
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 10, No. 1, February 2020, pp. 296~307

ISSN: 2088-8708, DOI: 10.11591/ijece.v10i1.pp296-307  296

Journal homepage: http://ijece.iaescore.com/index.php/IJECE

Cooperative hierarchical based edge-computing approach for

resources allocation of distributed mobile and IoT applications

Maha Aljarah
1
, Mohammad Shurman

2
, Sharhabeel H. Alnabelsi

3

1Computer Engineering Department, Jordan University of Science and Technology, Jordan
2Network Engineering and Security Department, Jordan University of Science and Technology, Jordan
3Computer Engineering Department, Faculty of Eng. Technology, Al-Balqa Applied University, Jordan

3Computer and Networks Eng. Department, Al Ain University of Science and Technology, United Arab Emirates

Article Info ABSTRACT

Article history:

Received Feb 23, 2019

Revised Aug 27, 2019

Accepted Aug 30, 2019

 Using mobile and Internet of Things (IoT) applications is becoming very

popular and obtained researchers’ interest and commercial investment,

in order to fulfill future vision and the requirements for smart cities.

These applications have common demands such as fast response, distributed

nature, and awareness of service location. However, these requirements’

nature cannot be satisfied by central systems services that reside in

the clouds. Therefore, edge computing paradigm has emerged to satisfy such

demands, by providing an extension for cloud resources at the network edge,

and consequently, they become closer to end-user devices. In this paper,

exploiting edge resources is studied; therefore, a cooperative-hierarchical

approach for executing the pre-partitioned applications’ modules between

edges resources is proposed, in order to reduce traffic between the network

core and the cloud, where this proposed approach has a polynomial-time

complexity. Furthermore, edge computing increases the efficiency of

providing services, and improves end-user experience. To validate our

proposed cooperative-hierarchical approach for modules placement between

edge nodes’ resources, iFogSim toolkit is used. The obtained simulation

results show that the proposed approach reduces network’s load and the total

delay compared to a baseline approach for modules’ placement, moreover,

it increases the network’s overall throughput.

Keywords:

Edge computing

Internet of things (IoT)

Mobile edge computing

Modules placement

Resources management

Copyright © 2020 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Mohammad Shurman,

Network Engineering and Security Department,

Jordan University of Science and Technology,

Irbid, Jordan.

Email:alshurman@just.edu.jo

1. INTRODUCTION

First, let us define Internet of Things (IoT), as devices that can receive or transmit data using

transceivers, such as wireless sensors, vehicles, actuators, smart grids, or any smart device, in a way that

connects devices together. Edge computing paradigm (or similar platforms as Mobile Edge Computing

(MEC), fog computing or cloudlet) was introduced, due to the fact that the mobile and IoT applications

demands and resources requirements have increased, e.g.; computing platforms [1-5]. Consequently,

the necessity of a new platform that supports these applications demands within a close proximity of

computational and storage resources, within a geographically distributed area, are really a necessity.

In contrast to the current cloud paradigm, a centralized infrastructure is more suitable for regular personal

computer’s applications rather than the requirements nature of mobile and IoT devices’ applications.

mailto:alshurman@just.edu.jo

Int J Elec & Comp Eng ISSN: 2088-8708 

Cooperative hierarchical based edge-computing approach for resources allocation of ... (Maha Aljarah)

297

Fog computing paradigm is introduced by Cisco [6], in order to satisfy crucial demands for IoT

services such as mobility support, high geographically distribution of real-time, and location-based

applications. Mobile applications produce high network traffic that causes congestions, collisions, and

unbearable delay, especially, if this traffic is forwarded through the network’s core.

Cloudlet is the computation resources that located closer to mobile-user devices, in order to perform

high computing power requirements [7]. Other enabling technology for IoT is 5G technology that is expected

to provide massive connections for machines’ communication to satisfy the mobility for high-density

devices, scalability, and low latency requirements of IoT environment. Edge computing is considered as

a key technology to boost 5G environment with the computational and storage resources [8-12]. MEC is also

considered another key technology for 5G, enabling Software Defined Network (SDN) [13] and Network

Function Virtualization (NFV), in order to apply different network functions by utilizing edge node with

multiple virtual machines, and consequently, providing end-devices with various functions.

Content Delivery Networks (CDNs) is the inspiration for edge computing paradigm, such that

the too frequently accessed web contents are pre-fetched to edge nodes that are closer to end-user devices.

Edge computing extends this idea to use it in cloud’s infrastructure, such that edge nodes or cloudlets execute

the code instead of the cloud only if they have the required resources [14]. In caches, data pre-fetching can be

in a proactive manner [15], where this technique can be applied to mobile users such that fog servers provide

services based on users locations, in order to increase system’s response time.

