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 Accelerometers are widely used in modern vehicular technologies to 

automatically detect and characterize road anomalies such as potholes and 

bumps. However, measurements from an accelerometer are usually plagued 

by high noise levels, which typically increase the false alarm and 

misdetection rates of an anomaly detection system. To address this problem, 

we have developed in this paper an adaptive threshold estimation technique 

to filter accelerometer measurements effectively to improve road anomaly 

detection and characterization in vehicular technologies. Our algorithm 

decomposes the output signal of an accelerometer into multiple scales using 

wavelet transformation (WT). Then, it correlates the wavelet coefficients 

across adjacent scales and classifies them using a newly proposed adaptive 

threshold technique. In addition, it uses a spatial filter to smoothen further 

the correlated coefficients before using these coefficients to detect road 

anomalies. Our algorithm then characterizes the detected road anomalies 

using two unique features obtained from the filtered wavelet coefficients in 

order to differentiate potholes from bumps. The findings from several 

comparative tests suggest that our algorithm successfully detects and 

characterizes road anomalies with high levels of accuracy, precision and low 

false alarm rates as compared to other known methods. 
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1. INTRODUCTION  

Road anomalies are observable deformities on a typical road surface that deviate from standard 

expected conditions. They are also considered as obstructions noticed on the surface of asphalt roads that 

hinder the smooth flow of traffic [1]. These anomalies are usually in the form of rutting, potholes, cracks and 

speed bumps. Road anomalies are sometimes responsible for road traffic accidents, which often lead to 

the loss of lives and properties, driving discomfort, increase in vehicular fuel consumption, as well as wear 

and tear of vehicles [2-4]. Despite continuous efforts to repair anomalous roads and ensuring strong 

adherence to road construction standards, road anomalies still persist and remain part of the life cycle of most 

roads. Thus, before road anomalies are noted and corrected by maintenance agencies, it remains pertinent to 

develop detection and warning systems in vehicular technologies to improve road navigation with the aim to 

prevent incessant cases of road anomaly induced accidents. 
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A popular sensor used in modern vehicular technologies to monitor road surface conditions and to 

detect road anomalies is the Accelerometer [3, 5-10]. An Accelerometer is a device that measures the 

acceleration of a body relative to g-force [11]. Though Accelerometers have become widely used in this 

regard, nevertheless, a major problem with their use is the high noisy content produced in the sensor’s output 

signal [10]. The accelerometer’s high noise content stems from its high sensitivity to slight changes in 

movement or vibration of an object, which is a vehicle in our case. Thus, this high degree of randomness 

associated with the accelerometer’s measurements makes road anomaly detection a difficult process, while 

making road anomaly characterization an even more challenging task. Thus, an approach in this regard is to 

develop adaptive threshold estimation techniques suited for classifying the output measure of an 

accelerometer with the aim to improve road anomaly detection and characterization in vehicular 

technologies. The development of such a technique motivated the work reported in this paper. 

Consequently, in this paper, we have developed an adaptive threshold technique (ATT) used within 

a Wavelet Transformation Scale Space Filtering (WSSF) algorithm to improve road anomaly detection and 

characterization in vehicular technologies. The ATT and the WSSF algorithm are combined to constitute 

the Adaptive Wavelet Transformation Scale Space Filtering (AWSSF) algorithm. The AWSSF processes 

the accelerometer’s measured output by decomposing it into multiple scales and correlating across adjacent 

scales, while noise samples are filtered using a spatial filter.  

The AWSSF’s output is then fed to a Road Anomaly Characterization Algorithm (RACA) 

developed in [12]. Characterization was achieved using two distinct patterns extracted from an 

accelerometer’s output measure to differentiate potholes from bumps. Following our approach, 

the contribution of this paper entails the development of an AWSSF algorithm that adapts to the dynamic 

noise level of an accelerometer’s output measure to improve road anomaly detection and characterization in 

vehicular technologies.  

The rest of the paper is structured as follows: related work is presented in section 2, an overview of 

WSSF algorithm and the proposed adaptive threshold technique is presented in section 3, the proposed 

AWSSF algorithm is presented in section 4, section 5 presents the results and discussions while, conclusion 

is drawn in section 6. 
 

