
πz , z 6= 0,

1, z = 0.
(9)

For h > 0 and k = 0,±1,±2, ..., the translated sinc function with evenly spaces nodes are given by

S(k, h)(z) ≡


sin[(πh )(z−kh)]

[(πh )(z−kh)] , z 6= kh,

1, z = kh.

(10)

Definition 2 Let d > 0, and let Dd denote the region {z = x + iy : |y| < d} in the complex plane IC, and φ
the conformal map of a simply connected domainD in the complex domain ontoDd such that φ(a) = −∞ and
φ(b) = ∞, where a and b are boundary points of D, i.e., a, b ∈ ∂D. Let ψ denote the inverse map of φ, and
let the arc Γ, with endpoints a and b (a, b /∈ Γ), given by Γ = ψ(−∞,∞). For h > 0, let the points xk in Γ
be given by xk = ψ(kh), k ∈ ZZ, ρ(z) = exp(φ(z)).

The sinc-collocation procedure for equation (8), begins by selecting composite sinc functions, appro-
priate to the interval (a, b), as the basis function for the expansion of the approximate solution for u(x). For the
present paper the interval Γ in the above definition is (−∞,∞). Therefore, to approximate the first and third
derivative we take φ(x) = x. The basis functions are derived from the composite translated sinc functions

Si(x) = S(i, h) ◦ φ(x) = sinc [(φ(x)− ih)/h] (11)

Si(x) = S(i, h) ◦ φ(x) = S(i, h)(x) in equation (11) define the basis element for equation (8) on the interval
(−∞,∞). Here h is the mesh size, the sinc grid points xn ∈ (−∞,∞) will be denoted by xn because they
are real. The inverse images of the equispaced grids are xn = φ−1(nh). Also for positive integer N , define

CN (f, h)(x) =

N∑
i=−N

f(ih)S(i, h) ◦ φ(x) =

N∑
i=−N

f(ih)S(i, h)(x). (12)

To approximate the derivatives of a function f(x) by the sinc expansion, the derivatives of sinc
functions be evaluated at the nodes will be needed [15, 24]. In particular, the following convenient notation
will be useful in formulating the discrete system.

δ
(0)
k−j =

 1, j = k

0, j 6= k,
δ

(1)
k−j = h d

dx [S(j, h) ◦ φ(x)
∣∣∣
x=xk

=


0, j = k

(−1)j−k

j−k , j 6= k

and,

δ
(3)
k−j = h3 d3

dx3 [S(j, h) ◦ φ(x)
∣∣∣
x=xk

=


0, j = k

(−1)j−k

(j−k)3 [6− π2(j − k)2], j 6= k

Now, we expand uk(x), k = 0, 1, ...,K − 1 by Sinc function

uk(x) =

N∑
i=0

Cki Si(x), k = 1, ...,K (13)

where Ck0 , C
k
1 , ..., C

k
N are unknown coefficients to be determined. Substitute equation (13) into equation (8),

for k = 0, 1, ...,K − 1, we have
k∑
j=0

N∑
i=0

Cj+1
i Si(x)bk−j =

k∑
j=0

N∑
i=0

Cji Si(x)bk−j−νβ
N∑
i=0

Ck+1
i S′′′i (x)−ν

(
c+

N∑
i=0

Ck+1
i Si(x)

) N∑
i=0

Ck+1
i S′i(x).

(14)
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To find the unknown coefficientsCk0 , C
k
1 , ..., C

k
N , Sinc collocation method with collocation points xn is applied

to equation (14), and for k = 1, ...,K yield

k∑
j=0

N∑
i=0

Cj+1
i Si(xn)bk−j =

k∑
j=0

N∑
i=0

Cji Si(xn)bk−j − νβ

N∑
i=0

Ck+1
i S′′′i (xn)

−ν
(
c+

N∑
i=0

Ck+1
i Si(xn)

) N∑
i=0

Ck+1
i S′i(xn). (15)

where u0(x) can be obtained from the initial condition as follows:

u0(x) = u(x, t0) = f(x). (16)

Equations (15)-(16) generate a set of N + 1 algebraic equations which can be solved to find the unknown
coefficients Ck0 , C

k
1 , ..., C

k
N .

2.4. Matrix Form of the proposed method
In order to find the matrix form of the proposed method, define Toeplitz matrices I(q)

jk , q = 0, 1, 3

whose jkth entry is given by δ(q)
k−j . Note that the matrices I(1)

jk , I(3)
jk are skew symmetric, and the matrix I(0)

jk

is an identity matrix. By separating the kth term from the first term of left hand side of equation (15), and for
n = 0, 1, ..., N − 1, we obtain

N∑
i=0

Ck+1
i Si(xn)b0 + νβ

N∑
i=0

Ck+1
i S′′′i (xn) =

k∑
j=0

N∑
i=0

Cji Si(xn)bk−j −
k−1∑
j=0

N∑
i=0

Cj+1
i Si(xn)bk−j

+ ν
(
c+

N∑
i=0

Ck+1
i Si(xn)

) N∑
i=0

Ck+1
i S′i(xn). (17)