Edge computing is also capable of coping with internet shift usage model, moving from host-centric

design, which uses routing information, to Information-Centric Networking (ICN) design [16],

by distributing a massive amount of information through network nodes. This information will be accessed

regardless of location, leading to a fast information retrieval from the closest location [17].

In this work, we focus on exploiting edge resources efficiently; especially, these days the IoT

devices are growing rapidly. In order to solve this problem, we introduce a cooperative-hierarchical approach

for executing the pre-partitioned applications’ modules between neighbor-edge nodes in a distributed manner

using edges resources, in order to increase resources utilization. Also, the effect of positions’ for neighboring

nodes compared to the position of the cloud (proximity distance) on performance is studied.

The rest of this work is organized as follows: Section 2 presents our main contributions.

In Section 3, a comprehensive overview of related work is presented. Section 4 explains the proposed

protocol for cooperative-hierarchical approach that based on edge computing. Section 5 presents

the simulation results and their insights. Finally, Section 6 discusses conclusions and the future work.

2. CONTRIBUTIONS

The contributions of this work are mainly summarized as follows:

a. A module placement algorithm is proposed, such that modules are executed cooperatively between

neighbor-edge nodes by utilizing their resources rather than using farther cloud resources.

b. Simulation of practical scenarios is conducted, using iFogSim toolkit, in order to examine

the performance of our proposed algorithm.

c. Studying the variation effect for the positions’ of the neighboring nodes compared to the position of

the cloud (proximity distance) on performance of our proposed modules’ placement approach.

The simulation results demonstrate the proposed scheme increases edge resources utilization,

reduces delay as compared to the scenario when modules are executed on the cloud itself. Furthermore,

the proposed approach reduces the traffic that goes through the network core towards the cloud and enhances

user experience by delivering a faster service.

3. RELATED WORK

Extensive research effort has been introduced on challenging issues related to the deployment of

edge computing, such as designing the underlying platform, resource management, communication, energy

consumption, security, and privacy. The architecture of edge computing platform has two main models:

hierarchical based and software defined-based. Tong et al. [18] proposed a hierarchical geo-distributed edge

cloud platform to handle peak loads at different tiers in the hierarchy. They compared their hierarchical

design with a flat-edge cloud design, based on their results the hierarchical design achieved 25% reduction in

the average programs execution delay compared to the flat-edge cloud design. Jararweh et al. [19] integrated

a hierarchical design of cloudlet servers deployed close to end users with the MEC servers at the base station.

This integration overcomes the limited coverage area problem of Wi-Fi access points used by the cloudlet.

Furthermore, controlling tasks is distributed between local cloudlet controllers instead of a single MEC

controller. Regarding the second model type of edge computing, the software defined based architecture,

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 296 - 307

298

authors of [20] proposed a theoretical-software defined based framework. Their framework integrates

mobile-edge servers with software defined controlling system of local and global layers. Both layers are

provided with multiple controlling units including network entities, storage, security, computational

resources, data aggregation and an IoT unit for controlling and monitoring IoT sensors and actuators.

Specifically, local layer serves time sensitive applications in the local domain, while the global layer serves

applications that require data aggregation from several mobile edge servers.

Du et al. [21] designed an application-specific MEC platform that optimizes the Mobile Virtual

Network Operators (MVNOs) by applying software defined data plane paradigm. Authors of [22] integrate

MEC with the emerging technologies of Software Defined Network (SDN) and Network Functions

Virtualization (NFV), in order to achieve better edge and IoT resources deployment and management.

In the same context, Ravindran et al. [23] merged SDN, NFV and ICN to design an architecture for edge-

cloud services. Moreover, authors in [24] developed adaptive routing schemes for both ordinary and

emergent delay requirement of data transmission in industrial IoT framework that combines edge computing

and software defined network. Another work that combines SDN with MEC to support reliability, agility,

responsiveness, and application specific requirement of dynamic vehicular network is proposed in [25].

Regarding communication stage, Channel State Information (CSI) is considered by [26] for control

and management schemes in MEC systems, taking into consideration environment effects, e.g.; fading, on

wireless channel state, which affects transmission data rate, and transmission energy consumption regarding

the allowed transmission latency and suitability of channel state for appropriate computation offloading

decision by the controller.

Researchers have paid an attention to management and edge resources’ provisioning, Hu et al. [27]

examine offloading computation impact from the mobile devices to edge’s node compared to the exsiting

system which offload tasks’ processing to the cloud. The results show an improvement in energy

consumption for mobile devices and response time depending on the offloading distance. Authors in [28]

proposed a dynamic services migration policy in mobile edge-clouds, using a distance-based Markov

Decision Process (MDP) framework. This framework approximates user’s mobility movement model in 2-D

space. They confirmed the superiority of their model analytically and experimentally over various baseline

models, such as: no migration, always migrate, and myopic. In [29], a framework is presented for resources

management in datacenters, in which resources assignment is enhanced based on users’ behavior, type of

service, and price.

