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 In this paper, an evolved ant colony system (ACS) is proposed by 

dynamically adapting the responsible parameters for the decay of  

the pheromone trails 𝜉 and 𝜌 using fuzzy logic controller (FLC) applied in 

the travelling salesman problems (TSP). The purpose of the proposed method 

is to understand the effect of both parameters 𝜉 and 𝜌 on the performance of 

the ACS at the level of solution quality and convergence speed towards  

the best solutions through studying the behaviour of the ACS algorithm 

during this adaptation. The adaptive ACS is compared with the standard  

one. Computational results show that the adaptive ACS with dynamic  

adaptation of local pheromone parameter 𝜉 is more effective compared to  

the standard ACS. 
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1. INTRODUCTION  

Ant colony system (ACS) metaheuristic was proposed for the first time by Dorigo and Gambardella 

in 1997 [1, 2], using as example application the travelling salesman problem (TSP) which is presented by  

a weighted graph G=(N,A), with N is the group of vertices representing the cities, and A the set of edges 

connecting the vertices N. In the interestof ameliorating the original ant system (AS), the importance of 

exploitation of accumulated informations collected by previous ants is token into consideration, concerning 

the exploration of new solutions of the search space. For this raison, two mechanisms were developed [3-5]. 

First, ants construct a pheasible solution during the solution construction phase, with probability q0  

the solution component that maximizes the product between pheromone trail and heuristic information is 

chosen, that is  

 

𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢∈𝐽𝑘(𝑟)[𝜏(𝑟, 𝑢)][𝜂(𝑟, 𝑢)]𝛽 𝑖𝑓 𝑞 ≤ 𝑞0 (1) 

 

While, with probability (1- q0) they perform a biased exploration, which is the same as in AS. 

 

𝑃𝑟𝑠
𝑘 = {

[𝜏(𝑟,𝑠)].[𝜂(𝑟,𝑠)]𝛽

∑ [𝜏(𝑟,𝑢)][𝜂(𝑟,𝑢)]𝛽
𝑢∈𝐽𝑘(𝑟)

 𝑖𝑓 𝑠 ∈ 𝑗𝑘(𝑟) 

0                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2) 

 

The state transition rule determined by (1) and (2) is called pseudo-random proportional rule. 

Where, q0 is a parameter that indicates the relative importance between exploration and exploitation  

(0 ≤ q0 ≤ 1). Second, a potent elitist rule is called to update pheromone trails. 
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𝜏(𝑟𝑘,𝑠𝑘) = (1 − 𝜉) 𝜏(𝑟𝑘,𝑠𝑘) + 𝜉𝜏0  (3) 

 

This rule has the purpose to avoid stagnation in a local optimum, by diminishing the pheromone of 

visited edges, therefore favouring exploration of new edges not yet visited. Where, 𝜉 ∊ (0, 1) is a parameter 

called local pheromone decay parameter, and 𝜏0 is a very small constant that initializes the pheromone trails 

with value 
1

𝑛.𝐿𝑛𝑛
, where n is the number of cities and 𝐿𝑛𝑛 is the length of a nearest neighbour tour. 

Also, in ACS algorithm only the best ant is allowed to reinforce the globally best tour,  

in the purpose of directing the search and making it more precise. This is fulfilled through the use of  

the following rule: 

 

𝜏(𝑟𝑘,𝑠𝑘) = (1 − 𝜌)𝜏(𝑟𝑘,𝑠𝑘) + 
𝜌

𝐿𝑏𝑒𝑠𝑡
  (4) 

 

where, 𝜌 ∊ (0, 1) represents the global pheromone decay parameter, and 𝐿𝑏𝑒𝑠𝑡  is the best found so far  

tour’s length. 