 

2. RELATED WORK 

Some approaches for road anomaly detection based on machine learning concepts are noted 

in [13, 14]. These approaches though accurate, nevertheless are quite complex owing to the training process 

required, as well as their dependence on the type/size of the input dataset. Simpler approaches exist such as  

in [1]. In [1], an accelerometer sensor embedded in a mobile phone along with a gyroscope and inertial 

sensors were used to monitor road surface conditions. The measured acceleration signals were analyzed using 

a wavelet transformation technique along with the Support Vector Machine (SVM) algorithm.  

These algorithms were trained using statistical parameters such as the standard deviation, the mean, 

the energy of the signal and the variance. Road anomalies were detected and classified into mild, severe, or 

span levels. Similarly, a Multilayer Perceptron (MLP) algorithm was proposed in [5] to analyze road 

anomalies. The experimental results obtained revealed high detection, accuracy and precision rates. A similar 

approach using a pattern recognition system with an accelerometer sensor and a GPS was proposed in [15] to 

detect road anomalies. This involved road anomaly classification using the SVM after a pre-processing stage. 

The experimental results obtained showed that the method in [15] performed better than the method in [5].  

A real-time processing algorithm was proposed in [16] to detect potholes using data acquired via a 

GPS, a video module and an accelerometer. The goal in [16] was to reduce the volume of data transmitted 

from the sensors to a central processing server. Following [16], other approaches have been reported  

in [3, 8, 10, 17-21] that considered issues concerning the monitoring, detection, localization and evaluation of 

road anomalies. We note that these methods lacked the design required for road anomaly characterization 

into either potholes or speed bumps, which limits the extent of their use.  

Consequently, in this paper, we have considered the development of an AWSSF algorithm for the 

purpose of road anomaly detection and characterization. Our approach ultimately aims to improve road 

navigation by vehicle drivers to reduce cases of road anomaly induced accidents. Furthermore, our system 

can be adopted to notify maintenance agencies quickly enough about the presence and whereabouts of these 

anomalies for quick maintenance response.  

 

 

3. RESEARCH METHOD 

In this section, we present the WSSF algorithm as a basis for the adaptive threshold algorithm. 

We then combine the WSSF and our adaptive threshold algorithm to develop the AWSSF. 
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3.1.  Wavelet transformation scale space filtering (SSF) algorithm 

According to wavelet transformation (WT) theory [22], the typical WT model is generally  

expressed as  

 

,
1 1

( ) ( ) ( , )
J K

j k
j k

f x x W j k
= =

= Yå å
 (1) 

 

where, 
,

( )
j k

xY  is the normalized dual basis function, J  is the maximum number of decomposition scales, 

K  is the maximum position in the original signal scale, ( , )W j k  is the actual scale space decomposition at 

different resolution scales, j  is the index of the scales, and k  is the index position in the original signal 

space. Considering the model in (1), it is important to choose carefully an appropriate basis function 
,

( )
j k

xY  

in order to compute the wavelet coefficients. We made this choice by visually examining the structure of 

different known basis functions, such as the Mexican Hat (Morlet), the Haar, Daubechies (db), Coiflet and 

the Meyer wavelet functions. We then compared these functions to an actual typical signal measured by an 

Accelerometer. We have presented details concerning this exercise in [10, 12]. Essentially, the comparative 

exercise in [10, 12] was used to identify the wavelet basis function suitable for road anomaly detection and 

characterization. In this present paper, we adopted the Daubechies-2 (db2) wavelet basis function since it was 

the most correlated function to most typically measured accelerometer output signals (kindly see [10, 12] for 

details). We proceed with the WT process by investigating the basis function as follows:  
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Where, a is the dyadic scale parameter, 1 a  is the resolution, and t ka= is the dyadic translation 

parameter. The scale variables are discretized, dilated and translated to obtain the dyadic wavelet transforms 

using  
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Where k is the translation index (0, 1, 2, ...)± ± . Thus, (1) - (3) form the basis for the WT theory used in this 

work. Hence, the WT coefficients ( , )W j k  corresponding to the sensed signal ( )f x  were computed using  
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Where 
,

