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ABSTRACT

In this article, the best uniform approximation for the hyperbola of degree 6 that
has approximation order 12 is found. The associated error function vanishes 12
times and equioscillates 13 times. For an arc of the hyperbola, the error is bounded
by 2.4 × 10−4. We explain the details of the derivation and show how to apply
the method. The method is simple and this encourages and motivates people work-
ing in CG and CAD to apply it in their works.
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1. INTRODUCTION
Bézier curves were invented by Pierre Bézier and Paul de Casteljau in the 1960’s. The primary

application was in the automobile industry, but today they are widely used in many computer applications
and codes to sketch curves. Approximation using polynomials of low degree is favourable, and in many
cases is a must issue. Many CAD systems are limited to using only parametric polynomial curves of low
degree with low errors. The big error causes two major disadvantages: high accumulated error, and slow and
costly software. So, it is favourable to approximate using low degree polynomials. Parabolas are represented
exactly using parametric curves of degree 2. In [1] methods of best uniform approximation of a circular arc
of degree 6 with order 12 are accomplished. These approximations are optimal and have 13 equioscillations.
In [2], a method of best uniform approximation of a hyperbola of degrees 2 with order 4 is accomplished.
These results were motivated by the results of approximating curves with high accuracy [3-6].

In this paper, we find approximation for the hyperbola of degree 6 and we get the order 12. Bézier
curve techniques are used to represent the approximations of the hyperbola using parametric polynomials of
degree 6 that have the least uniform error. The method is simple and practical. To achieve this approximation,
proper arrangements and symmetries of the hyperbola are applied to determine the Bézier points that define
the approximation of the hyperbola, and therefore, makes a CAD system more efficient and minimizes the
cost. Using suitable translation and scaling, the hyperbola can be written in the basic forms: y2 − x2 = 1 and
x2 − y2 = 1. Every form has two branches. So, there are four branches. Geometrically, all of these branches
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are identical. Therefore, it is sufficient to represent one branch and the other three branches can be represented
using rotation of this branch. So, we consider the upper branch of the hyperbola y2−x2 = 1, see Figure 1. It can
be written in parametric form c : t 7→ (sinh(t), cosh(t)) , t ∈ <. We are interested in finding out the longest
arc of the hyperbola that can be approximated and that the error function is the Chebyshev polynomial, see [2].
It is impossible to exactly represent a hyperbola with a polynomial curve [7-11]. It can be represented exactly
using rational Bézier curves, a polynomial parametric form is preferred in many applications. The ability to
represent a primitive hyperbola is a must issue especially in computer graphics and data and image processing.
Thus, there is a demand to find a parametrically defined polynomial curve p6 : t 7→ (x6(t), y6(t)) , 0 ≤ t ≤ 1,
where x6(t), y6(t) are polynomials of degree 6. The p6 has to approximate c within tolerable error. In this
paper, degree 6 parametric curves are considered, and it is shown that the error is very small and the results
are competitive.
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Figure 1. The Hyperbola y2 − x2 = 1

The Euclidean error function is used to measure the error between p6 and c. The error is defined by :

E(t) :=
√
y26(t)− x26(t)− 1. (1)

E(t) is replaced by the following error function:

e(t) := y26(t)− x26(t)− 1. (2)

The approximation problem is formulated as follows.
The approximation problem is to find p6 : t 7→ (x6(t), y6(t)) , 0 ≤ t ≤ 1, where x6(t), y6(t) are polynomials
of degree 6, that approximates c by satisfying the following three conditions:

(a) p6 minimizes maxt∈[0,1] |e(t)|,
(b) p6 approximates c with order twelve [12],
(c) e(t) equioscillates thirteen times over [0, 1].

The solution to this problem is shown in section 3. This solution is presented in Figure 2
and Figure 3; the corresponding error is shown in Figure 4. More related results can be found in [13-15]
and the references therein.
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Figure 2. The Hyperbola and the sextic
approximating Bézier curve

Figure 3. Zoom in the busy part of Figure 2
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Figure 4. The error of the sextic approximating Bézier curve

2. RESEARCH METHOD
Let p6(t) = (x6(t), y6(t)) be a sextic polynomial parametric representation of the curve c. In CAGD,

curves are presented using the Bézier form, see Figure 5 for possible choice of the Bézier points.

