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 Wind farm has been growing in recent years due to its very competitive 
electricity production cost. Wind generators have gone from a few kilowatts 

to megawatts. However, the participation of the wind turbine in the stability of 
the electricity grid is a critical point to check, knowing that the electricity grid 
is meshed, any change in active and reactive flux at the network level affects 
its stability. With a rate of 50% wind turbine penetration into the electricity 
grid, the stability of the rotor angle is a dynamic phenomenon which is only 
visible by the variation of the active energy. The purpose of this journal is to 
verify the impact of wind turbine integration on an electrical grid, 
by exploiting the relationship between the reactive energy produced by 
the Doubly Fed Induction Generator equipping most wind energy systems, and 

the stability of the rotor angle of the synchronous generators equipping 
the conventional power plants in the electrical system. 
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1. INTRODUCTION  

The high rate of penetration of electricity produced by wind turbines into electricity grids is a serious 

challenge for power grid operators, because of their volatility and intermittency, the addition of a rotating 

reserve or the additional available capacity provided by the generators is a more than favorable solution for 
90% of the time in order to establish the balance between production and consumption [1-2]. Here comes 

the doubly fed induction generator (DFIG) that can generate electrical energy in several intervals and a high 

production of 30% compared to the conventional generator with a suitable command [3]. However, 

the electrical network must be able to maintain its electrical stability during the various faults occurring on 

the network [4]. 

By injecting a wind turbine into a given location, the network must be able to handle the conjectures 

of the electrical powers [5, 6]. In fact, the active energy produced by the DFIG contributes to the stability of 

the rotor angles of conventional generators and whose variation largely impact the electrical system [7], 

but the reactive energy provided by the DFIG remains critical for these synchronous generators equipping 

conventional power plants [8, 9]. In fact, the results of works in paper [10] shows that fault occurring in 

electrical grid has the greatest impact on generator swinging. When such a fault occurs, large currents and 
torques are produced, and action must be taken quickly if system stability is to be maintained. A decoupled 

control of the active and reactive energy injected by the DFIG can mitigate the reactive flow of the synchronous 

generators and minimize the angular instability of the electrical grid [11-12]. 
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The results of works in paper [13] showed that with a penetration rate of less than 50%, the DFIG 

contributes to grid stability due to its low rate of reactive energy consumption during disturbances.  

Another paperwork [14] showed that with a STATCOM FACTS equipping the power control system of a wind 

turbine, it allows a better control of active and reactive energy generated by the DFIG and improve the stability 

of the network. As for the other works [15] published by D. Gautam, V. Vittal and T. Harbor, they demonstrated 

that DFIG participates in the transient stability of the electricity grid relative to a fixed speed generator, when 

the system responds to the small disturbance, but may have a negative impact on larger disturbances. 

The methods discussed above remain limited because they only apply to a specific case. Moreover, the existing 

structure of the electrical grid is meshed and requires to calculate all types of shorts circuits to define the most 

critical, also they are based on calculation of the power flow which is not compatible with the active and 
the reactive regulation.  

Our contribution in this research is to verify the impact of the 50% penetration rate of the DFIG on 

the stability of the rotor angles on synchronous generators, of the conventional power plants in electrical system 

during the most critical faults. By simulating the transient regime based of optimal load flow calculation, 

we will show how the DFIG can interact with conventional generators by dealing with the power angle 

relationship; indeed, the DFIG behaves like a constant source of energy with a negative impedance during 

a single-phase fault. The performance of synchronous generators can be improved when wind farms based on 

DFIG are added with a rate of 50%. First, we will give a detailed description of the impact of high penetration 

rate of wind farm on the power grid. Second, we will present the adopted system to integrate a wind farm in 

the electrical grid. Third, we will perform a simulation of system performance using the RTE IEEE 9-bus 

standard electrical network in order to evaluate the transient stability impact of the DFIG. Finally, we will 
assess grid stability impact after injecting the wind farm analyzing the active, reactive energy and the rotor 

angle of the DFIG during the transient regime. 

 

 

2. PROBLEM FORMULATION 

2.1. Impact of wind turbines high penetration rate on the main voltage and frequency 

The production of the wind generator is proportional to the cube of the wind speed [16]. Knowing that 

this speed is volatile, this requires a variable and not storable production of active and reactive. In addition, 

from a high penetration rate, wind farms contribute to frequency fluctuations and voltage   instability [17-18]. 

