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 Code clones are syntactically or semantically equivalent code fragments of 

source code. Copy-and-paste programming allows software developers to 

improve development productivity, but it could produce code clones that can 

introduce non-trivial difficulties in software maintenance. In this paper, 

a code clone detection framework is presented with a feature extractor and a 

clone classifier using deep learning. The clone classifier is trained with true 

and false clones and then is tested with a test dataset to evaluate the 

performance of the proposed approach to clone detection. In particular, 

the proposed approach to clone detection uses Control Flow Graphs (CFGs) 

to extract features of a given code snippet. The selected features are used to 

compute similarity scores for comparing two code fragments. The clone 

classifier is trained and tested with similarity scores that quantify the degree 

of how similar two code fragments are. The experimental results demonstrate 

that using CFG features is a viable methodology in terms of the effectiveness 

of clone detection for both syntactic and semantic clones. 
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1. INTRODUCTION  

Software reuse refers to a series of activities of using existing code for developing new software 

products. Software reuse has positive aspects of improving development productivity and quality, but simple 

copy-and-paste reuse can produce redundant and duplicate code (also known as code clones) across a 

program. Code clones can be defined as syntactically or semantically equivalent code fragments of source 

code. The presence of the code clone can hinder the consistency of an application in software maintenance 

such as bug fixes, security updates, and code refactoring. Such code changes can be involved in undesirable 

consequences due to the code clone. If only part of the code clone is modified without covering the whole of 

the code clone, potential problems can be introduced during the lifecycle of a software system. Therefore, 

for better software maintenance, locating and keeping track of code clones are a crucial part when modifying 

code of an existing program. In this paper, a novel approach to clone detection is presented with a feature 

extractor and a clone classifier using deep learning. The feature extractor constructs feature vectors to 

characterize a give code fragment for clone detection. The clone classifier is based on supervised learning 

which produces a deep learning model through training data consisting of input vectors and desired output 

values. Therefore, the clone classifier is trained with known true clones and false clones in a training phase. 

In a testing phase, the clone classifier predicts whether or not two method pairs have a clone relationship. 

The proposed approach to clone detection extracts input features from the CFGs of a code fragment. 

The input features are used to compute similarity scores for comparing two code fragments. The clone 

classifier is trained and tested with the similarity scores that quantify the degree of how similar two code 

fragments are.  
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The proposed clone detection framework represents a code fragment as control flow graphs to catch 

semantically similar clones. A control flow graph is a directed graph that represents the control flow of a 

code fragment (e.g., functions and methods). The CFG consists of a set of nodes (also known as vertices) and 

edges. A node represents the basic statement of the code fragment such as expressions, if-statements, and for-

statements. An edge of the CFG connects one node with another and means a program control flow from 

between the two nodes. The node could be connected to multiple nodes if it is involved in controlling more 

than one program control. The CFG has a single entry node where a control flow starts and a single exit node 

where a control flow ends. There can be multiple control flows between the entry node and the exit node. 

A path in a CFG is a sequence of directed edges in which all nodes are distinct. For example, 3_Path in this 

paper means any three distinct nodes are connected in a CFG-based representation. The path represents 

structural features in code fragments and its length is various in a CFG-based representation. The code 

fragments are characterized by the length and the occurrence counts of the CFG path.  

The first step of clone detection is to determine the scope of a code fragment which is a continuous 

segment of source code. Some clone detection tools take a function or a method as the code fragment. 

In some cases, a portion of the function can be considered as the code fragment. The code fragment is 

identified with three elements such as a source file, a starting line number, and an ending line number. 

If a whole method is considered as the code fragment, the starting line number and the ending line number of 

the code fragment will be the same as those of the method. The proposed clone detection approach takes each 

method in Java source files as the code fragment. Code clones are a pair of code fragments of source code 

that are syntactically or semantically equivalent. There are four types of code clones: Type-1 (T1), Type-2 

(T2), Type-3 (T3), and Type-4 (T4). Type-1 clones are syntactically identical code fragments, except for 

differences in white space, layout and comments [1]. Type-2 clones are syntactically identical code 

fragments, except for differences in identifier names, literal values, white space, layout and comments [1]. 