In the above equation, collect terms, and making the same upper indices, we have

N∑
i=0

Ck+1
i

[
Si(xn)b0 − νβS′′′i (xn)

]
=

k∑
j=0

N∑
i=0

Cji Si(xn)
[
bk−j − bk+1−j

]

+ ν
(
c+

N∑
i=0

Ck+1
i Si(xn)

) N∑
i=0

Ck+1
i S′i(xn). (18)

The matrix form can be obtained for k = 0, 1, ...,K − 1 and n = 1, 2, ..., N − 1 as

M [C]k+1 =

k∑
`=0

(bk−` − bk−`+1)Ad[C]`.

where,

M = [Ad − νβB − νA([C]k+1)T ◦ (c− [C]k+1)],
[C]k = [Ck0 , C

k
1 , ..., C

k
N ]T , here T is the transpose.

Ad = [I
(0)
ij : i = 2, ..., N − 1, j = 1, ..., N, and 0 elsewhere]N×N ,

A = [I
(1)
ik : i = 2, ..., N − 1, j = 1, ..., N, and 0 elsewhere]N×N , and

B = [I
(3)
ik : i = 2, ..., N − 1, j = 1, ..., N, and 0 elsewhere]N×N .
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The symbol ◦ in matrix M means the componentwise multiplication. We can obtain the coefficients
Cki , i = 0, 1, ..., N of the approximate solution by solving the linear system using an iterative technique.
The convergence of the of the series uk to u with increasing the number of collocation points N , we require
two necessary conditions, first, the function u must belong to the Paley Wiener space [15], and second, u must
defined on the whole real line. For the analysis of the stability for the Sinc method for solving the fractional
Burgers’ equation, we may refer readers to resemble similar proof in [13].

3. NUMERICAL RESULTS
Here, we obtain some numerical results for the solutions of the fractional KdV equation (2). We use

the parameters, d = π/2, N = 16 to check the performance for the solution of the fractional KdV equation.
The computations associated with the example were performed using Mathematica.

Example 1 Consider the non-linear fractional KdV equation

∂αu(x, t)

∂tα
+ 6u(x, t)

∂u(x, t)

∂x
+
∂3u(x, t)

∂x3
= 0, 0 ≤ x ≤ 1, 0 < α ≤ 1, t > 0 (19)

It is be noted that the exact solution for any α has the closed form [18]

u(x, t;α) = sech 2
( 1√

2

[
x− 2tα

Γ[1 + α]

])
(20)

In order to illustrate the approximate solution is efficiency and accurate. Some numerical values for
given explicit values of the parameters t and α for fixed x = 0.2 are depicted in Table 1. From the numerical
values in Table 1, it can be seen that the exact solution (α = 1) is quite close to the approximate solution
when α = 0.95. Also, in Figure 1 it is observed that the values of the approximate solution at different α’s
has the same behavior as those obtained using equation (20) for which α = 1. This shows the approximate
solution is efficiency. In the theory of fractional calculus, it is obvious that when the fractional derivative
α(m− 1 < α ≤ m) tends to positive integer m, then the approximate solution continuously tends to the exact
solution of the problem with derivative m = 1. A closer look at the values in Tables 1 and 2, we observe
that our approach do have this characteristic. Figures 2 and 3 shows the approximate solution for α = 0.25
and α = 1 respectively. Comparison of Figures 2 and 3 shows that the solution continuously depends on the
fractional derivatives.

Table 1. Numerical Results obtained by equation (20) for various values of α when x = 2
t α = 1 α = 0.95 α = 0.75 α = 0.50 α = 0.25 α = 0.10

0.1 0.269740 0.279333 0.336412 0.480254 0.759333 0.947435
0.2 0.341487 0.358411 0.450034 0.634307 0.874187 0.978219

0.3 0.426435 0.449797 0.566152 0.756832 0.935571 0.990783

0.4 0.523486 0.551760 0.680689 0.852402 0.970527 0.996662
0.5 0.629290 0.666666 0.786983 0.922553 0.989626 0.999259

Α = 1

Α = 0.9

Α = 0.1

Α = 0.5

-6 -4 -2 2 4 6
x

0.2

0.4

0.6

0.8

1.0

u

Figure 1. The approximate solution when t = 0.2, for different values of α
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-5

0

5
0.00

0.05

0.10

0.0

0.5

1.0

Figure 2. The approximate solution when α = 0.25

-5

0

5
0.00

0.05

0.10

0.0

0.5

1.0

Figure 3. The approximate solution when α = 1.0

4. DISCUSSION AND CONCLUSIONS
The Sinc-Collocation method appears to be very promising for solving the fractional Burgers’

equation. An important advantage to be gained from the use of this method is the ability to produce very
accurate results. The example presented demonstrate the accuracy of the method, which is an improvement
over current methods such as finite elements and finite difference methods. This feature show the method
to be an attractive for numerical solutions to the fractional Burgers’ equation. We conclude, with confi-
dence, that the collocation using Sinc basis can be considered as a beneficial method for solving a broad
class of fractional nonlinear partial differential equations. The study of these equations will be the matter of
furthers investigations.