When faced with these problems, the wind turbines are then equipped with an active and reactive control 

system, in particular variable speed wind turbines such as DFIG [19]. In fact, the turbines can control their 

rotation speed according to the wind speed, which reduces the fluctuations of generated power [20]. They also 
increase the energy captured at low wind speed. The speed increases and decreases slightly during a burst and 

the resulting of electrical power is effectively filtered by the inertia of the turbine [21]. Thus, any disturbance 

needs to be filtered. Otherwise, the conventional types of wind turbines can directly transfer these fluctuations 

to the electricity grid [22]. 

The voltage variation at the connection point of wind turbine following the active and reactive 

injection is deduced from the following equation [23]: 

 

∆𝑉 =
𝑅(𝑃𝑊−𝑃𝐿+𝑃𝐺)+𝑋(±𝑄𝑊−𝑄𝐿+𝑄𝐺)

𝑉
  

 

with: 

𝑅, 𝑋: Being the total resistance and the total reactance of the line 

𝑃𝑊 , 𝑄𝑊: Being the active and reactive powers provided by the wind turbine 

𝑃𝐿 , 𝑄𝐿: Being the active and reactive consumption powers  

𝑃𝐺 , 𝑄𝐺: Being the active and reactive grid powers  

The critical problem for the operator or the manager of the electricity network during interconnexion 

with a wind turbine lies in the obligation to define algorithms, so that the wind turbine remains connected to 
the network after any electrical failure [24], like a capacity of transmission during outages. Currently, all wind 

turbines have protection systems that trigger the turbine during a breakdown [25-26]. This essential equipment 

causes increasing pressure on auxiliaries and reliability standards. Indeed, the contribution of wind turbines in 

the case of windy and weak wind is modest but is very advantageous. When the penetration rate is considerable, 

it will no longer be possible for the wind to disconnect the turbines during voltage or frequency 

disturbances [27], which would result in a significant production deficit. The impact of wind turbine on voltage 

grid is visualised on Figure 1. 
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Figure 1. Effects of wind turbine integration on voltage grid 

 

 

2.2. Optimisation of DFIG intégration  

The calculation of optimal power flow is used to perfom power system, using voltage and power 

measurement , it can solve the problem of the active and reactive energy produced by wind farm [28], in fact 

the classical method based on load flow calculation does not take into account the limits of reactive power in 
lines and power plants, these constraints can however be programmed in power flow solvers ,in fact the reactive 

power capability of DFIG can play the role of reactive power compensation devices if the operating system 

limits the outpout of the wind farms [29]. In our case, we assumed that an independent producer is managing 

the 50% penetration rate of the wind farm. 

 

2.3. Active Energy Analysis 

The purpose of this analysis is to carry out the transient simulation of active energy produced by all 

the generators of the IEEE 9 Bus network. During Three-phase two-phase and single-phase short-circuit faults, 

at time t = 1s, this simulation will be our reference. Then we will integrate a DFIG represented by a wind farm 

with a fixed power factor of 0.8, which will replace a synchronous generator of 163 MW. Synchronous 

generators are modeled to visualize the impact of variable sources on fixed sources. The power factors will be 

set to 0.8 as well. As a result of their intermittency, wind farms produce variable active energies to the grid, 
which impacts the active flux at the point of interconnection. This flow variation affects the direction of the 

active flow in the interconnection lines. This is an advantage in terms of loss limitations but a disadvantage in 

the strong strangling section areas. 

The particularity of the DFIG lies in its rotor which is controlled so that the combined speed of 

the rotor and the rotational speed of the rotor flux vector correspond to those of the speed of the stator flux 

vector fixed by the network [30]. 

 

𝑃𝑅 = 𝑠 𝑃𝑆  
 

𝑃𝐺 = (1 ± 𝑠 )𝑃𝑆  
 

with: 

𝑃𝐺:The mechanical power provided by the generator 

𝑃𝑆:The power provided by the stator 

𝑃𝑅 : The power supplied to the rotor 

 

This imposes a generation of controlled active energy at a low penetration rate. The purpose of 

the transient analysis of the active energy at the output of the generators is to check their ability to withstand 

high network faults which explains their ability to generate sufficient electromagnetic torque to stabilize 
the frequency of the network. 
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2.4. Reactive energy analysis 

The same simulation will be carried out for the two case studies to visualize the generation of reactive 

energy by the fixed and variable generators. During a sudden fault, the generation of the reactive does not result 

from a mechanical force but results from a pure electric injection [31]. This transient analysis describes 

the impact of the DFIG reactive injection on the stability of the rotor angle of the synchronous generators. 