Type-3 clones are syntactically similar code fragments that differ at the statement level. Fragments have 

statements added, modified and/or removed with respect to each other [1]. Finally, Type-4 clones are 

syntactically dissimilar code fragments that implement the same functionality [2]. The proposed approach to 

clone detection uses BigCloneBench [3] which is one of the popular benchmarks of code clones. 

The BigCloneBench data are categorized by separating Type-3 and Type4 clone pairs into four categories 

based on their syntactical similarity: Very-Strongly Type-3 (VST3) clones with a similarity in range 90% 

(inclusive) to 100%, Strongly Type-3 (ST3): 70-90%, Moderately Type-3 (MT3): 50-70%, and Weakly 

Type-3 or Type-4 (WT3/4): 0-50% [4]. 

 

 

 
 

Figure 1. The deep neural network architecture 

 

 

Deep learning is a specific kind of machine learning and allows computational models that are 

composed of multiple processing layers to learn representations of data with multiple levels of 

abstraction [5]. Deep learning algorithms have been applied to solve problems of artificial intelligence fields 

and have produced promising results for some specific tasks such as natural language processing, computer 

vision, and image processing [6]. These advanced learning algorithms can also contribute to solving software 

engineering problems that are the analogous ones in artificial intelligence. Figure 1 shows the deep neural 

network architecture that consists of three layers-input layer, hidden layer, and output layer. The input 

features (e.g., similarity scores) are given to input nodes in the input layer. The nodes in the different layers 

are connected with connection weights and biases. The deep learning network model can possess multiple 

hidden layers so to improve the performance of the code clone classifier. In the clone classifier model, 

the Rectified Linear Unit (ReLU) is an activation function for the hidden layers and the softmax function is 

used as activation function for the output layer. As two nodes reside in the output layer, the prediction result 

of the clone classifier is either “Clone” or “Non-Clone” on the given method pairs.  
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The rest of this paper is organized as follows. Section 2 overall describes the proposed approach to 

detect code clones using control flow graphs. Section 3 presents experimental results to demonstrate the 

effectiveness of the CFG-based clone detection. Section 4 summarizes related studies and Section 5 finally 

remarks conclusions and future research directions.  

 

 

2. APPROACH 

Figure 2 illustrates the overall workflow of the proposed code clone detection framework. The clone 

detection system has the training and testing phase. The solid arrows show the flow of the training phase 

which produces a trained clone classifier from a list of features. The clone classifier determines if pairwise 

methods are clones to each other in the testing phase which is shown the dashed arrows in Figure 2. 

 

 

 
 

Figure 2. The overall flow of the proposed code clone detection framework 

 

 

The clone detection system used BigCloneBench which is one of the popular benchmarks of code 

clones and has been used for clone-related studies. The BigCloneBench data are separated into the training 

and test datasets. The clone classifier model in the detection system is trained and optimized by the training 

dataset and then is evaluated by the test dataset. The first step of the training phase is to identify method 

modules from the given Java source files through lexical analysis and syntactic analysis. Pairwise method 

modules are constructed from the separate methods. The pairwise methods are used to train or test the deep 

learning model. The proposed clone detection system extracts syntactic and semantic features of code 

fragments from CFGs of the identified methods. A CFG is generated for each method. CFG features are 

generated from the CFG. The CFG feature sets are represented by feature vectors that could be computed 

effectively in the deep learning model. Similarity scores are used to quantify the degree of how similar two 

methods are. The similarity score of the pairwise method is calculated and is given to the input layer of the 

clone classifier. The range of similarity score is [0, 1] through the normalization step. The trained clone 

classifier can be produced after the training phase. In the testing phase, the similarity scores of the pairwise 

methods are created from the test dataset. The steps for generating the similarity score are the same as those 

of the training phase. The clone classifier can tell whether the given method pairs are clones or not using the 

similarity scores. 