The ACS has proved by these additions to be one of the most powerful algorithms to deal with  

NP-hard combinatorial optimization problems. However, in metaheuristic, parameter adaptation is 

considered as a big problem that affects the behavior of the algorithm, so that the adequate setting of 

parameters values is often leading to a good performance. Parameter adaptation problem requires specialized 

knowledge and a lot of experiences. In most applications of ACS the values of parameters are usually 

remained fixed. To improve the performance of the algorithm, many researchers have proposed adaptive 

methods to adjust the values of parameters. Nowadays, the fuzzy logic controller (FLC) becomes one of  

the most required methods in the field of parameter adaptation in heuristic and metaheuristic algorithms [6]. 

In fact, the concept of FLC is very easy to comprehend, since it possesses a human like intuition which 

makes it preferable for the controllers and the adapters [7].  

Many researchers have applied the FLC to several variants of Ant Colony Optimization algorithms 

to adjust their parameters. In [8], Li et al developed a fuzzy ant colony optimization (FACO) to adapt  

the evaporated and deposited value of pheromone trail applied in a one-piece flow production system,  

using the age of pheromone trail and the ant's fitness as performance measures for the FLC algorithm.  

Also, Ahmadizar and Soltanpanah in [9] proposed a Fuzzy Logic concept to enhance the performance of 

ACO, by developing an effective Ant Colony Optimization to deal with reliability optimization problem for 

a series system with various choices. For their work, they considered the pheromone trails and the heuristic 

information as a fuzzy set.  

Amir et al. [10], proposed in their work, a fuzzy logic controller (FLC) to adapt 𝛽 and q0 parameters 

automatically while solving the problem using the error of the so far best tour compared to  

the best-known tour for the TSP problem and the diversity between the found solutions by the population of 

ants as performance measures. For their parts, Neyoy et al. [11], used a FLC to dynamically adapting  

the parameter 𝛼, in order to avoid early convergence. The main idea is increasing the value of parameter 𝛼 

with the use of error and change of error which are considered as inputs of FLC, while respecting the average 

lambda branching factor that indicates the exploration level in the search area by measuring the distribution 

of the pheromone trails values. Also, Olivas et al. [12], proposed a dynamic control for exploration and 

exploitation capabilities of the search space in an ACO algorithm, by dynamically adapting the global 

pheromone decay parameter 𝜌 using fuzzy logic controller (FLC). To this end, they used diversity and 

iteration metrics as inputs of the Fuzzy system, in order to measure the algorithm performance, and the 𝜌 

parameter was considered as output. As an addition to Olivas et al approach, 

In [13] authors proposed an evolved Ant Colony System algorithm by dynamically adapting  

the local pheromone decay parameter 𝜉 using fuzzy logic controller. The inputs for their fuzzy system are 

the same as in Olivas proposed method. Besides the adaptation of ACO parameters, fuzzy logic was applied 

in other metaheuristic algorithms. Such as [14], where Valdez et al defined a hybrid particle swarm 

optimization algorithm with genetic algorithm which uses fuzzy logic system for parameter adaptation  

and decision making. To do so, they proposed three fuzzy systems; the first one gives decisions about  

the best results of the FPSO + FGA, while the two seconds are responsible of varying the values of  

the crossover, the mutation, the social acceleration, and the cognitive acceleration parameters.  

In [15] a fuzzy logic method was proposed to improve the convergence and the dispersion of  

the population in PSO algorithm by dynamically adapting the cognitive and the social factors, using three 

Fuzzy Systems which takes the average error, the diversity of the swarm and the iterations of the algorithm as 

performance measures. Sombra et al. [16] developed a Fuzzy Logic approach to update the alpha parameter 

of a gravitational search algorithm (GSA) based on the exploration and exploitation abilities. Three fuzzy 

rules were modelled according to the elapsed iterations. The main idea is that alpha should be set to a low 
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value in early iterations for better exploration of the search area otherwise it should be set to a high value in 

later iterations to reach a better exploitation of accumulated informations.  