( )
j k

xY  is the set of wavelet function values. We note that if j is increased during the decomposition 

process, then either the amplitude of the wavelet coefficients remains constant or it increases as the signal 

edges become positively correlated. Furthermore, we observed that the magnitude of noise samples typically 

reduces owing to poorer correlation indexes. Consequently, we increased the scale factor in order to isolate 

noise samples easily from a measured signal set. Thus, this enabled us to identify easily portions in an 

accelerometer output signal that correspond to potential road anomalies. However, a major challenge lies in 

effectively adapting the threshold value that classifies the random correlated coefficients. We shall present an 

adaptive threshold algorithm in Section III-B designed to address this problem. We will then combine it with 

the Scale Space Filtering (SSF) algorithm described in [22, 23] to develop the AWSSF. Similar to the SSF 

algorithm, the AWSSF algorithm correlates the wavelet coefficients by directly multiplying wavelet 

coefficients existing at adjacent scales. The model used in the AWSSF is expressed as  
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Where W denotes the spatial correlation function, J  is the number of multiplication scales, and ( ),W j i k+  

is the ( )j i th+  wavelet coefficients at the th
k scale. By using (5), the AWSSF algorithm identifies noise 

samples easily and isolates them from features that typically describe road anomalies. This is possible noting 

that over several scales; signal samples typically produce larger correlation values than noise samples, which 

produce smaller values. To further explain this process, let the first and second scale wavelet transform 

coefficients be ( )1,W k  and ( )2,W k  respectively. The multiplication of these two scales is expressed as  

 

( ) ( ) ( )2
1, 1, . 2,k W k W kW =

 (6) 

 

For anomaly detection, ( )
2

1, kW  often produces sharper and more pronounced response values than 

either ( )1,W k  or ( )2,W k . This may be because ( )
2

1, kW  attains larger magnitudes as compared to either 

( )1,W k  or ( )2,W k . Thus, ( )
2

1, kW  is used in the SSF algorithm instead of ( )1,W k  or ( )2,W k . 

We summarize the steps in the SSF algorithm as follows: 

a. ( ),W j k is computed using (4) as the set of wavelet coefficients at each scale. 

b. At each scale, the power of the correlated data ( )
2

,j kW  is rescaled to match ( ),W j k .  

c. If the new absolute value of ( )
2

,j kW  is greater than or equal to the absolute value of ( ),W j k  when 

compared at the scale points (j, k), then an edge is identified.  

d. The edge position and its corresponding ( ),W j k  value are saved.  

e. All identified edges in ( )
2

,j kW and ( ),W j k are then extracted. After extracting the first round of edges at 

position ( ),j k , the data points left in ( )2
,j kW and ( ),W j k are denoted as ( )2

,j k¢W  and ( ),W j k¢ .  

f. The next edge in the signal is extracted from ( ),W j k and ( )2
,j kW  by rescaling the power of ( )2

,j k¢W to 

that of  ( ),W j k¢  and then comparing their absolute values.  

g. This process of normalizing the power, comparing the data values and extracting edge information is 

iterated many times until the power of the un-extracted data points in ( ),W j k  at the scale points ( ),j k  

are approximately equal. 

h. The final filtered signal is then stored in ( ),
new

W j k . 

Having established the SSF algorithm, we shall describe next the adaptive threshold technique and 

then deploy it in Section III-C in the AWSSF algorithm. 

 

3.2.  Adaptive threshold technique 

We describe a new adaptive threshold technique (ATT) suited for use in the SSF algorithm. 

The ATT adapts automatically to the fluctuating noise content of the correlated wavelet coefficients. 