 

2.5. Stability of the rotor angle analysis 

Rotor angle stability is a dynamic phenomenon usually associated with changes in active and reactive 

power flows, that create angular separations between the synchronous units of the system with a very high 

penetration rate of wind energy [32]. This system will be subjected to a very large flow of active energy, which 
is essential for its stability. But how the DFIG injects reactive, the system can be critical for maintaining 

the angular stability of asynchronous systems. A transient simulation will be performed for the two previous 

cases to analyze the rotor angle separation of the synchronous systems. 

 

2.6. Short circuit faults calculation 

The transient stability of an electrical network is a critical element because the stability of the rotor 

angle of the synchronous generators depends on the configuration, the parameters and their proximity to 

a variable generator. Our system with 50% of wind turbine penetration impacts network behavior, and so 

the voltage stability is also affected. Our model has been tested under different short circuit faults calculated: 

Three-phase, two-phase grounded and single-phase. Calculations were made on MATLAB show in Table 1. 

This calculation allowed us to determine the most unfavorable default case or the most critical fault that is 
the single-phase between buses 9 and 6, and so the contingency created is the opening of the two circuit 

breakers flanking this line. In order to test the rotor stability of the synchronous generators during 

the integration of the DFIG, it was necessary to carry out a theoretical analysis of its impact on the active and 

reactive energy produced by the generators. 

 

 

Table 1. Calculation of different type of short circuit faults 
Branch Fault 1 Fault 1 

Current 

A (Pu) 

Fault 1   

Ang (Pu) 

Fault 2 Fault 2 

Current 

A (Pu) 

Fault 2 

Ang (Pu) 

Fault 3 Fault 3 

Current 

A (Pu) 

Fault 3 

Ang (Pu) 

Branch '2' '7' '1' 3PB 5,50132 -65,66 SLG 4,01414 -73,42 DLG 3,13404 102,1666 

Branch '4' '1' '1' 3PB 6,7567 -71,55 SLG 8,99861 64,6057 DLG 2,90191 -98,086 

Branch '5' '4' '1' 3PB 5,7298 -68,86 SLG 9,02966 54,9561 DLG 2,85664 -100,574 

Branch '6' '4' '1' 3PB 5,16053 -69,27 SLG 9,97507 47,5893 DLG 2,97668 -101,441 

Branch '7' '5' '1' 3PB 5,69642 -65,26 SLG 10,0161 64,0301 DLG 2,94779 -92,3592 

Branch '7' '8' '1' 3PB 5,69642 -65,26 SLG 10,0161 64,0301 DLG 2,94779 -92,3592 

Branch '8' '9' '1' 3PB 5,1556 -65,01 SLG 10,0621 54,5991 DLG 2,94592 -95,6139 

Branch '9' '3' '1' 3PB 4,90231 -66,87 SLG 11,4792 52,1751 DLG 3,06461 -94,6968 

Branch '9' '6' '1' 3PB 4,90231 -66,87 SLG 11,4792 52,1751 DLG 3,06461 -94,6968 

 

 

3. CASE STUDY OF RTE IEEE 9-BUS STANDARD ELECTRICAL NETWORK AND 

ALGORITHM 

All simulations were performed on an IEEE 9 Bus network. This model is composed of 3 classic 

generators, 3 transformers and 3 charges. The total installed capacity in production is 319.63 MW and the total 

capacity of the load is 315 MW. Plants 1, 2 and 3 are conventional power plants or synchronous generators. 
The IEEE 9 Bus network is modeled on POWER WORLD as shwon in Figure 2. Two case of studies will be 

represented and tested: 

a. The first case is a representation of the reference IEEE 9-bus network in which the generators 1, 2 and 3 

are conventional productions or synchronous generators. 

b. The second case is the IEEE 9-bus network where the generating station on bus 2 is replaced by a wind 

power plant with the same installed capacity, through the insertion of a global wind generator with an 

installed capacity of 163 MW. 