In [17] Lalaoui et al proposed a fuzzy logic controller to adapt the neighborhood structure of 

simulated annealing dynamically. The main goal of their work, is avoiding a premature convergence or 

stagnation by balancing between the exploration and exploitation. In [18] authors proposed a hybridization 

between genetic heuristic and fuzzy logic algorithm applied in wireless sensor networks, in the purpose to 

minimize the energy consumption by choosing an optimal number of cluster heads. Beside the use of FLC as 

a controller of parameters, other machine learning algorithms have been proposed by several researchers for 

the same purpose. We can cite the following works [19-29] as examples. 

In this paper, our contribution consists on proposing an online dynamic adaptation of local and 

global pheromone decay parameters using the fuzzy logic controller (FLC) according to some performance 

measures, then a comparison between those adaptations was undertaken to study the behaviour of ACS-TSP 

during this update. The most important feature of this contribution is reflected in the automation of  

the proposed mechanism. Also, the online property of the proposed adapter allows it to learn while solving 

the instances, so that there is no need to waste time on training.  

The remain of this paper is organised as follows: In section 2 we describe the proposed method.  

The experimental results are discussed in section 3. Finally, in Section 4 conclusions and future work 

are presented. 

 

 

2. RESEARCH METHOD  

Several metrics have been proposed in fuzzy logic systems as fuzzy set to perform a dynamic 

parameter adaptation in ACO algorithms. In this paper, our contribution consist in the dynamical adaptation 

of ACS’ decay parameters, based on the performance measures used in ant colony optimization with 

parameter adaptation using fuzzy logic for TSP problems proposed by Olivas et al., in which they used 

elapsed iterations described in (5), and diversity of ant colony described in (6), as metrics to measure  

the diversification and the intensification abilities in the search space. 

 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
    (5) 

 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =   
1

𝑚
 ∑ √∑ (𝑥𝑖𝑗(𝑡) − �̅�𝑗(𝑡))

2𝑛
𝑗=1

𝑚
𝑖=1    (6) 

 

Where, Current iteration is the number of passed iterations, and total of iteration is the total number 

of iterations required for testing the algorithm, m is the size of colony, i is the index of the ant, n is  

the number of dimensions, j is the number of the dimension, xij is the j dimension of the i th ant, �̅�𝑗  is the j 

dimension of the current best ant of the colony. In addition to the dynamic adaptation for the global decay 

parameter performed by Olivas et al, we developed a fuzzy system to adapt the local decay parameter 

dynamically. The proposed (FLC) consists of three main parts: Fuzzification, Rule Inference, and 

Defuzzification. 

 

2.1.  Fuzzification 

To convert the crisp input variable to fuzzy value, we used the Mamdani triangular membership 

functions described below. This process called Fuzzification and it allows the inputs (Iteration and Diversity) 

and outputs (𝜉 and 𝜌) variables to be quantified in linguistic terms. In this paper, three terms are defined to 

qualify the inputs, which are: Low, Medium, and High. So we can write, Iteration = {Low, Medium, High} 

and Diversity = {Low, Medium, High} as set of decompositions for the linguistic variables. Where,  

Low = [0, 0.5], Medium = [0, 1], and High = [0.5, 1]. The Fuzzification process simplifies the application of 

rules to describe the system in a simple manner [30-32]. In this work we used a Triangular MFs which is 

considered as a linear membership function. The choice of this type of MFs is due to its simplicity of 

implementation and efficacy of computation [33]. The purpose from the membership functions is to 

transform fuzzy linguisticterms into non-fuzzy input values and vice versa. 