Resources provisioning approach is proposed in [30], its goal is to maximize fog resources

utilization. A hierarchal-fog framework is introduced that provides resource-controlling services in both

the cloud and the fog. In this framework, fog colony has a set of fog cells, modules of IoT, and one fog-

control node. It has three layers, such that the first layer has multiple fog colonies. The second layer has

a fog-control node that orchestrating and connects fog colonies together in the first layer. The third layer has

the fog-cloud control middleware that controls cloud services. Control nodes provision cloud resources in

order to maximize their utilization, also guarantee end-user requested service and forward it to a higher

network level.

Kapsalis et al. [31] proposed a fog platform that has four layers: First layer, or the lowest layer,

contains IoT devices. The second layer contains gateways named hub layer that connects devices in first

layer. The third layer is the fog layer that has a fog broker and fog servers that manages resources. The fourth

layer is the cloud layer. Authors proposed a workload-balancer module implemented in the fog broker, its

role is to balance fog resources utilization based on the remaining batteries power for mobile devices,

latency, and current utilization.

A Message Queuing Telemetry Transport (MQTT) protocol is used for communication

in WSNs [32], where exchanged messages contain a code that will be executed, required data, and metadata

that specify tasks characteristics. The MQTT protocol is used for communication in the proposed SDN-based

fog computing system [33]. A customized integration of edge switches, named fog nodes, with SDN

controller and a MQTT broker is developed. Fog node receives MQTT massages from the IoT devices and

publishes their data with a certain topic, or type. After that, the fog node transmits the message to devices

requesting the same type. Moreover, they proposed conducting analytical analysis in the SDN controller such

that it acts as the central node.

Addressing the energy consumption problem, authors of [34] proposed an approach for dynamic

tasks assignment in heterogeneous- mobile-embedded systems and cores in mobile clouds that reduces

the total energy cost using cyber-enabled applications. Furthermore, for green computing, authors of [35]

proposed a mechanism to prevent energy wasting in mobile devices while using dynamic wireless

communication. This mechanism is based on cloudlets layer between mobile devices and the cloud,

performing a dynamic search to achieve better communication experience between mobile devices and

the cloud. Moreover, authors in [36] proposed an energy aware scheme for load balancing and scheduling in

Int J Elec & Comp Eng ISSN: 2088-8708 

Cooperative hierarchical based edge-computing approach for resources allocation of ... (Maha Aljarah)

299

smart manufacturing based on fog platform. Regarding security, authors of [37] proposed a solution for

security and privacy concerns, in order to maximize security and privacy levels for transmission, while

maintaining a successful connection probability within a given timing constraints using multi-channel

communication.

4. OUR PROPOSED APPROACH

The main goal of this work is increasing edges’ resources utilization using a cooperative-

hierarchical based approach; therefore, this work proposes: (a) An edge-computing platform architecture that

facilitates communication between edge’s entities. (b) An approach with a polynomial-time complexity,

in order to distribute the pre-partitioned application modules between edge resources.

4.1. System architecture

In this subsection, the platform for edge computing and edge node structure is discussed as follows:

4.1.1. Platform for edge computing

The structure of the proposed platform, as illustrated in Figure 1, consists the core network and three

layers: (1)- End layer, (2)- Edge layer, (3)- Cloud layer. The end layer is the lowest layer that has mobile and

IoT devices, e.g.; sensors, with poor or limited resources, e.g.; computing platform and memory, where nodes

in this layer cannot perform tasks with a heavy computation.

Above the end layer is the edge layer, or the middle layer, that has a geographically distributed edge

nodes with computation, communication, and memory resources in a close proximity to the end layer

devices. This layer can perform tasks independently, and running pre-defined applications on the behalf of

the lower layer, or the end layer, devices in a fast manner to reduce latency, and also to provide efficient

streaming without the assistance of the cloud layer.

The upper layer is named cloud layer, which is the farthest layer from users-devices in this platform.

Due to this architecture nature, this work goal is to minimize communication between the cloud layer and

other layers, namely end and edge layers, in order to reduce number of routing requests through the core

network. As a result, the traffic amount through the core network, used bandwidth, and congestion are all

reduced. On the other hand, cloud resources could be used as data storage for a long-term to be analyzed in

depth. Moreover, if edge-nodes’ resources are not capable of executing some tasks, thus, the edge node

forwards these heavy processing tasks’ requests to the cloud as a final resort.

