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 Nowadays, exponential growth in geospatial or spatial data all over 
the globe, geospatial data analytics is absolutely deserved to pay attention in 

manipulating voluminous amount of geodata in various forms increasing 
with high velocity. In addition, dimensionality reduction has been playing 
a key role in high-dimensional big data sets including spatial data sets which 
are continuously growing not only in observations but also in features or 
dimensions. In this paper, predictive analytics on geospatial big data using 
Principal Component Regression (PCR), traditional Multiple Linear 
Regression (MLR) model improved with Principal Component Analysis 
(PCA), is implemented on distributed, parallel big data processing platform. 
The main objective of the system is to improve the predictive power of MLR 

model combined with PCA which reduces insignificant and irrelevant 
variables or dimensions of that model. Moreover, it is contributed to present 
how data mining and machine learning approaches can be efficiently utilized 
in predictive geospatial data analytics. For experimentation, OpenStreetMap 
(OSM) data is applied to develop a one-way road prediction for city Yangon, 
Myanmar. Experimental results show that hybrid approach of PCA and MLR 
can be efficiently utilized not only in road prediction using OSM data but 
also in improvement of traditional MLR model. 
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1. INTRODUCTION 
Big data can be described as large volumes of data in complex structures increasing with high 

velocity which requires advanced technologies, methods and algorithms to acquire, process and store 

efficiently [1]. Nowadays, it can be estimated that data about 2.5 quintillion bytes approximately is being 

generated every day and a large portion of data among them is location-aware. Therefore, it can be assumed 

that big data where a significant portion of it is typically geospatial data or spatial data. Geospatial or spatial 

big data is deserved to pay attention in analyzing large-scale spatial data sets which exceed traditional 

computing systems [2]. Increasing enormous amount of geospatial data, the capability of high-performance 

computing has been an essential requirement to fully utilize huge collection of geospatial big data with high-

velocity in demanding applications. The distributed and parallel computing on a cluster of commodity 

computers for big data analysis such as Hadoop and Spark have become popular in current time. It can 

provide geospatial big data analytics easily implemented on big data platforms [3, 4]. With the rapid 
development in technologies, increasing in computational power and decreasing in data collection cost and 

processing, dimensions of data sets are continuously growing in size. In these data sets, the dimensions or 

feature variables “n” can be as high as in size or much higher than the observation size “m”. Among 
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thousands of dimensions or feature variables, only a small number or subset of them are possible to extract 

value or insight in data analysis. Therefore, it makes a critical situation to identify correctly and to reduce 

efficiently them. And, finding significant and relevant features in data sets will fulfill valuable insights to 

support better decision making. Dimensionality reduction has been playing a key role in high-dimensional 

large-scale data nature. In addition, the most frequent issue of data mining and machine learning for 

regression model is that how to predict the outcome of a dependent variable when there are a large number of 

independent variables in the model. With the advanced technologies and modern algorithms for regression 

model, it is a difficult situation to handle all variables at once for the model. Chaman Lal, Sabharwal and 
Anjum [5] presented an adaptive hybrid approach by applying PCA to traditional regression algorithms to 

reduce the dimensionality of a data set as identifying pattern in data of high dimension can be very hard in 

data analysis applications. The central idea of using PCA is to fulfill an advantage of lossless data reduction 

in two diverse areas such as qualitative spatial reasoning (QSR) and health informatics. They also expressed 

that applying PCA with hybrid approach in two areas, QSR and health informatics is not only a procedure for 

identifying a small number of “principal components” for reduced dimensions but also a procedure for 

improving traditional regression algorithms. Improving the predictive power of traditional multiple linear 

regression model using PCA is studied by Ahmad Zia UI-Saufie, Ahmad Shukri Yahya and Nor Ramli [6] to 

predict PM10 concentration for next day. Application of PCA in regression models is intended to avoid 

multicollinearity problem and to ensure that principal components selected have maximum variance. 

According to experimental studies, they proved that the principal components as input to regression process 

offer a more accurate result than original data input to regression process because of reduced number of 
inputs. Therefore, applying PCA based regression models can be considered as more efficient and decreased 

complexity models. In current time, huge amount of geospatial data can be generated from hundreds of 

millions of mobile phones, sensors, satellites and other resources [7]. OpenStreetMap (OSM) is an open 

source data resource for geographic information all over the world. The size of OSM data sets increases 

significantly in every year because it is a huge collection of geospatial information. Stefan Funke, Robin 

Schirrmeister and Sabine Storandt [8] introduced that how to apply methods in detection of gaps in the road 

network automatically and then discovery of missing street names by using OSM road network data. 