The algorithm of this study is as follows in Figure 3. 
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Figure 2. IEEE 9Bus network model on POWER WORLD 
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Figure 3. Algorithme of test of two case of studies 

 

 

4. SIMULATION RESULTS 

4.1. Active power simulation 

The Figure 4 and 5 present the transient simulation of a single-phase fault of 11pu realized at time 

t = 1s at the IEEE 9Bus network before as shown in Figure 4 and after as shown in Figure 5 the replacement 

of the generator N ° 2 by a DFIG of the same installed power. By comparing the two figures, we notice that 
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there is a difference when the wind farms replace the synchronous plant. Indeed, when the DFIG is 

interconnected, it provides an electromagnetic current equivalent to an inertial response to the change of active 

power flow, due to the contingency of the single-phase fault between the buses 9 and 6. This active flow 

generated relieves the other conventional generators. Thus, the rate of depreciation of the default is much lower 

than the reference case. This is visible on the Figure 5, after 10 seconds the generation of Active Energy 

becomes stable in all the fixed and variable energy generators. 

 

 

 
 

Figure 4. Active power generated by the generators 
in  the first case of study 

 
 

Figure 5. Active power generated by the generators 
in the second case of study 

 

 

4.2. Reactive power simulation 

The Figure 6 and 7 present the transient simulation of a single-phase fault of 11pu realized at time 

t = 1s at the IEEE 9Bus network before (Figure 6) and after (Figure 7) the replacement of the generator N ° 2 

by a DFIG of the same installed power. By comparing the two figures, we notice that there is a difference when 

the wind farms replace the synchronous plan. Indeed, the DFIG is able to inject reactive power into the network 

without taking into account the value of the active power which is clearly visible in the Figure 7. This is 5 

MVAR compared to the conventional power plant. After the fault, the damping time of the disturbance is 

almost the same and the DFIG cannot control the dynamic reactive energy since it injects more than 4MVAR 
in steady state, which disrupts the generation of reactive energy of constant speed plants. 

 

 

 
 

Figure 6. Reactive power generated by the three 

generators the first case of study 

 
 

Figure 7. Reactive power generated by the three 

generators in the second case of study 
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4.3. Rotor angle simulation 

The Figure 8 and 9 present the transient simulation of a single-phase fault of 11pu realized at time t = 

1s at the IEEE 9Bus network before as shown in Figure 8 and after as shown in Figure 9 the replacement of 

the generator N ° 2 by a DFIG of the same installed power. By comparing the two figures, we notice that there 

is a difference when the wind farms replace the synchronous plan. Indeed, at the time of the fault, the network 

interconnected with the DFIG serves to attenuate the fault by creating a holding power. We notice a great 

disturbance of the stator angle at time t = 1s in the first case of study, in the second case we notice a small 

disturbance at the level of the stator angle, which makes it possible to avoid the separation of the stator angle 
and the production stop. 

 

 

 
 

Figure 8. Rotor angle generated by the three 

generators in the first case of study 

 
 

Figure 9. Rotor angle generated by the three 

generators in the second case of study 

 

 

5. CONCLUSION  

The optimal integration of wind power in the electrical networks can impact the stability of frequency 
and voltage as well as the instability of the rotor angle during faults. But the DFIG presents a very important 

asset which is the decoupled production between active and reactive power. This makes it possible to filter 

the disturbances due to the wind and avoid delivering disturbances to the network compared to other types of 

fixed speed wind turbines. Its ability to control the active flow relieves nearby synchronous generators, due to 

its very fast response time to produce active energy compared to the conventional generator during defects. 

However, its inability to limit the production of reactive power disrupts the dynamics of the reactive flow to 

the electrical network, which also impacts the generation of this power at the level of neighboring power 

stations during faults; This is an advantage for end-of-line low voltage antenna systems and an inconvenience 

for high reactive mesh networks. The DFIG also preserves the stability of the stator angle of the near 

conventional power stations and makes the fluctuations smooth due to defaults. This is clearly visible at 

penetration rates of around 50%. Beyond this value, the addition of a FACTS for reactive control is essential 

in order to avoid overvoltage on the bus as well as the islanding of the wind turbine. 
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