4.1.2. Edge node structure

Each edge node owns storage, computation, and communication resources. These resources can be

heterogeneous and distributed in a hierarchical way, reducing the distance to the cloud to a certain extent,

where less powerful resources are located closer to end devices. Moving away from end devices, the more

powerful resources become available. In the proposed approach, as discussed in details in our proposed

approach description, Subsection 4.2. Tasks are distributed such that light-computation tasks are executed

close to the end devices, while tasks with heavy computation requirements are executed by upper level

resources, as shown in Figure 2.

Edge nodes might vary in their available resources, and hence depending on the type of task’s

requirements, the suitable edge node is selected. Edge nodes that provides heavy computational services,

such as gaming or augmented reality, should be provided with more resources than nodes that provide light-

computation services. This design shows the necessity of the proposed cooperative-hierarchical based

approach, e.g.; if a node with light resources is flooded with task requests and has a neighbor node that has

more resources that currently are underutilized. As a result, some tasks are forwarded to this neighbor node

rather than forwarding them far to the cloud layer. Clearly, this reduces traffic in the core network and

enhances response time. For example, when deploying systems in wide regions, such as a smart driving

assistance, they can benefit from our proposed approach.

When several edge nodes can provide the same requested service, they might be distributed to cover

a wide region; however, the amount of traffic is not the same for different areas. When employing our

proposed approach between neighboring nodes, the utilization of edge nodes’ resources is increased and

interacting with the cloud layer is reduced, as demonstrated in Subsection 4.2.2. In this work, it is assumed

that each edge node also consists an edge-orchestration node that represents the main component in the edge

node. This node buffers information about each running task, such as its running host, the current state of

computation and memory resources, in addition to information about the connection state with neighbor-edge

nodes and the cloud.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 296 - 307

300

As shown in Figure 2, there is a node named orchestration node that is responsible for resources

management, making decisions regarding executing tasks on its node’s resources, or transferring this task to

a neighbor node or even forward it to the cloud layer.

Figure 1. Platform with cloud and edge infrastructures

Figure 2. Edge node structure

4.2. Our proposed approach description

In order to improve edge-node resources utilization, a cooperative-hierarchical approach is proposed

in order to distribute and execute application modules between neighbor-edge nodes.

4.2.1. Application

An application to be executed on edge’s resources, it must be pre-partitioned into modules; such that

each module conducts a specific function. The proposed approach does not partition the application, but

some other entity, e.g.; compiler, is responsible for dividing the application into modules. The complexity of

each module is defined by number of parameters, such as required RAM size, required CPU time, and

transmitted data size. In order to represent the application using a directed graph, a distributed data flow

model is used [38], such that each module is represented by a vertex and a directed edge represents

the dependency and data flow direction between modules.

4.2.2. Algorithm for modules placement

The pre-partitioned application modules are received by the edge-orchestration node, in order to be

distributed to the available resources based on their needs of memory and processing requirements.

The baseline module placement method, that used in iFogSim simulator, depends on spanning the constructed

graph from the bottom to the top within the same edge node, that is searching for a suitable resource to assign

each module. However, if there are no resources satisfy the module needs, therefore, it will be forwarded to

the cloud. In [30], a system model is proposed that has utilization and latency metrics for the resources inside

the same node, however, the utilization and the delay caused by neighbor nodes are not considered.

In this proposed work, the platform is spanned horizontally searching for suitable resources in neighboring

nodes, as assigning the module to the cloud is the last resort. The proposed mechanism for module’s

placement is shown in the below flow chart, shown in Figure 3, and is explained as follows:

1. In the edge node, the orchestration node keeps leaf-to-root paths for the hosts, also it keeps tracking

the current CPU utilization (busy time) of each host. The orchestration node represents hosts inside

the edge node by a tree structure based on their computing power, such that the least powerful hosts are

the leaves and the most powerful host is the root. Apparently, a leaf-to-root path has the possible hosts of

executing a module; where the orchestration node visits each path from leaf-to-root. As a result, modules

are executed on hosts with less power, if they satisfy modules requirements, that closer to end devices,

before moving them to the upper level in order to look for available resources.

2. The orchestration node schedules the order of executing the modules in the edge node based on

the dependencies between them, e.g.; a module may need some modules results as input data.

Int J Elec & Comp Eng ISSN: 2088-8708 

Cooperative hierarchical based edge-computing approach for resources allocation of ... (Maha Aljarah)

301

3. The orchestration node visits leaf-to-root paths of hosts for each module, in order to check the feasibility

of executing the module on this host, e.g.; if available CPU time is enough.

4. If the host is able to execute this module, thereby the orchestration node forwards this module to this host

and also it updates its information about CPU’s load for this host and this module.

5. Else, if the hosts in this level (lowest level) along the path do not have enough resources to execute

the module, therefore, the orchestration node checks the upper level for other capable hosts, if exist.

6. The orchestration node checks all levels of resources in order to execute the module inside the current-

edge node, an that before considering executing it on a neighbor-edge node or on the cloud.