P0

P1

P2

P3

P4

P5

P6

21

-21 21

Figure 5. Possible Bézier points of the hyperbola

The Bézier curve p6(t) has the following form:

p6(t) =

6∑
i=0

piB
6
i (t) =:

(
x6(t)
y6(t)

)
, 0 ≤ t ≤ 1, (3)

where p0, p1, p2, p3, p4, p5, p6 are the Bézier points, and the Bernstein polynomial basis of degree 6 is defined
by:

B6
i (t) =

(
6

i

)
(1− t)6−iti, i = 0, . . . , 6, t ∈ [0, 1].
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The simplicity of this method should encourage people working in the fields of Computer Graphics,
Image Processing, CAD, and Data Processing to adopt it in their design and applications. The symmetry in
the hyperbola is used to better locate the Bézier points. We begin by letting p0 = (−α, β). The hyperbola
is symmetric around the y-axis, so, to obey this symmetry, the point p6 should have the form p6 = (α, β).
The point p1 = (−γ, δ), so, to obey the symmetry, the point p5 should have the form p5 = (γ, δ). The point
p2 = (−ξ, ψ), so, to obey the symmetry, the point p4 should have the form p4 = (ξ, ψ). There is one remaining
point; if this point lies in either halves of the plane around the y-axis, then the symmetry of the hyperbola is
kicked. Thus, the point p3 must lie on the y-axis and has the form p3 = (0, ω). Therefore, the proper choice
for the Bézier points is

p0 =

(
−α
β

)
, p1 =

(
−γ
δ

)
, p2 =

(
−ξ
ψ

)
, p3 =

(
0
ω

)
, p4 =

(
ξ
ψ

)
, p5 =

(
γ
δ

)
, p6 =

(
α
β

)
. (4)

The Bézier polynomial curve p6(t) in (3) is given in the form x6(t)

y6(t)

 =

 −αB6
0(t)− γB6

1(t)− ξB6
2(t) + ξB6

4(t) + γB6
5(t) + αB6

6(t)

βB6
0(t) + δB6

1(t) + ψB6
2(t) + ωB6

3(t) + ψB6
4(t) + δB6

5(t) + βB6
6(t)

 , (5)

where 0 ≤ t ≤ 1. The seven parameters α, β, γ, δ, ξ, ψ, ω are used to have the polynomial approximation
p6 comply with the conditions of the approximation problem; this is done in the following section.

3. RESULTS AND ANALYSIS
The values of α, β, γ, δ, ξ, ψ, ω that minimize the uniform error and satisfy the conditions of the

approximation problem are given in the following theorem. A symbolic programming language is used to get
the values of the parameters in (4) and are rounded in decimal form.
Theorem 1: The Bézier curve in (5) with the Bézier points in (4), where

α = 21.396696163346007, β = 21.420062908119476, γ = −0.34812943434024657,
δ = −0.3015887594987887, ξ = 0.5937616113806532, ψ = 0.705589524343983,

ω = 0.1813438330271954 (6)

satisfies the three conditions of the Approximation Problem. More precisely, the error functions satisfy:

− 1

211
≤ e(t) ≤ 1

211
, − 1

211(2− ε)
≤ E(t) ≤ 1

211(2 + ε)
, where ε = max

0≤t≤1
|E(t)|. (7)

Proof: From equation (5), we get

x6(t) = α
(
B6

6(t)−B6
0(t)

)
+ γ

(
B6

5(t)−B6
1(t)

)
+ ξ

(
B6

4(t)−B6
2(t)

)
,

y6(t) = β
(
B6

6(t) +B6
0(t)

)
+ δ

(
B6

5(t) +B6
1(t)

)
+ ψ

(
B6

4(t) +B6
2(t)

)
+ ωB6

3(t).

Substituting x6(t) and y6(t) into the error function e(t) in (2) and rewriting the result in terms
of powers of t we get the following equality:

e(t) = t12
(
4β2 − 48βδ + 144δ2 + 120βξ − 720δξ + 900ξ2 − 80βω + 480δω − 1200ξω + 400ω2

)
+t11

(
−24β2 + 288βδ − 864δ2 − 720βξ + 4320δξ − 5400ξ2 + 480βω − 2880δω + 7200ξω − 2400ω2

)
+t10

(
−36α2 + 288αγ − 576γ2 − 360αξ + 1440γξ − 900ξ2 + 96β2 − 1032βδ + 2736δ2

+2400βψ − 12600δψ + 14400ψ2 − 1560βω + 8160δω − 18600ψω + 6000ω2
)