REFERENCES
[1] K. B. Oldham, J. Spanier, ”The Fractional Calculus,” Academic Press, New York, 1974.
[2] K. S. Miller, B. Ross, ”An introduction to the Fractional Calculus and Fractional Differential equations,”

John Wiley and Sons Inc. New York, 1993.
[3] I. Podlubny, ”Fractional Differential Equations,” Academic Press, New York, 1999.
[4] Kamel Al-Khaled, Shaher Momani, ”An approximate solution for a fractional diffusion-wave equation

using the decomposition method,” J. Comput. Appl. Math, vol. 165, pp. 473-483, 2005.
[5] A. Saadamandi, M. Dehghan, M.-Reza Aziz, ”The Sinc-Legendre collocation method for a class of frac-

tional convection-diffusion equations with variable coefficients,” Commun Nonlinear Sci. Numer. Simu-
lat. vol. 17, pp. 4125-4136, 2012.

[6] G.B. Whitham, ”Linear and Nonlinear Waves,” Wiley-Interscience, New York, 1974.
[7] R. Grimshaw, H. Mitsudera, ”Slowly varying solitary wave solutions of the perturbed Korteweg-de Vries

equation revisited,” Stud. Appl. Math. vol. 90, pp. 75-86, 1993.
[8] Kamel Al-Khaled, ”Numerical study of Fisher’s reaction-diffusion equation by the Sinc collocation

method,” J. Comput. Appl. Math., vol. 137, pp. 245-255, 2001.
[9] Y. Kodama, M. Ablowitz, ”Perturbations of solitons and solitary waves,” Stud. Appl. Math., vol. 64, pp.

225-245, 1994.
[10] T. Ogawa, H. Suzuki, ”On the spectra of pulses in a nearly integrable system,” SIAM J. Appl. Math. vol.

57 (2), pp. 485-500, 1997.
[11] N.M. Ercolani, D.W. Mclaughlin, H. Roitner, ”Attractors and transients for a perturbed Kdv equation,” A

nonlinear spectral analysis, J. Nonlinear Sci., vol. 3, pp. 477-539, 1993.
[12] Yanqin Liu, Zhaolli Li, Yueyun Zhang, ”Homotopoy Perturbation method for fractional biological popu-

lation equation,” Fractional Differential Calculus, vol. 1, No. 1, pp. 117-124, 2011.
[13] Marwan Alquran, Kamel Al-Khaled, Tridip Sardar, Joydev Chattopadhyay, ”Revisited Fisher’s Equation

in a new outlook: A fractional derivative approach,” Physica A: Statistical Mechanics and its Applications,
438, pp. 81-93, 2015.

[14] Kamel Al-Khaled, ”Sinc numerical solution for solitons and solitary waves,” J. Comput. Appl. Math.,
130, pp. 283-292, 2001.

Sinc collocation linked with finite differences for... (Kamel Al-Khaled)



520 r ISSN: 2088-8708

[15] F. Stenger, ”Numerical Methods Based on Sinc and Analytic Functions,” Springer-Verlag, New York,
1993.

[16] Yumin Lin, Chuanju Xu, ”Finite difference/special approximations for the time-fractional diffusion equa-
tion,” J. Comput. Phys., 225, pp. 1533-1552, 2007.

[17] J, M., Burgers’, ”Application of a model system to illusrate some points of the statistical theory of free
turbulance,” Proceedings of the Royal Academy of Sciences of Amsterdam, vol. 43, pp. 2-12,1940.

[18] Najeeb Alam Khan, Asmat Ara, ”Numerical solutions of time-fractional Burgers equations, a comparison
between generalized differential transform technique and homotopy perturbation method,” Inter. J. of
Numer. Methods for Heat and Fluid Flow, Vol. 22, No. 2, pp. 175-193, 2012.

[19] I. Podlubny, ”Gemmetric and physical interpretaion of fractional integration and fractional dif-
ferentaition,” Frac. Calc. Appl. Anal., vol. 5, pp. 367-386, 2002.

[20] Yufeng Xu, Om P. Agrawal, ”Numerical solutions and analysis of diffusion for new generalized fractional
Burgers equation,” Fractional Calculus and Applied Analysis, vol. 16, No. 3, pp. 709-736, 2013.

[21] Baumann Gerd, Stenger Frank, ”Fractional calculus and Sinc methods,” Frac. Calc. Appl. Anal., vol. 14,
No. 4, pp. 568-622, 2011.

[22] M. Caputo, ”Linear models of dissipation whose Q is almost frequency independent-II,” Geophys. J. R.
Astron. Soc., vol. 13, pp. 529-539, 1967.

[23] Amar G., Noureddine D., ”Existence and uniqueness of solution to fractional Burgers’ equation,” Acta
Univ. Apulensis, vol. 21, pp. 161-170, 2010.

[24] J. Lund and Bowers K. L, ”Sinc methods for quadrature and differential equations,” SIAM, Philadelphia,
1992.

BIOGRAPHY OF AUTHOR
Kamel Al-Khaled Full Professor, Department of Mathematics and Statistics, Faculty of Science and
Arts, Jordan University of Science and Technology, Irbid 22110, Jordan. email:kamel@just.edu.jo

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 512 – 520