If the orchestration node is unable to execute the module inside its corresponding edge-node, due to

the module's excessive resources requirements, e.g.; computing power, which is currently unavailable at

hosts inside the current-edge node. Consequently, the orchestration node will sort its neighbor-edge nodes

and the cloud based on the estimated delay to reach each of them.

7. The orchestration node starts with the neighbor-edge node that has the minimum-reachability estimated

delay, and transmits a request for executing the module to this neighbor-edge node.

8. In the proposed approach, one level of cooperation between edge nodes is employed, e.g.; if the neighbor-

orchestration node receives a request from other edge node for module execution, it checks the ability of

module execution only at its highest level of resources.

9. If the original-orchestration node receives a positive response from a neighbor-edge node, it forwards all

required data for executing this module to this neighbor-edge node.

10. On the other hand, if the original-orchestration node does not receive a positive response from any

neighbor, therefore, it will forward this module to the cloud as the last resort.

Figure 3. Flow chart of the module placement approach in edge node

Apparently, the complexity of this proposed approach is polynomial in time, which is O(M*P*N),

where M, P, N are number of modules, number of paths within the edge node itself, and number of neighbor-

edge nodes, respectively.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 296 - 307

302

5. SIMULATIONS RESULTS

To evaluate the proposed Cooperative-Hierarchical based Edge-Computing approach for modules-

placement against a baseline approach, the iFogSim simulation is employed [38] which is a CloudSim

extension [39] for fog computing.

5.1. Simulation scenarios

The case study provided by the simulator [38] is employed for our experiments, which is an

implementation for Electroencephalography (EEG) online Tractor Beam Game, in which each player wears

electroencephalogram headset that equipped with a sensor, in order to transmit user’s brain state to

the application on the user’s smart phone. The application shows all players surrounding an object, such that

each player tries to pull the object toward him. The object’s movement depends on the concentration level of

each player; consequently, the player that has the highest concentration level will succeed to pull the object

toward his direction.

The application is partitioned into three different modules: (1)- Client, (2)- Concentration calculator,

(3)- Coordinator. The client module receives EEG sensor readings and pre-processes them, and then forwards

them to the concentration-calculator module. Next, the concentration-calculator module finds the value for

the player’s concentration level and transmits this value back to the client module. After that, the client

module transmits the found concentration level to the actuator’s display.

At the same time, the module of concentration-calculator transmits the results periodically to

the coordinator module, which is responsible for global-game state sharing with other clients. Accordingly,

their displayed global state of the game is updated. Figure 4 demonstrates the dependencies and data flow

between EEG-game modules [38]. Tuples are the task’s specifications and data transferred between modules

that used for processing by the receiving module. Each tuple has a type, in our scenario, tuples are sent

by sensors to the client module are EEG type that contain EEG-sensor readings. While tuples that transmitted

from the client to the concentration-calculator module, and that after conducting sensors’ readings

pre-processing, have the sensor type and so on, as illustrated in Figure 4. Generally, each tuple type has

different specifications, such as the required task’s execution time, data size in bytes before execution,

and other required characteristics that needed to execute the task.

Figure 4. EEG-Tractor Beam Game modules [38]

We developed a platform for the experiments that contains two edge nodes, where each edge node

has one orchestration node, one edge server and a group of mobile devices that varied through experiments

from 10 to 100 devices. Figure 5(a) shows that the proposed edge-computing platform with the orchestration

nodes and the communication delay between components. It is implemented using iFogSim toolkit.

Figure 5(b) demonstrates the developed platform without having orchestration nodes, this platform is

employed as the baseline model for comparison purpose. The configurations and characteristics for devices

in both developed platforms are unified, in order to fairly compare our proposed cooperative-hierarchical

modules placement method to the baseline placement method.

Int J Elec & Comp Eng ISSN: 2088-8708 

Cooperative hierarchical based edge-computing approach for resources allocation of ... (Maha Aljarah)

303

(a)

(b)

Figure 5. (a) Edge-computing developed platform with orchestration nodes (our proposed approach);

(b) Edge-computing developed platform without orchestration nodes (baseline approach)

5.2. Performance metrics

To evaluate our proposed approach, we introduced the following performance metrics:

1. Total delay: is the total time delay that required for executing all tuples (tasks) including

communication delay, due to the fact that these tuples travel from one module to another on different

hosts and/or different edge nodes. Therefore, the total time delay includes network communication,

processing, congestion, and collision time.

2. Throughput: is the total number of data tuples executed per time unit. It is evaluated by using (1),

where T denotes total number of the executed tuples and D denotes the total delay.

 (1)

3. Network load: is the amount of data tuples that travels in the network and occupies it for a certain

amount of time. It is evaluated by using (2), where Ndi denotes the total delay of the i
th

 tuple and

Nwi denotes the i
th

 tuple size.