They showed that data mining and machine learning methods are very useful to detect missing road network 

data in OSM. Growing rapidly in volume and popularity of geospatial data, Geographical Information 

System (GIS) applications are demanding to data mining and machine learning approaches integrated with 

spatial big data. Hemlata Goyal, Chilka Sharma and Nisheeth Joshi presented issues, challenges, tools and 
algorithms for spatial data mining collaborated with big spatial data [2]. 

 

 

2. GEOSPATIAL OR SPATIAL BIG DATA 

Geographical location-aware data which is usually stored as coordinates and topology for mapping 

can be referred to as geospatial or spatial data [9]. Geospatial big data cannot be assumed as new issue or 

problem in data analytics era. Due to not only exponential increase in data production but also in data 

production rate (velocity). In EOSDIS, 4TB of remote sensing data archives are growing in every day. 

This data flow means more than 630 million data files, nearly 20 TB can be delivered to users all over 

the world. The observation data of NASA in each unit time can be collected from approximately 100 active 

missions which would be about 1.73GB. High performance computing or cloud computing platforms are 
absolutely required in analyzing large-scale geospatially enabled contents. By analyzing geospatial data, 

we can make innovative activities in our daily life and business [10, 11]. In general, we can classify 

geospatial data into three categories such as raster data, vector data, and graph data. Raster data consists of 

geoimages taken by digital cameras, satellite etc. and it can be utilized by digital map services, for example, 

Google Earth. Map data belongs to vector data category which includes points, lines, and polygons,  

for example, OpenStreetMap.The graph data appears in the form of city maps including roads and landmark. 

In road networks, an edge can be represented as a segment of road, and a node as an intersection or 

a landmark. OpenStreetMap (OSM) is an open source data resource for geographic information all over 

the world. The raw, unstructured large-scale OSM data can be available for developers to create freely to 

modify the map of the world. It uses a topological data format with four main elements (also known as data 

primitives): nodes, ways, relations and tags. OSM map data generally represents physical features on 

the ground, for example, roads or buildings by using tags which describes a geographic attribute showing 
specific node, way or relation data structures [8]. Many well-known applications and services collaborating 

with some kinds of geolocation or map-based component using OSM data are as follows: OpenStreetMap-

based map for iPhoto for iOS and it has been cited a lot of sources for Apple's custom maps in iOS 6. 

Interactive data visualization products by Tableau software company has integrated OSM for all their 

mapping requirements. The professional robot simulator widely used for educational purposes, Webots 
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applies OSM data to create virtual environment for autonomous vehicle simulations. The large-scale 

unstructured XML form OSM data can be served as a reality fulfillment of GIS market and spatial 

world [12, 13]. 

 

 

3. RESEARCH METHOD 

3.1.  Multiple linear regression (MLR) 

Regression analysis, a statistical process, is widely used for prediction and forecasting by estimating 

relationships between variables. It is not straight forward for large-scale data sets [14]. In this system, 

multiple linear regression model is applied to predict one-way roads for city Yangon. Multiple Linear 
Regression (MLR), a statistical model, is intended for estimating the relationship between a dependent 

variable “Y” and one or more explanatory variables (or independent variables) “X” to obtain the unknown 

regression model’s parameter “β”. The purpose of minimizing the sum of squares of differences between 

the predicted values and observed values, estimates for “β” values can be calculated from the regression 

equation as follow. 
 

Y = β0+β1X1+…………+βnXn (1) 
 

where Y is a dependent variable, X1…...Xn are independent variables and β0 ………βn are coefficients or 

parameters of regression model. MLR also specifies how much dependency or connection exist between “Y” 

and one or more “Xs”. Traditional MLR procedures can be seen in the algorithm 3.1.1. 