In Figure 1 the iteration input variable is mapped to three triangular membership functions with 

a range from 0 to 1 is illustrated. In Figure 2 the Diversity input variable granulated into three triangular 

membership functions is shown with a range from 0 to 1. In Figure 3 the five membership functions of each 

output variable 𝜉 and 𝜌 are shown, taking into account the use of Iteration and Diversity as inputs variables. 
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Figure 1. Iteration as input variable 

 
 

Figure 2. Diversity as input variable 

 

 

 
 

Figure 3. 𝜉 or 𝜌 output variable 

 

 

2.2.  Rule inference 

For the rule inference step, we used a Mamdani’s fuzzy conjunction fuzzy rule which is based on IF-

Then rules [34, 35]. In fact, we have been inspired in the construction of the fuzzy rules for the 𝜌 parameter 

from Olivas et al., then we have developed our own rules for the 𝜉 parameter based on the rules of 𝜌 

parameter and the previous knowledge that 𝜉 plays an opposite role to the 𝜌 parameter, thus,  

when Iteration is "Low" we are on earlier state and when the Diversity is "Low" the ants are so near to  

the best ant, so we need to more exploration by setting 𝜉 in a "Low" value. And when Iteration is "high" and 

Diversity is "high", that is mean we are in advanced states and ants are so spread, so we need to exploit  

the previous information collected by ants by setting 𝜉 to a "high" value. Table 1 and Table 2 present  

the rules of the proposed fuzzy system to control 𝜉 and 𝜌 parameters respectively, with iteration and 
diversity as inputs. 

 

 

Table 1. Rules of the proposed fuzzy system  

for 𝜉 parameter 
Iteration Diversity 

Low Medium High 

Low Low 
Medium 

Low 
Medium 

Medium 
Medium 

Low 
Medium 

Medium 
High 

High Medium 
Medium 

High 
High 

 

Table 2. Rules of the proposed fuzzy system  

for 𝜌 parameter 
Iteration Diversity 

Low Medium High 

Low High 
Medium 

High 
Medium 

Medium 
Medium 

High 
Medium 

Medium 
Low 

High Medium 
Medium 

Low 
Low 

 

 

 

To evaluate and combine the results of the individual fuzzy rules, the Min fuzzy set operator is used, 

Knowing that we are using the Mamdani’s conjunction operation (AND). 

 

𝜇𝑖 = min
𝑗,𝑘=1,2,3

{𝜇𝑗(𝑥), 𝜇𝑘(𝑦) }      i = 1,2, . . ,9  (7) 

 

where, i is the index of the rule, j and k are indices for x and y of the fuzzy sets {Low, Medium, High}. 

After that, the results of those rules are summed to produce a set of fuzzy outputs. 
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In the fuzzy system in Figure 4, the output variable 𝜉 and the output variable 𝜌 have five triangular 

membership functions with Iteration and Diversity as inputs. In fact, the fuzzy system shown in Figure 6 

represents the two proposed fuzzy adaptors for pheromones parameter 𝜉 and 𝜌. The only difference between 

them consists in the development of the nine rules.  

 

 

 

 

 

 

Figure 4. Fuzzy system for pheromone parameters adaptation in ACS with iteration and diversity as inputs 

 

 

2.3.  Deffuzification  

The output variable is obtained as a linguistic term from the brevious step, so we need to transform 

it into a crisp value, in a way that is fits the derived fuzzy values of the linguistic output variable. There are 

several methods that can be used for the defuzzification process for example: Center of gravity method, mean 

of maximum (MOM) method, and the height method. In our work, we have used the center of gravity 

algorithm described by (5) to defuzzify the obtained results: 

 
∑ [𝑢𝑖 𝜇𝑖]9

𝑖=1

∑ [𝜇𝑖]9
𝑖=1

    (8) 

 

where, p=9 is the number of all evaluated rules, 𝑢𝑖  is the singleton membership function for output variable, 

and 𝜇𝑖 the result of all rule evaluation. 

The Fuzy singletons membership function for 𝜉 are : 𝑢𝑖 = 
1

6
,
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The Fuzzy singletons membership function for 𝜌 are : 𝑢𝑖 =  
5

6
,
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3. RESULTS AND ANALYSIS  

In this section we give the results from studying the behaviour of ACS during this adaptation.  

To this end, we tested it on several TSP benchmark instances. First, we update just the local pheromone 

decay parameter 𝜉, then an adaptation of the global pheromone decay parameter 𝜌 is performed, finally  

we adapt both parameters simultaneously. 