The typical SSF algorithm uses a fixed threshold approach that requires careful fine-tuning of several input 

datasets in order to determine a candidate value. Nevertheless, since the wavelet coefficients are random, 

the fixed threshold typically fails, thus undermining the algorithm’s performance in the end. Consequently, 

we propose to adapt the SSF’s threshold value 
th

T  using  

 

1

N

th i
i

K
T x

N =

= å
  (7) 

 

where N is the interval width, xi is the sample acceleration for i = 1, 2, ..., N, and K is a constant empirically 

set to K = 4 for improved performance. We obtained this value following several experiments conducted to 

determine typically maximum values of a set of wavelet coefficients. We shall adapt this adaptive approach 

in the SSF in the next section. Nevertheless, we compared our approach with other adaptive methods such as 

the Recursive one-sided hypothesis testing (ROHT) Algorithm [24] and the Otsu multi-thresholding 

technique [24-26]. Our findings in this regard will be discussed in Section IV. 
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3.3.  Adaptive wavelet transforms scale space filtering (AWSSF) algorithm 

Our AWSSF summarized in Algorithm 1 was developed by combining the ATT and the SSF algorithm 

to classify effectively the correlated wavelet coefficients. The AWSSF passes the classified coefficients 

through a spatial filter designed based on a unit step rectangular window function (see step 8 of Algorithm 1). 

It uses a counter to determine the number of anomalies present in the final denoised signal NS obtained in 

step 11 of Algorithm 1. To characterize the detected road anomalies into potholes or speed bumps, the output 

of the AWSSF algorithm NS used for detection is fed into the Road Anomaly Characterization Algorithm 

(RACA) proposed in [12]. RACA is summarized in Algorithm 2. The window size winsig was set at 30 

samples in our work to process the detected anomalies NS. We arrived at this value after conducting several 

experiments. This was used to create a variable NSD that contains zero values up to the length of NS. We 

used a flag v to mark the beginning of each window sample length and initialised v = 1 along with the sample 

index counter W. RACA also sets the count of the characterized anomalies to 0 in lines 5 and 6. 

The accelerometer output samples in each window are checked (in Line 7) and windowed samples with 

values less than 0 and whose immediate signal sample value is greater than or equal to 0 are characterized as 

speed bumps. Furthermore, any windowed signal sample with an immediate sample values less than or equal 

to 0 is characterized as a pothole. For further details concerning RACA, readers are kindly referred to [12]. 

 

 

4. RESULTS AND DISCUSSION 

In this section, the performance of the AWSSF algorithm is evaluated. Road anomalies were 

characterized using different noisy measured acceleration signals based on distinct features produced 

by RACA whose output pattern is shown in Figure 1(a) and (b) for potholes and bumps, respectively 

(reference to [12]). The AWSSF algorithm was applied to several datasets obtained from different road 

terrains made accessible in [10, 12]. However, since our work focuses on automating the static threshold 

value used to detect and characterize road anomalies, thus we evaluated and compared the AWSSF algorithm 

using different known adaptive threshold techniques, as well as with the optimal static threshold approach 

used in [12]. Furthermore, we used the following metrics to evaluate the AWSSF: accuracy, precision, 

and false positive rate, which were computed relative to the dataset considered at the test time. 

Here, we present in Table 1 and 2 the performance analysis of two representative datasets describing potholes 

and bumps, respectively. 

The results in Table 1 indicate that our ATT automatically sets the scale space threshold to 0.0094, 

which provided a 100 % detection rate concerning road anomalies and a false positive rate of less than 0.2 %. 

Other results indicate 100 % accuracy and 75 % precision rate for our ATT. This performance is followed 

closely by the manual optimal static threshold value of 0.0060, which achieved a 100 % detection rate, a false 

alarm rate of 0.37 %, accuracy and precision rates of 99.63 % and 60 %, respectively. The ROHT algorithm 

achieved a detection rate of 33.33%, which was better than the Otsu Multi Threshold algorithm with a 0 % 

detection and precision rate. 

 

Algorithm 1: AWSSF algorithm for road anomaly detection 

Inputs: wname: dB2, the dual basis wavelet function; Level: 2, wavelet decomposition levels; dataset: f(x), 

sensed road surface conditions by an accelerometer (sample acceleration). 

1 ( ),W j k  is Computed as the set of wavelet coefficients at each scale using (4). 