 

3.1.1. Algorithm for traditional multiple linear regression 

Input: m x n data matrix “D” 

Output: Predicted “Y”, R2 and RMSE  

Steps 

1. Define dependent variable “Y” and independent variables “Xs” for matrix Dmxn 

2. Find “β” values from the equation (1) 

3. Compute predicted “Y” using “β” values and “Xs” 
4. Calculate R2 and RMSE for model performance 

According to algorithm 3.1.1, there are several input dimensions or independent variables “Xs” for 

MLR model. Adding all independent variables “Xs” at once to construct a model may be reasonable for small 

and moderate dimensions in data sets, however, it will be complicated and time-consuming procedure for 

high-dimensional data nature [15]. In general, several independent variables “Xs” for dependent variable “Y” 

can be some bias which is very likely to reduce RMSE, a performance indicator of MLR. Therefore, 

independent variables “Xs” which may affect MLR’s predictive power should be dropped or removed from 

the model in the analysis. In predictive data analysis, selecting subset of features or dimensions from high-

dimensional data sets has become a big issue to improve model’s predictive power because it is a difficult 

computational problem to deal with very high-dimensions. Moreover, high-dimensional data analysis has 

been a great attention in big data era. The complexity of big data often makes dimension reduction techniques 
necessary before conducting statistical inference. The main purpose of dimensionality reduction is to find out 

how many dimensions can be reduced from all diverse and raw data dimensions. As the number of 

dimensions of data increases, it becomes more and more difficult to process it. The exponential increasing in 

the size of data caused by a large number of dimensions in big data make a big problem in data analysis. 

This is “Curse of Dimensionality” in high-dimensional big data analytics. Principal Component Analysis 

(PCA), a mathematical procedure, is applied to reduce the dimensionality of data matrix. PCA can often 

serve as the first processing step in data analysis [15-17]. It may be followed by linear regression, multiple 

linear regression, cluster analysis, image analysis, and many others.  

 

3.2.  Dimensionality reduction using PCA 

In current time, dimensionality reduction has been playing a key role in high-dimensional 
voluminous amount of data. PCA performs dimensionality reduction by extracting the principal components 

(PCs) of high-dimensional data. In general, data sets can be represented as matrices and vectors with a lot of 

features. For a matrix, each column refers to a conceptual attribute of all the data. Reducing big original data 

matrix into smaller one but retaining the same information of original data matrix to gain value or 

insight from this. Computing PCA of a matrix Y of size N ×D (N rows and D columns), it can be 

obtained “d” principal components (d ≤ D) that explains the most variance (information) of the data in 

matrix Y [18-20]. The input for PCA is mainly numerical form. If the data is other form, for example, 

categorical or logical, it must be converted into numeric first. And then, eigenvalues and eigenvectors are 

computed to transform original high-dimensional data matrix into lower dimensional one. PCA 
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decomposition for a data matrix A which is square and symmetric is A = UDUT where U is matrix of 

eigenvectors and D is diagonal matrix of eigenvalues of A. PCA also arranges eigenvalues by ordering in 

descending magnitude [21]. In data mining, each observation is a vector with “n” components in a “m x n” 

data matrix. The first principal component (PC) which is extracted from PCA process will be a maximum 

amount of variance in the observed data variables. The second principal component or second PC 

will be uncorrelated with the first PC and the remaining PCs computed from PCA possess the same 

characteristics [19, 22, 23]. In this system, we would like to prove that PCA which is mostly applied in 

dimensionality reduction can also effectively reduce insignificant and sometimes, noisy predictors or 
independent variables of multiple linear regression model. There are a number of reasons why predictor 

selection becomes an essential role in constructing the optimal regression model. Redundant predictors can 

hinder the regression analysis while we are trying to explain data in the simplest way and insignificant 

predictors are also highly potential to increase noises and biases for the model. In addition, a large number of 

predictors will also cause a problem called “Multicollinearity”. It is a statistical phenomenon of existing 

a perfect or exact relationship between predictors which will cause incorrectness about the relationship 

between predictors and outcme variable of that regression model [24]. Therefore, if we apply the model with 

redundant predictors for prediction purpose, it will be time-consuming and high expensive job indeed. 

The improved version of MLR combined with PCA can also be seen in the algorithm 3.2.1.  