 

3.1.  Experiment setup 

The most common used benchmark TSP instances used in the literature are chosen as a set of 

experimental instances in this study, which were selected from the TSPLIB [36]. The instances have been run 

30 times Successively on MATLAB [37], 1000 iterations each time, where the initial position of all ants is 

chosen randomly on all experiments, with the proven best values of ACS algorithm parameters: 𝛽=2, 𝜌 =0.1, 

and, q0=0.9 [38]. Table 3 gives the sizes and the best known lengths for the chosen TSP instances used in 

this experiment. 

 

 

Table 3. Chararteristics of TSP benchmark instances 
TSP att48 berlin52 ch130 d198 eil51 eil76 eil101 kroA100 lin105 Pr226 

Number of cities 48 52 130 98 51 76 101 100 105 226 
best known solutions 10628 7542 6110 15780 426 538 629 21282 14379 80369 

 

Mamdani 

(9 Rules) 
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3.2.  Comparison on the solution accuracy 

Table 4 gives the minimum and average lengths over the 30 runs described previously for each 

instance, also the CPU time is shown. The meaning of the used notations in Table 4 are as follows: 

- Fuzzy local is the result from applying the proposed (FLC) to the ACS-TSP algorithm, in order to adjust 

the local pheromone decay parameter 𝜉. 

- Fuzzy global is the result from applying the proposed to the ACS-TSP algorithm, in order to adapt  

the global pheromone decay parameter 𝜌. 

- ACS is the result from running the standard ant colony system algorithm with fixed parameters. 

- Fuzzy is the result from applying the proposed algorithm(FLC) to the ACS-TSP algorithm for adjusting 

both local and global pheromone decay parameters simultaneously. 

The analyse of the obtained results can be discussed from two levels: the accuracy of solution level, 

and the processing time level. For the accuracy of solution level, it can be noticed from the Table 4 that  

the Fuzzy local could achieve better results when comparing to the other methods especially at the average 

lengths, with exception in the two first instances, which are considered as the easiest problems, it can not 

achieve the best average. Moreover, in the minimum lengths the fuzzy local outperforms the other methods in 

almost instances, with exception in ch130.tsp and eil76.tsp problems. It can be noted that the Fuzzy local 

algorithm can offer better results whenever the size of the problem becomes larger.  

 

 

Table 4. Summary of results using Fuzy Logic algorithm for ACS-TSP instances 
 Att48 Berlin52 Ch130 D198 Eil51 Eil76 Eil101 kroA100 Lin105 Pr226 

Fuzzy 

Local 

Min 33523 7544 6246 16032 429 548 646 21285 14383 80468 

Avg 33715 7589 6348 16327 433 556 663 21612 14525 81854 
CPU 43 69.66 1093.7 2590 152 329 481 530 255 1354 

Fuzzy 

global 

Min 33523 7544 6274 16231 430 546 656 21387 14383 81215 

Avg 33727 7585 6275 16443 436 559 671 21871 14645 82840 
CPU 41.75 99.74 543.7 991.5 93.43 405 732 292 1104 682 

ACS Min 33523 7544 6235 16147 429 547 657 21355 14383 80763 

Avg 33692 7578 6372 16414 435 558 669 21748 14560 82128 
CPU 38.75 73.02 1677 1735 111 388 388 439 460 3448 

Fuzzy Min 33523 73.02 6285 16197 429.5 550 654 21458 14383 80791 
Avg 33619 7598 6410 16442 436 561 671 21844 14638 82683 

CPU 37.13 86.4 1037.7 1685 73 412 523 438 522 745 

 

 

The obtained results clarify the goal behind the introduction of local pheromone rule that is 

represented in the avoidance of falling in local optimum, and continuing to search for better solutions from 

iteration to another. With the suitable value of local pheromone decay parameter, the proposed fuzzy local 

algorithm reaches better solutions by guiding ants towards exploring new search area. Fuzzy global and fuzzy 

themselves use the local pheromone rule with fixed value of pheromone decay parameter, but in spite of this 

they did not obtain solutions as good as fuzzy local algorithm. This result can be explained by  

the effect of choosing the appropriate value of pheromone decay parameter using the parameter adaptation 

parameter mechanism. 