2 At each scale, the power of the correlated sensed data ( )2
,j kW  is rescaled to the wavelet coefficient at 

that scale ( ),W j k  using (5) 

3 The proposed 
th

A  is computed using (7) 

4 The proposed 
th

A  is apply to threshold the correlated wavelet coefficients in step (3) 

5 Find peaks in the threshold correlated wavelet coefficients 

6 Determine signal boundaries and edges using the peaks in step 6 

7 A spatial filter is generated using the edge location based on a unit step rectangular window function 

8 Multiply the output signal from the spatial filter by the correlated wavelet coefficients in step 3 to 

obtain the denoised signal called “sigden” 

9 Remove any transient fluctuation in the denoised signal “sigden” and saved as NSD 

10 Compute the absolute value of NSD and save as variable NS 

11 Create a counter to count and saves the number of spikes within a specified window in “NS” that 

corresponds to the number of road anomaly in the input dataset 
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Similarly, results in Table 2 concerning road bump anomalies indicate that our proposed ATT and 

the ROHT algorithm achieved the same performance rate of 100 % in the detection, precision and accuracy 

rates, respectively. This performance was followed closely by the manual threshold approach, which 

produced 67 % road anomaly detection rate. The Otsu Multi threshold algorithm performed poorly with 33 % 

detection rate. We observed similar performance rates when these algorithms were applied to other datasets. 

Thus, our findings suggest that our proposed ATT generally performed better than the Manual, Otsu Multi-

threshold and the ROHT algorithms compared in this work. 

 

 
Table 1. Performance analysis of different threshold techniques applied to datasets having pothole anomalies 

 
Performance Metrics Detection Output Characterization Output 

Types of 

Threshold 

Scale Space 

Threshold 
Accuracy Precision 

True 

Positive 

Rate 

False 

Positive 

Rate 

Number of 

Detected 

Anomalies 

Number of 

Bumps 

Number of 

Potholes 

Manual 0.0060 0.9963 0.6000 1.0000 0.0037 5 1 4 

Proposed 

Adaptive 

0.0094 0.9981 0.7500 1.0000 0.0019 4 2 2 

Multi-Thresh 0.1316 0.9926 0.0000 0.0000 0.0019 1 1 0 

ROHT 0.0180 0.9926 0.3333 0.3333 0.0037 3 1 2 

 

 

Table 2. Performance analysis of different threshold techniques applied to 

datasets having road bump anomalies 

 
Performance Metrics Detection Output Characterization Output 

Types of 

Threshold 

Scale Space 

Threshold 
Accuracy Precision 

True 

Positive 

Rate 

False 

Positive 

Rate 

Number of 

Detected 

Anomalies 

Number 

of Bumps 

Number of 

Potholes 

Manual 0.0100 0.9961 0.6667 0.6667 0.0019 3 2 1 

Proposed 

Adaptive 

0.0132 1.0000 1.0000 1.0000 0.0000 3 3 0 

Multi-

Thresh 

0.1409 0.9942 0.5000 0.3333 0.0019 2 1 1 

ROHT 0.0219 1.0000 1.0000 1.0000 0.0000 3 3 0 

 

 

  
(a) (b) 

 

Figure 1. Output of different stages of RACA,  

(a) Road Pothole Pattern (b) Road Bumps Pattern 

 

 

5. CONCLUSION 

In this paper, we have introduced a new adaptive threshold technique (ATT) combined with the 

Wavelet Transformation Scale Space Filtering (SSF) to develop an Adaptive WSSF (AWSSF) algorithm to 

improve road anomaly detection and characterization in vehicular technologies. Consequently, following our 

contribution, the AWSSF algorithm is able to adapt automatically and effectively to the random noise floor 

of an accelerometer’s output measure acquired over asphalt road surfaces. Our findings suggest that using the 

proposed ATT in the AWSSF algorithm leads to higher accuracy, precision and lower false positive rates as 

compared to other adaptive methods compared with in this paper. Nevertheless, we note that the AWSSF can 

be further improved by optimizing the parameter values of the algorithm, an idea we shall consider in 

future works. 
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