 

3.2.1. Algorithm for improved multiple linear regression using PCA 

Input: m x n data matrix “D” (“n” dimensions) 
Output: Predicted “Y”, R2 and RMSE 

Steps 

1. Apply PCA on high-dimensional matrix Dmxn 

i. Compute eigenvalues and eigenvectors of Dmxn  

ii. Choose top “k” PCs by ranking the eigenvalues from eigenvectors in descending order 

iii. Construct the matrix Dmxn using “k” eigenvectors into Dmxnk  

iv. Reconstruct the matrix Dmxnk into original input matrix form with reduced “nk” dimensions 
2. Define dependent variable “Y” and independent variables “Xs” for matrix Dmxnk  

3. Find “β” values from the equation (1) 

4. Compute predicted “Y” using “β” values and “Xs” 
5. Calculate R2 and RMSE for model performance 

According to algorithm 3.2.1, it is clearly known that applying PCA procedures before MLR model 

can offer reduced number of dimensions or variables (“n into nk”) in defining independent variables “Xs” for 

that model. Therefore, there is no need to utilize all dimensions or independent variables as inputs directly to 

the model. 

 

3.3.  Geospatial OSM data for one-way road prediction 

One-way roads and streets are usually used in high volume situations which occur in downtown 
areas with closely-spaced intersections. In Yangon, the former capital and now business city of Myanmar, 

roads and streets are often congested and people lose much time stuck in traffic every day. Peak hours are 

8:00 to 9:00 in the morning, 14:00 to 16:00 in the evening and after work hours. Sometimes, a ten minutes 

trip could take as long as 2 hours because of severe traffic situation during peak hours. Although one-way 

roads and streets can cause some disadvantages such as increased travel distance, wider pedestrian crossings, 

and driver confusion, it can offer some important advantages such as enhance traffic capacity and increase 

safety. Not only providing additional lanes and reducing number and severity of crashes by eliminating head-

on crashes to be efficient in traffic control operation and increased safety. The main purpose of implementing 

this system will predict one-way roads in major business city Yangon using OSM data as a way to facilitate 

the traffic problems. Moreover, OSM data applying MLR combined with PCA is intended to show that it can 

fulfill the requirements of predictive geospatial analytics. There is an issue in generating geospatial data and 

preprocessing for further applying in diverse domains [25]. In general, OSM data exists in the form of data 
structures such as nodes, ways and relations. It is essential to transform the raw, unstructured OSM XML 

format data into suitable format compatible with big data analytics platforms such as MapReduce and Spark 

can be seen in Figure 1. OSM data (OSM XML) is firstly converted into GeoJSON files by using Osmosis, 

a command-line tool for manipulating raw state OSM data. It can be applied to process large-scale data files. 

GeoJSON, representing geodata as JSON, is intended to apply in encoding of various geographic data 

structures. For geospatial data analysis in big data platforms, geodata in JSON format, GeoJSON files are 

then converted into CSV files by using QGIS (Quantum GIS) which allows users to view, edit and analyse 

spatial information. 
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Figure 1. OSM data pre-processing steps 

 

 

4. RESULTS AND ANALYSIS 

To implement one-way road prediction using OSM data, experiments are performed on Amazon 
Elastic Compute Cloud (Amazon EC2), a web service, which provides resizable computing capacity and 

EMR (Elastic MapReduce) for creating a cluster of four Amazon EC2 m4. large instances, one for “Master” 

(Server node) and three “Slave” nodes. The cluster runs Linux Red Hat 4.6.3, and Amazon Hadoop 

Distribution 2.8.3 and Apache Spark 2.3.0 were installed on this cluster. Firstly, the raw and unstructured 

OSM data (OSM XML) is transformed into matrix form data as shown in Figure 1. The large-scale data 

matrix resulted from pre-processing steps is given as input data matrix to traditional MLR model (detailed 

processing procedures are shown in algorithm 3.1.1). One-way road prediction results which obtained from 

traditional MLR can also be seen in Figure 2. In this paper, the improved MLR (hybrid approach of PCA and 

MLR) is intended to prove that it will improve the prediction outcomes of the system. According to algorithm 

3.2.1, step-by-step PCA operations are performed to compute eigenvalues and eigenvectors which will be 

selected as top “k” PCs or dimensions for the subsequent MLR model’s operations. Moreover, PCA, 
a complicated and time-consuming dimensionality reduction approach, is tested on two conditions; 

standalone and distributed (cluster mode). The eigenvalues of PCA obtained from standalone (serial) version 

and distributed version using cluster mode to show the comparative studies of PCA between two versions. 

According to experimentation, it can be assumed that the results are not quite different (mostly same results). 