The proposed clone detection framework is based on a deep learning network model which is a 

clone classifier and determines the semantic similarity of the method using its corresponding control flow 

graph. A CFG is a directed graph and represents all possible execution paths of a method. It also encodes the 

behavior of the method at a higher level of abstraction. A set of features are extracted from the control flow 

graphs. Such a feature set includes node information and path information of the control flow graph. For the 

comparison of two methods, the pairwise feature sets are used to compute the similarity score. Figure 3 

shows an example of Java source code and its corresponding control flow graph. In this example, the class 

Sample has only one method main and the control flow graph of the main method is presented on the right 

side of Figure 3. The node of the CFG is known as a basic block and represents expressions, if-statements, 

for-statements, etc. The edge of the CFG represents a possible control flow from the end of one block to the 

beginning of the other. As seen in Figure 3, CFGs also have a single entry and a single exit point. 
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public class Sample {  

public static String VERSION = "2.0.0"; 

public static void main(String[] args) { 

System.out.printf("PROGEX (Program Graph 

Extractor)  [ ver. %s ]\n", VERSION); 

System.out.println("Visit project website @ 

https://github.com/ghaffarian/progex\n"); 

   

if (args.length == 0) { 

CLI.printHelp(null); 

new GUI().show(); 

} else { 

new CLI().parse(args).execute(); 

} 

   } 

} 

 
 

Figure 3. Example of control flow graph 

 

 

A path in a CFG is a sequence of directed edges which connect a sequence of distinct nodes. 

For example, 2_Path means any two distinct nodes are connected in the control flow graph. The proposed 

clone detection framework considers 1_Path, 2_Path, 3_Path, and 4_Path to compare pairwise methods. 

Table 1 lists the feature paths which are extracted from the control flow graph shown in Figure 3. The first 

column shows the type of paths and the second column is the total frequency of each path type in the control 

flow graph. The last column shows the distinct instances of each path type and their frequency. 

The summation of the frequency of each path instance should be equal to the total number in 

the second column. 

 

 

Table 1. Example of feature paths extracted from a control flow graph 
Type Total Path/Frequency 

1_Path 8 [startMethod/1], [StatementExpressionContext/5], [IfStatementContext/1], [endif/1] 

2_Path 8 

[startMethod- StatementExpressionContext/1],  

[StatementExpressionContext- StatementExpressionContext/2], [StatementExpressionContext – 

IfStatementContext/1],  

[IfStatementContext-StatementExpressionContext/2],  

[StatementExpressionContext- endif/2] 

3_Path 7 

[startMethod -StatementExpressionContext-StatementExpressionContext/1], [StatementExpressionContext-

StatementExpressionContext-IfStatementContext/1], [StatementExpressionContext-IfStatementContext-

StatementExpressionContext/2], [IfStatementContext-StatementExpressionContext-

StatementExpressionContext/1], [IfStatementContext-StatementExpressionContext-endif/1],  

[StatementExpressionContext-StatementExpressionContext-endif/1] 

4_Path 6 

[startMethod -StatementExpressionContext-StatementExpressionContext-IfStatementContext/1], 

[StatementExpressionContext-StatementExpressionContext-IfStatementContext-

StatementExpressionContext/2], [StatementExpressionContext-IfStatementContext-

StatementExpressionContext-StatementExpressionContext/1], [StatementExpressionContext-

IfStatementContext-StatementExpressionContext-endif/1], [IfStatementContext-StatementExpressionContext-

StatementExpressionContext-endif/1] 

 

 

3. EVALUATION 

A set of features can impact seriously the performance of the clone classifier. Therefore, extracting 

the meaningful features of a dataset is one of the key steps to develop an acceptable deep learning model. 

Figure 4 shows the CFG feature extraction algorithm to identify a set of CFG features from a given method. 

Such CFG features of each method will be used to compute the similarity score for the method comparison. 