+t9
(
180α2 − 1440αγ + 2880γ2 + 1800αξ − 7200γξ + 4500ξ2 − 260β2 + 2520βδ − 5760δ2
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−5400βψ + 23400δψ − 22500ψ2 + 3400βω − 14400δω + 27000ψω − 8000ω2
)

+t8
(
−465α2 + 3480αγ − 6480γ2 − 4170αξ + 15480γξ − 9225ξ2 + 525β2 − 4440βδ

+8640δ2 + 8430βψ − 29880δψ + 22725ψ2 − 5040βω + 17040δω − 24000ψω + 6000ω2
)

+t7
(
780α2 − 5280αγ + 8640γ2 + 5880αξ − 18720γξ + 9900ξ2 − 804β2 + 5808βδ − 9504δ2

−9240βψ + 26640δψ − 15300ψ2 + 5040βω − 13440δω + 13200ψω − 2400ω2
)

+t6
(
−922α2 + 5460αγ − 7488γ2 − 5460αξ + 13860γξ − 5850ξ2 + 926β2 − 5628βδ

+7632δ2 + 7140βψ − 16380δψ + 6750ψ2 − 3360βω + 6720δω − 4200ψω + 400ω2
)

+t5
(
792α2 − 3948αγ + 4320γ2 + 3360αξ − 6300γξ + 1800ξ2 − 792β2 + 3972βδ − 4320δ2

−3840βψ + 6660δψ − 1800ψ2 + 1440βω − 1920δω + 600ψω
)

+t4
(
−495α2 + 1980αγ − 1620γ2 − 1320αξ + 1620γξ − 225ξ2 + 495β2 − 1980βδ + 1620δ2

+1380βψ − 1620δψ + 225ψ2 − 360βω + 240δω
)

+t3
(
220α2 − 660αγ + 360γ2 + 300αξ − 180γξ − 220β2 + 660βδ − 360δ2 − 300βψ

+180δψ + 40βω)

+t2
(
−66α2 + 132αγ − 36γ2 − 30αξ + 66β2 − 132βδ + 36δ2 + 30βψ

)
+t
(
12α2 − 12αγ − 12β2 + 12βδ

)
+ (−1− α2 + β2).

We substitute the values of α, β, γ, δ, ξ, ψ and ω from (6) into the last equation to get

e(t) = 4096 t12 − 24576 t11 + 64512 t10 − 97280 t9 + 93024 t8 − 58752 t7 + 24752 t6

−6864 t5 + 19305

16
t4 − 1001

8
t3 +

429

64
t2 − 9

64
t+

1

2048
, t ∈ [0, 1].

Making the substitution t = u+1
2 reduces the error function to the following form

e(u) =
1

2048
− 9

256
u2 +

105

256
u4 − 7

4
u6 +

27

8
u8 + 3 t10 + t12, u ∈ [−1, 1].

The last form of e(u) coincides with the monic Chebyshev polynomial T̃12(u), u ∈ [−1, 1], which is the
unique polynomial of degree 12 that equioscillates 13 times between ± 1

211 for all u ∈ [−1, 1] and has the least
deviation [12]. This shows that p6 satisfies the conditions of the approximation problem. The error formula for
E(t) can be proved using its relation to the error function e(t). This proves Theorem 1.
It is clear that the approximation is the best uniform approximation from Figure 4. Figure 2 and Figure 3 show
the hyperbola and the approximating Bézier curve, Figure 4 shows the corresponding error, and Figure 6 shows
the Euclidean error.

4. CONCLUSION
In this paper, the best uniform approximation of the hyperbola with parametrically defined polyno-

mial curves of degree 6 are explicitly given. The error function equioscillates 13 times; the approximation
order is 12. The method of construction demonstrates the efficiency and simplicity of the approximation
method. The approximation intersects the hyperbola 12 times with maximum error 2.4× 10−4. Reflecting the
upper branch of the hyperbola around the x-axis gives the lower branch. The hyperbola is shown in Figure 7.
Note that the points p1 (p5) and p2 (p4) in both branches are very close to each other and can not be distin-
guished from each other. The results in this paper can be used to improve the results obtained in [16-23] see
also the results in [24, 25].
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Figure 6. The Euclidean error of the sextic Bézier curve
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Figure 7. Both branches of the Hyperbola using two Bézier curves
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160, (2005) 379-386. http://www.elsevier.com/locate/amc

[23] A. Rababah and Moath Jaradat, Approximating offset Curves using Bézier curves with high accuracy,
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