For the amount of time required for testing the algorithms, we can not assume which algorithm 

gives better solutions, since that the obtained results for the CPU time are so various. We can observe from 

the Table 4 that the Fuzzy global alternative recorded the lowest CPU four times with nuance compared to 

the fuzzy local which recorded the less processing time thrice. While, the ACS achieved the best CPU only 

once and the Fuzzy recorded the best processing time twice. 

 

3.3.  Comparison on the convergence speed 

We can notice from the Figure 5 that fuzzy local method converge faster to the best results 

compared to the other methods. However, we can observe from the Figure 6 that the fuzzy local method 

converges lately compared to the other methods but to the best result. So, we can say that, when other 

methods achieve a better processing time, the solution accuracy of their results is not better. This outcome 

can be explained by the importance role of the local pheromone rule in general and the local pheromone 

parameter in particular to avoid trapping into local optimum solution, which may lead to stagnation,  

so the better known solution might not be found. Thus, an adequate setting of local pheromone decay 

parameter can improve the performance of the algorithm by encouraging ants to forget bad solution and look 

for new ones. In Figure 7, as it is observed from Table 4, the fuzzy global method achieves best results 

compared with the other methods. The Figure 8 shows best results for fuzzy local, thus it converges faster 

than the other methods. 
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Figure 5. Sample run on ei101.tsp 

 
 

Figure 6. Sample run on eil76.tsp 

 

 

  
 

Figure 7. Sample run on dl198.tsp 

 

 

  
 

Figure 8. Sample run on lin105.tsp 

 

 

3.4.  Statistical test 

The T-test is used as a statistical test in this case to compare the fuzzy local with the other methods. 

And the parameters used for the tests are: the results of running the algorithm 30 times for each TSP instance, 

the null hypothesis ( H0: 𝜇1 ≥ 𝜇2) says that the Fuzzy local approach achieves greater average lengths 

compared with the other methods, and the alternative hypothesis ( H1: 𝜇1 < 𝜇2) says that the average lengths 

of the Fuzzy local method are better compared with the other methods, the level of significance is 5%,  

and the critical value t0= -1.699. The rejection region is for the range of values lowers than -1.699 of T-Test. 

Table 5 reports the p-value from comparing the proposed fuzzy local method with fuzzy global, standard 

ACS and fuzzy methods. 

 

 

Table 5. Statistical validation for the TSP benchmark instances with fuzzy loal as control algorithm 
TSP Fuzzy global ACS Fuzzy 

Att48 -0.1775 0.3535 1.9801 
Berlin52 0.1401 0.4935 -0.3741 

Ch130 -2.1256 -1.4120 -3.6342 

D198 -3.4316 -2.49 -3.4460 
Eil51 -3.3846 -3.0022 -3.0726 

Eil76 -2.0216 -1.2131 -4.0021 

Eil101 -3.9491 -3.4093 -4.1585 
kroA100 -4.0967 -4.0967 -4.0353 

Lin105 -3.3517 -1.1449 -3.1227 

Pr226 -4.9378 -1.3442 -3.9408 
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4. CONCLUSION  

In this paper, we have studied the behaviour of ant colony system algorithm during a dynamical 

adaptation of the local and global pheromone decay parameters using the proposed logic controller method. 

The obtained results from testing this approach on the travelling salesman problem instances confirmed that 

updating the local pheromone decay parameter can evolve the performance of the standard ACS to achieve 

better solutions when comparing to other methods. In other words, we can say that the local pheromone 

decay parameter has a crucial role to find new best solutions. In our future works, we will give other metrics 

to represent the exploration and exploitation capabilities in ant colony system. Interest will be focused on 

problems of big size and comparison with the state of art will be presented. 
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