Given a target method in a program, the proposed clone detection system extracts a set of CFG features from 

the corresponding control flow graph of the method. After creating the corresponding CFG of the input 

method, the detection system finds all paths on the control flow graph. The next step is to count the 
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frequency of the CFG features. If the label of a CFG node on a CFG path is found in the feature set, 

the frequency of the CFG feature node increases by one. If the CFG node is found newly, it is added to the 

feature set. The frequency of the newly added feature node is one. The counting of the frequency of the CFG 

feature nodes is performed until all CFG paths are considered. Finally, through the feature extraction 

algorithm, the CFG feature set is produced that holds a pair of the feature node type and its frequency. 

 

 
Input: Let MED be a target method in a program. 

Output: Let FeatureSet be a set of CFG features. FeatureSet = {(f1, feq1), · · ·, (fn, feqn)} 

1: aCFG  generateCFG(MED)  //Creating CFGs by calling CFG generator on MED 

2: allPaths  findAllPaths(aCFG)  //Finding all paths on the control flow graph 

3: foreach pathi from allPaths do 

4:      foreach nodej from pathi do 

5:           if nodej  FeatureSet then 

//Getting the frequency to which nodej is mapped in FeatureSet 

6:                 feqj  getFequency(FeatureSet, nodej)   

7:                 feqj  feqj + 1  // Increase the frequency by one 

8:           else  //Adding nodej to FeatureSet if nodej is new 

9:                 FeatureSet = FeatureSet  {(nodej, 1) }  //Assigning one to frequency of nodej 

10:           endIf 

11:      endForeach 

12: endForeach 

13: return FeatureSet 

 

Figure 4. Extracting CFG features from pairwise methods to identify code clones 
 

 

The proposed clone detection system needs to train a binary-class classifier for code clone detection 

which uses training and test dataset for both true clone pairs and false clone pairs. For the training of the 

classifier, the similarity scores of each feature vector and its label are provided from the training dataset. 

The true clones are labelled to ‘1’ while the false clones are labelled to ‘0’. Keras [7]—an open source 

machine learning library for deep learning— is used to train a clone classifier. Four input nodes and two 

output nodes are configured for the input layer and the output layer respectively. Since the proposed clone 

detection approach considers four features of the control flow graph, the input layer holds four nodes which 

independently take in four feature values. The output layer contains two nodes because the clone detection 

problem is the binary classification task to check whether two methods are clones or not. The proposed clone 

detection system configures the deep learning model to include eight hidden layers and to run 200 iterations 

for training.  

Table 2 lists the node types of the control flow graph that should be considered to detect code 

clones. The node type is the construct of Java programs such as expressions, control constructs, conditional 

constructs, and exception handling constructs. The Java syntax of the node type is represented in the last 

column and follows BNF-style conventions: [expr] means zero or one occurrences of expr, {expr} means 

zero or more occurrences of expr, and (x | y) denotes one of either x or y. The proposed clone detection 

system will extract node types from methods and then generate edges and paths which are made up of 

the nodes. 

Table 3 shows the datasets of training and testing for the clone classifier. Folder #4 in 

BigCloneBench is used as the training dataset since it has the largest number of true and false clone pairs. 

The true clone pairs in the training dataset include T1, T2, VST3, and ST3 clones and the total number of 

true clones is 13,399 which is equal to the total number of false clones. MT3 and WT3/4 clones are 

intentionally excluded from the training dataset because they could contain noisy data which may produce 

false alarms on detecting code clones.  