 ∑

 (2)

Notice that the network load includes congestion and collisions. Therefore, network load

reduction leads to reduce collisions and traffic congestion. As above (1) and (2) demonstrate, throughput

is inversely proportional to the total delay, while network load is proportional to the network overall delay.

The simulation results in Subsection 5.3 prove that the throughput is influenced by reducing total delay for

tuples execution more than network load. For consistency, these metrics are measured for

the same number of tuples executed in both systems implementation: the proposed approach and the baseline

approach, as their architectures are shown in Figure 5(a) and Figure 5(b), respectively. In simulation, when

number of devices in edge nodes is increased, clearly, more tuples are produced, and hence, the assessment

validity for introduced performance metrics is enhanced.

5.3. Simulation results and discussion

In our proposed cooperative-hierarchical placement approach, all mobile devices have same

capabilities allows them to execute only the clients’ modules, while the edge servers have different

capabilities such that some servers can execute the concentration-calculator module while others cannot.

Therefore, in the proposed placement approach, a server with enough computing power can execute

the entities of this module. On the other hand, regarding the baseline placement method, all entities of this

module are executed at the cloud which may cause a higher communication delay.

A preliminary result of this work is published in ICECTA'2017 [40], the initial enhancement results

are presented for the proposed approach when 40% of nodes are closer than the cloud. However, in this

extended work, more extensive results are presented as follows:

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 296 - 307

304

1) An extensive simulation is conducted when 30% and 70% of edge nodes are closer, to mobile and

IoT devices in the end layer, than the cloud.

2) Extensive experiments are conducted for total delay, throughput, and network load metrics.

3) Moreover, this work demonstrates how different performance metrics are affected by neighbour-

nodes’ position or edge nodes proximity to end devices.

5.3.1. Average delay

Delay enhancement results is shown in Figure 6, for example, results show that if 10 devices

emanating data, a 60% reduction in latency is achieved when placing modules on neighbor-edge nodes that

are 40% closer to devices than the cloud. This reduction in delay is due to reduction of traffic directed

through the network core towards the cloud, imposing less network congestion, leading to a lower delay, and

that is due to employing our proposed approach rather than the baseline approach.

Delay reduction percentage is going down to 36% when there are 100 devices emanating data,

because congestion and collision probability will increase in the network causing more delay. Clearly, delay

reduction decreases as number of devices increases. That makes sense, due to the fact that when number of

devices increases, available edge nodes resources become not sufficient to satisfy their resources

requirements. Therefore, some tuples are forwarded to neighbor-edge nodes or even to the cloud resources

through the network core. As a result, the overall communication overhead and data transmission time

increase, in other words, average delay increases. Furthermore, Figure 6 shows that when 70% of neighbor-

edge nodes are closer to mobile IoT devices than the cloud, enhancement results are better than when 40% of

neighbor-edge nodes are closer. In contrast to the scenario when only 30% of neighbor-edge nodes are closer

to devices, delay enhancement is less.

5.3.2. Throughput

Figure 7 proves that our proposed approach improves the throughput significantly. It is interesting to

see that the proposed approach enhancement ratio is more than double the enhancement for delay, because

both network delay and congestion are reduced. Also, when the number of devices increases, more tuples are

generated, and thus, throughput enhancement is degraded. An interesting observation is noticed,

as the number of devices increases, the enhancement reaches a saturation level. Even with this saturation,

the proposed approach outperforms the baseline approach.

5.3.3. Network load

Network load enhancement means reduction in network congestion and collisions. As predicted,

the proposed approach decreases the network load, since fewer packets will be routed through the core

network towards the cloud. Figure 8 illustrates that reduction in network load is inversely proportional to

number of devices in the platform. A noteworthy observation about network load is as number of devices

increases the enhancement decreases, due to the fact that more tuples are generated that cause more network

congestion and collision possibility.

Figure 6. Delay enhancement

Figure 7. Throughput enhancement

Int J Elec & Comp Eng ISSN: 2088-8708 

Cooperative hierarchical based edge-computing approach for resources allocation of ... (Maha Aljarah)

305

Figure 8. Network load enhancement

6. CONCLUSIONS AND FUTURE WORK

Edge computing has a crucial role for supporting the operation of mobile and Internet of Things

(IoT)-based applications. Edge computing supports applications that requires high computing capabilities,

and/or fast response demands; also it plays a major role for applications that based on location awareness.