Although there may exist the difference of processing time during PCA process, we actually intended to 

describe only eigenvalue results from PCA. Therefore, top ten eigenvalues for selected top “k” PCs obtained 

from two versions of PCA can be seen in Table 1 and the variance explained values of respective principal 

components are shown in Table 2. In this system, the final prediction results are displayed in OpenStreetMap 

view. One-way road prediction results using traditional MLR is shown in Figure 2. By using improved MLR, 

more accurate and improved one-way road prediction results can be seen in Figure 3. According to prediction 

results, we can be assumed that using PCA before MLR model actually reduces unimportant and irrelevant 

input variables or dimensions of the model. This makes to increase predictive power of the model which can 
visually be compared in two Figures 2 and 3. Performance indicators such as Coefficient of Determination 

(R2) and Root Mean Square Error (RMSE) are used to measure the prediction accuracies between traditional 

regression model and improved PCR model. By examining R2, ranges between 0 and 1, the value of R2 

obtained from traditional MLR is lower than improved MLR’s R2 value. Generally, the increase in R2 will 

indicate the improvement in regression model. Moreover, some noises and bias in regression model can 

degrade RMSE and it can also decrease the predictive power of the model. According to experimentation, 

RMSE of improved MLR is much more than traditional one as shown in Table 3. Therefore, improved MLR 

with reduced noises and bias will increase RMSE which improve model’s prediction accuracy. Finally, 

the comparative studies between two versions of MLR model with varied data dimensions of OSM data set 

are shown in Figure 4. Improved MLR possess speedy processing time compared with traditional one due to 

reduced variables or dimensions by PCA. 
 

 

Table 1. Top ten eigenvalues obtained from standalone and distributed versions of PCA 
No. Standalone Version Distributed Version (Apache Spark Cluster) 

1. -94.40944 -94.40944 

2. -613.0416 -613.0416 

3. -45.4512 -45.4512 

4. 10.2806 10.2806 

5. 127.5373 127.5373 

6. 72.7529 72.7529 

7. 107.6462 107.6462 

8. -68.0073 -68.0073 

9. 78.0342 78.0342 

10. 89.9510 89.9510 
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Table 2. Total variance explained 
Principal Components Initial Eigenvalues 

Total % of Variance Cumulative % of Variance 

1. -0.9998 0.0909 0.0909 

2. -8.9905 0.8170 0.9079 

3. 1.1110 -0.1010 0.8069 

4. -1.5224 0.1384 0.9453 

5. 0.0743 -0.0068 0.9385 

6. -0.5983 0.0544 0.9929 

7. 0.0173 -0.0016 0.9913 

8. 0.3101 -0.0282 0.9631 

9. 0.0033 -0.0172 0.9459 

10. -0.1583 0.0144 0.9603 
 

 

 
 

Figure 2. Prediction results using traditional MLR (Blue-colored lines represent as one-way roads) 

 
 

 
 

Figure 3. Prediction results using improved MLR (Strong pink-colored lines represent as one-way roads) 
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Table 3. Prediction performance indicators for two MLR versions 
 Traditional MLR Improved MLR 

R2 0.124 0.8913 

RMSE 1.1005 7.4505 

 

 

 

 
Figure 4. Running time (seconds) comparison between traditional and improved MLR 

 

 

5. CONCLUSION 

Geospatial data can be generated from hundreds of millions of mobile phones, sensors, satellites and 

other resources every day. High-dimensional data sets including geospatial data sets can adversely affect 

the complexity of data analysis and addressing high-dimensionality has become essential in constructing 

efficient statistical, data mining and machine learning models. PCA performs dimensionality reduction by 

extracting principal components (PCs) of high-dimensional data and it also serves as the first processing step 

in data analysis. Several independent variables or predictors “Xs” for dependent variable “Y” in MLR model 

can be some bias which is very likely to reduce RMSE. Moreover, redundant predictors can hinder 

the regression analysis and insignificant predictors are also highly potential to increase noises and biases for 
the model. In this system, MLR model combined with PCA which reduces insignificant and irrelevant 

variables or predictors is developed to improve the predictive power of that model. Performance indicators 

such as Coefficient of Determination (R2) and Root Mean Square Error (RMSE) are used to measure 

the prediction accuracies between traditional MLR model and improved PCR model. According to 

experimental results, the benefits of applying PCA in traditional MLR model can actually improve prediction 

accuracy of the model. In addition, the improved PCR model using OSM data for one-way road prediction 

can efficiently perform not only in road prediction but also in improvement of traditional MLR model. 

In future works, we will consider one-way road prediction using other prediction models which are 

compatible with OSM data and then a number of comparisons will be made between them. 
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