For the testing of the clone classifier, the test dataset is made from Java source files in the four 

folders of BigCloneBench such as #2, #3, #7, and #10. The source files in the folder #4 are excluded because 

they are used as the training dataset. Unlike the training dataset, the test dataset contains only true clone pairs 

without false clone pairs. The similarity scores on the pairwise methods are computed through the same 

procedures as the training phase. These procedures include the CFG construction, the CFG path generation, 

the CFG feature extraction, and the similarity score computation. 
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Table 2. A list of CFG nodes 
No Node Type Java Syntax 

1 StatementExpressionContext StatementExpression; 

2 LocalVariableDeclarationContext {VariableModifier} Type VariableDeclarators; 

3 IfStatementContext if ParExpression Statement [else Statement] 

4 ForStatementContext for ( ForControl ) Statement 

5 WhileStatementContext while ParExpression Statement 

6 DoWhileStatementContext do Statement while ParExpression; 

7 SwitchStatementContext 

switch ParExpression { SwitchBlockStatementGroups} 

SwitchBlockStatementGroups: { SwitchBlockStatementGroup } 

SwitchBlockStatementGroup: SwitchLabels BlockStatements 

SwitchLabels: SwitchLabel { SwitchLabel } 

SwitchLabel: case Expression : case EnumConstantName : default : 

8 LabelStatementContext Identifier : Statement 

9 ReturnStatementContext return [Expression] ; 

10 BreakStatementContext break [Identifier] ; 

11 ContinueStatementContext continue [Identifier] ; 

12 SynchBlockStatementContext synchronized ParExpression Block 

13 TryStatementContext try Block (CatchClause | [CatchClause] FinallyBlock) 

14 TryWithResourceStatementContext 

try ResourceSpecification Block [CatchClause] [FinallyBlock] 

ResourceSpecification :  ( Resources [;]) 

Resources :  Resource {;  Resource} 

Resource  :  {VariableModifier} ClassOrInterfaceType VariableDeclaratorId = 

Expression 

15 ThrowStatementContext throw Expression ; 

 

 

Table 3. Datasets of training and testing 
Dataset True Clones False Clones 

T1 T2 VST3 ST3 MT3 WT3/4 

Training(#4) 4,500 3,103 1,204 4,592 0 0 13,399 

Testing 

#2 1,552 7 22 1,411 2,687 10,107 

 
#3 630 583 523 2,734 24,335 825,838 

#7 33 4 21 211 1,627 10,665 

#10 151 61 282 922 1159 296 

 

 

Figure 5 shows the experimental result on the test dataset. The proposed clone classifier has been 

evaluated with different similarity thresholds in order to check how the similarity threshold affects the 

performance of the clone detection. The classifier finds clones when the likelihood value is greater than or 

equal to the similarity threshold. In these experiments, the clone classifier is configured with 8 hidden layers 

and 200 epochs. The proposed detection system effectively identified T1, T2, and VST3 clones-the recall 

results are close to 100% (except the folder #2 dataset) with the different similarity thresholds: 0.95, 0.96, 

0.97, and 0.98. The proposed classifier also detects effectively ST3 clones on the datasets #2 and #10-the 

recall values are greater than 90%. With the datasets #3 and #7, the performance of the clone detection goes 

down a little bit as the detection thresholds become larger. The detection system did not show desirable 

detection performance on the MT3 and WT3/4 clones. It is still challenging to detect semantic clone types 

even though the proposed approach is based on control flow graphs which may represent more abstract 

perspectives of semantically similar code blocks than token-based approaches. 

Deep neural network models may be affected by hyperparameters such as hidden layer and epoch. 

Tables 4 and 5 show the recall results with different parameter settings for training the proposed clone 

detection system. Five clone detection models are created with the different numbers of hidden layers such as 

2, 4, 6, 8, and 10. The default number of the epoch is 100. Although the training models are not affected 

severely by the number of hidden layers in this experiment, the trained model with 8 hidden layers achieves 

the best performance. Table 5 shows the number of epochs impacts on the performance of the clone 

detection. The proposed clone classifier works best when the number of epochs is 200. 
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Figure 5. Recall results with different similarity thresholds (0.95~0.98) 

  

 

Table 4. Recall results with different hidden layers (Threshold = 0.98) 
# of hidden 

layers 
T1 T2 VST3 ST3 MT3 WT3/4 

2 100 100 99 74 28 2 

4 100 100 99 73 27 2 

6 100 100 99 71 28 2 

8 100 100 99 74 29 2 

10 100 100 99 70 25 2 

 