This work goal is to improve edge resources utilization; therefore, we proposed a cooperative-hierarchical

based approach for modules’ placement in edge node and between neighbor-edge nodes, where this approach

has a polynomial-time complexity. Also, this work introduced the architecture that facilitates communication

between edge nodes. In simulation experiments, iFogSim toolkit [38] is used. The proposed module

placement algorithm is executed only during application deployment phase. Simulation results show that

adopting the proposed approach improves the overall of platform performance by reducing the overall

latency, reducing network congestion, and improving throughput. Moreover, the end-user experience is

improved. As a future work, we plan to study cases with a dynamic environment and study the effect of rapid

changes in the environment, and how this influences end-user experience.

REFERENCES
[1] T. Francis, “A Comparison of Cloud Execution Mechanisms Fog, Edge, and Clone Cloud Computing,”

International Journal of Electrical and Computer Engineering, vol. 8, pp. 4646-4653, 2018.

[2] Y. Pradhananga and P. Rajarajeswari, “Tiarrah Computing: The Next Generation of Computing,” International

Journal of Electrical and Computer Engineering, vol. 8, pp. 1247-1255, 2018.

[3] P. Prakash, et al., “Fog Computing: Issues, Challenges and Future Directions,” International Journal of Electrical

and Computer Engineering, vol. 7, pp. 3669-3673, 2017.

[4] K. Qaddoum, et al., “Elastic neural network method for load prediction in cloud computing grid,” International

Journal of Electrical and Computer Engineering, vol. 9, pp. 1201-1208, 2019.

[5] K. Sumalatha and M. S. Anbarasi, “A review on various optimization techniques of resource provisioning in cloud

computing,” International Journal of Electrical and Computer Engineering, vol. 9, pp. 629-634, 2019.

[6] F. Bonomi, et al., “Fog Computing and Its Role in the Internet of Things,” Proceedings of the first edition of the

MCC workshop on Mobile cloud computing, Finland, 2012.

[7] M. Satyanarayanan, et al., “The Case for VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive Computing,

vol. 8, 2009.

[8] S. Li, et al., “5G Internet of Things: A survey,” Journal of Industrial Information Integration, vol. 10, 2018.

[9] J. Cheng, et al., “Industrial IoT in 5G environment towards smart manufacturing,” Journal of Industrial

Information Integration, vol. 10, 2018.

[10] Y. C. Hu, et al., “Mo-bile-edge computing-introductory technical white paper,” WhitePaper, Mobile-edge

Computing (MEC) industry initiative, 2014.

[11] Y. C. Hu, et al., “Mobile edge computing: A key technology towards 5G,” ETSI White Paper, vol. 11, 2015.

[12] Shi W. and Dustdar S., “The promise of edge computing,” Journal of Computer, vol. 49, 2016.

[13] C. Y. Chang, et al., “MEC architectural implications for LTE/LTE-A networks,” in Proc. ACM Workshop on

Mobility in the Evolving Internet Architecture (MobiArch), New York, 2016.

[14] S. K. Sharma and X. Wang, “Live Data Analytics with Collaborative Edge and Cloud Processing in Wireless IoT

Networks,” IEEE Access, vol. 5, 2017.

[15] T. H. Luan, et al., “Fog Computing: Focusing on Mobile Users at the Edge,” arXiv pre-print technical report, 2015.

[16] M. Gritter and D. R. Cheriton, “An architecture for content routing support in the Internet,” USENIX Symposium on

Internet Technologies and Systems (USITS), San Francisco, 2001.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 296 - 307

306

[17] G. Xylomenos, et al., “A survey of informationcentric networking research,” IEEE Communications Surveys &

Tutorials, vol. 16, 2014.

[18] Tong L., et al., “A hierarchical edge cloud architecture for mobile computing,” The 35th Annual IEEE International

Conference on Computer Communications (INFOCOM), San Francisco, 2016.

[19] Y. Jararweh, et al., “The future of mobile cloud computing: integrating cloudlets and mobile edge computing,” 23rd

ICT, Greece, 2016.

[20] Y. Jararweh, et al., “SDMEC: software defined system for mobile edge computing,” IEEE IC2EW Workshop, 2016.

[21] P. Du and A. Nakao, “Application specific mobile edge computing through network softwarization,” 5th IEEE

International Conference on Cloud Networking (Cloudnet), Italy, 2016.

[22] O. Salman, et al., “Edge computing enabling the Internet of Things,” IEEE 2nd World Forum on Internet of Things

(WF-IoT), Italy, 2015.

[23] Ravindran R., et al., “Towards software defined icn based edge-cloud services,” IEEE 2nd International

Conference on Cloud Networking (CloudNet), USA, 2013.

[24] X. Li, et al., “Adaptive transmission optimization in SDN-based industrial internet of things with edge computing,”

IEEE Internet of Things Journal, vol. 5, 2018.

[25] J. Liu, et al., “A scalable and quick-response software defined vehicular network assisted by mobile edge

computing,” IEEE Communications Magazine, vol. 55, 2017.

[26] Mao Y., et al., “A survey on mobile edge computing: The communication perspective,” IEEE Communications

Surveys &Tutorials, vol. 19, 2017.

[27] W. Hu, et al., “Quantifying the Impact of Edge Computing on Mobile Applications,” Proceedings of the 7th ACM

SIGOPSAsia-Pacific Workshop on Systems, Hong Kong, 2016.

[28] S. Wang, et al., “Dynamic service migration in mobile edge-clouds,” IFIP Networking Conference, New Jersey,

2015.

[29] M. Aazam and E. N. Huh, “Dynamic resource provisioning through fog micro datacenter,” IEEE International

Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), USA, 2015.

[30] O. Skarlat, et al., “Resource provisioning for iot services in the fog,” IEEE 9th International Conference on

Service-Oriented Computing and Applications (SOCA), China, 2016.

[31] A. Kapsalis, et al., “A Cooperative Fog Approach for Effective Work-load Balancing,” IEEE Cloud Computing,

vol. 4, 2017.

[32] U. Hunkeler, et al., “MQTT-S: A publish/subscribe protocol for Wireless Sensor Networks,” 3rd international

conference on Communication systems software and middleware and workshops, COMSWARE 2008, India, 2008.

[33] Y. Xu, et al., “Towards SDN-based fog computing: MQTT broker virtualization for effective and reliable

delivery,” IEEE 8th International Conference on Communication Systems and Networks (COMSNETS), India,

2016.

[34] K. Gai, et al., “Energy-aware task assignment for mobile cyber-enabled applications in heterogeneous cloud

computing,” Journal of Parallel and Distributed Computing, vol. 111, 2018.

[35] K. Gai, et al., “Dynamic energy-aware cloudlet-based mobile cloud computing model for green computing,”

Journal of Network and Computer Applications, vol. 59, 2016.

[36] J. Wang, et al., “Fog Computing for Energy-aware Load Balancing and Scheduling in Smart Factory,” IEEE

Transactions on Industrial Informatics, vol. 14, 2018.

[37] K. Gai, et al., “Privacy-preserving multi-channel communication in Edge-of-Things,” Future Generation Computer

Systems, vol. 85, 2018.

[38] H. Gupta, et al., “iFogSim: A Toolkit for Modeling and Simulation of Resource Management Techniques in

Internet of Things, Edge and Fog Computing Environments,” Software: Practice and Experience, vol. 47, 2017.

[39] R. N. Calheiros, et al., “CloudSim: a toolkit for modeling and simulation of cloud computing environments and

evaluation of resource provisioning algorithms,” Journal of Software: Practice and experience, vol. 41, 2011.

[40] M. Shurman and M. Aljarah, “Collaborative execution of distributed mobile and IoT applications running at

the edge,” International Conference on Electrical and Computing Technologies and Applications (ICECTA), 2017.

BIOGRAPHIES OF AUTHORS

Maha Aljarah is a M.Sc. student in Computer Engineering, Jordan University of Science and

Technology, Irbid, Jordan. Her research interests are IoT and Fog Computing.

Email: mkaljarah16@cit.just.edu.jo

mailto:mkaljarah16@cit.just.edu.jo

Int J Elec & Comp Eng ISSN: 2088-8708 

Cooperative hierarchical based edge-computing approach for resources allocation of ... (Maha Aljarah)

307

Dr. Mohammad M. Shurman received his B.Sc. degree in Electrical and Computer

Engineering from Jordan University of Science and Technology, Jordan, M.Sc. and Ph.D.

degrees in Computer Eng.-Wireless Networks from University of Alabama-Huntsville, USA,

in 2000, 2003, and 2006, respectively. Currently, he is an associate professor in Network Eng.

and Security Dept., JUST, Jordan. His research interests include wireless ad-hoc networks,

security, WSNs, network coding, mobile networks, SDN, cognitive radio, 4G and 5G

technologies.

Email: alshurman@just.edu.jo

Dr. Sharhabeel Alnabelsi is an associate professor at Computer Engineering Dept. at Al-

Balqa Applied University, Amman, Jordan. Also, he is an associate professor in Computer and

Networks Eng. dept. at Al Ain University of Science and Technology, UAE. He received his

Ph.D. in Computer Engineering from Iowa State University, USA, 2012. Also, he received his

M.Sc. in Computer Engineering from The University of Alabama in Huntsville, USA, 2007.

His research interests are cognitive radio networks, wireless sensors networks, network

optimization, and cloud computing. He is a member of honorary societies including Eta Kappa

Nu and Phi Kappa Phi.

Email: alnabsh1@bau.edu.jo, sharhabeel.alnabelsi@aau.ac.ae

mailto:alshurman@just.edu.jo
mailto:alnabsh1@bau.edu.jo
mailto:sharhabeel.alnabelsi@aau.ac.ae