 

Table 5. Recall results with different epochs (Threshold = 0.98) 
# of 

epochs 
T1 T2 VST3 ST3 MT3 WT3/4 

50 100 100 99 72 27 2 

100 100 100 99 71 28 2 

150 100 100 99 72 28 2 

200 100 100 99 73 28 2 

250 100 100 99 72 27 2 

 

 

4. RELATED WORK 

Many studies have been conducted to overcome research challenges in detecting code clones across 

source code. Most of existing clone detection methodologies can be categorized into five types: 

text-based [8], token-based [9], tree-based [10], graph-based [11], and metrics-based [12] approaches. One of 

the emerging research trends is to leverage deep learning algorithms to enhance the performance of the 

existing clone detection strategies. The promising outcomes of deep learning affect many other fields beyond 

artificial intelligence communities. Software engineers have been involved in actively applying deep learning 

to solve typical problems in software engineering such as clone detection, bug prediction, and 

security prediction.  

Sheneamer and Kalita’s clone detection approach [13] uses typical machine learning algorithms so 

to detect semantic code clones. They use a supervised learning approach where semantic features are 

extracted from ASTs and PDGs and training data are labelled with clones or non-clones. Their approach is 

based on machine learning algorithms, not deep learning algorithms. White et al. [14] use a deep learning 
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approach to detect code clones by combining recurrent neural network with recursive neural network at 

method and file levels. The experimental results show their methodology is feasible in some cases, but they 

still need to conduct more case studies on popular clone benchmarks. Li et al. [15] provide a token-based 

clone detection approach using deep learning-based clone classifier. They extract feature vectors by 

tokenizing method pairs and then compute similarity scores of the feature vectors. The clone classifier is 

trained with eight similarity scores of known true clones and false cones. In the testing phase, the trained 

clone classifier predicts code clones in a codebase of unknown clones. This approach still has room for 

improvement on finding semantic clones like Type-3 and Type-4 clones. Saini et al. [16] propose a clone 

detection approach to focus on harder-to-detect semantic clones. Their approach is based on a deep neural 

network with Siamese architecture where information retrieval and metric-based methods are combined. 

To detect semantic clones, their approach excludes semantically dissimilar clones using a semantic filter 

instead of using semantic features. Phan et al.’s work [17] show CFG-based deep learning can be used for 

software defect prediction as well as clone detection. They apply convolutional neural networks for 

predicting software defect using control flow graphs. Control flow graphs are built from assembly files and 

then are represented as vectors which are given to convolutional neural networks. The convolutional neural 

network explores the behavior of target code using vector representations and reports software defects in 

unseen datasets after being trained with training datasets. 

 

 

5. CONCLUSIONS AND FUTURE WORK  

This paper presents a code clone detection framework to find effectively clone types with a deep 

learning-based clone classifier. The proposed approach to clone detection is based on the extraction of 

features from CFGs of given code fragments. The CFG features are represented as feature vectors so that 

they can be compared to determine whether code fragments are similar or dissimilar. The clone detection 

classifier is trained and tested with similarity scores that are computed from the feature vectors. The proposed 

detection framework effectively found syntactic clone types such as T1, T2, and VST3 clones. It also 

identified ST3 clones with the acceptable but not excellent recall results. In the case of sematic clone types 

such as MT3 and WT3/4 clones, the detection performance still needs to be improved. Although the proposed 

approach to clone detection needs to be improved further, the promising experimental results suggest that 

deep learning-based clone detection classifiers can be effective in finding code clones. In the future, more 

code clones will be explored to enhance functions of the proposed clone detection on semantic clone types. 

Furthermore, unsupervised deep learning algorithms can be considered to improve the weakness of the clone 

classifier using supervised learning. The clone detection framework will be applied for other programming 

languages to extend the generality of the proposed clone detection methods. 
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