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 The arm robot manipulator is suitable for substituting humans working in 
tomato plantation to ensure tomatoes are handled efficiently. The best design 

for this robot is four links with robust flexibility in x, y, and z-coordinates 
axis. Inverse kinematics and fuzzy logic controller (FLC) application are for 
precise and smooth motion. Inverse kinematics designs the most efficient 
position and motion of the arm robot by adjusting mechanical parameters. 
The FLC utilizes data input from the sensors to set the right position and 
motion of the end-effector. The predicted parameters are compared with 
experimental results to show the effectiveness of the proposed design and 
method. The position errors (in x, y, and z-axis) are 0.1%, 0.1%, and 0.04%. 
The rotation errors of each robot links (θ1, θ2, and θ3) are 0%, 0.7% and 

0.3%. The FLC provides the suitable angle of the servo motor (θ4) 
responsible in gripper motion, and the experimental results correspond to 
FLC’s rules-based as the input to the gripper motion system. This setup is 
essential to avoid excessive force or miss-placed position that can damage 
tomatoes. The arm robot manipulator discussed in this study is a pick and 
place robot to move the harvested tomatoes to a packing system. 
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1. INTRODUCTIO 

Due to its location on the equator, Indonesia is blessed with tropical climate and abundance of 

biodiversity to support Indonesia economic growth in the agriculture and plantation sector. One of 

the essential commodities of Indonesia plantation is tomatoes. A tomato requires special handling during 

the harvesting time to ensure only the ripe ones picked, and none of them are crushed or damaged. 

The efficiency and quality improvement are made possible by the application of digital farming employing 

a robot to raise the quality and hygiene of the harvested fruit [1-9]. 

The arm robot manipulator is the most suitable type of robots to be applied in plantation and 

agriculture for harvesting and packaging. The arm can be customized to imitate the human’s arm motion 

from one point to others during harvesting. Robot motions can be designed using an inverse kinematics 
method to generate the desired trajectory, and the robot follows the generated trajectory. The inverse 

kinematics output is the ideal parameters and angles of robot links to ensure the smooth motion during 

harvesting time [10-21]. The suitable end-effector of robot applied as a harvesting robot is a gripper. 

Moreover, in order to achieve gripper’s smooth motion, artificial intelligence (AI) is applied to utilize 

the input from the attached sensors at a robot’s system. The commonly used AI is the fuzzy logic controller 

(FLC) [22-25] and the neural network (NN) [26-28]. Many kinds of research have applied inverse kinematics 

to generate a robot trajectory. However, most of the previous research did not apply AI to ensure 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Inverse kinematic analysis of 4 DOF pick and place arm robot manipulator using fuzzy … (Tresna Dewi) 

1377 

the smoothness of the robot [1-23]. Therefore, it is necessary to design a ready to applied arm-robot in 

handling the harvested tomatoes. This design can be facilitated by carefully planning the mechanical 

parameters in inverse kinematics design and simulated the resulting design in SciLab. The motion 

smoothness can be achieved by implementing FLC to the end-effector design.  

This paper discussed the design and control of a pick and place arm robot applied in tomato 

packaging equipped with a gripper at the end-effector utilized to pick and place a target. In this study, 

the considered target is a tomato to pick from a starting position and place into a belt conveyor. 

The mechanical parameters of the arm robot manipulator are designed and predicted using the inverse 

kinematics method. The designed parameters achieved from inverse kinematics are used to generate robot 

trajectory, and the smoothness of gripper motion is ensured by applying FLC utilizing the input from 
proximity sensors attached to the starting position of target and robot’s end-effector. The first proximity 

sensor is for detecting the availability of tomato. The second sensor is to sense the distance between 

the gripper and the tomato. The parameters from inverse kinematics also decide the angle of gripper opening 

to ensure the right gripping position in holding the tomato; therefore, no damage caused during gripping and 

placing the tomato. The novelty of this research is by designing a 4 DOF arm robot manipulator using inverse 

kinematics analysis and combined with an FLC to ensure the smoothness of gripper motion. The input and 

experimental results are compared to show the effectiveness of the proposed method. The experiment is 

conducted by employing the robot to pick the harvested tomato from a box to a belt conveyor. The designed 

robot is relatively cheap and straightforward, only employing two ultrasonic sensors as the proximity sensors. 

 

 

2. RESEARCH METHOD 

This study proposes the combination of inverse kinematics method and FLC to control a 4 DOF arm 

robot manipulator applied in the digital farming system. The proposed method ensures the right design of 

the mechanical system and the smoothness of the end-effector motion. The elaboration of the proposed 

method is shown as a schematic diagram in Figure 1, while robot detail and the experimental setup are shown  

in Figure 2. The primary input is the proximity sensors data where the first proximity sensor is to detect 

target availability, and the second proximity sensor to detect the distance between the end-effector and 

the target. The end-effector in this study is a gripper. The first proximity sensor is attached to the target pool, 

and the second proximity sensor is attached to the gripper. These sensors positions are shown in Figure 2(a), 

and Figure 2(b) shows the target in the final position or at the beginning of a belt conveyor. The proximity 

sensors are the input to FLC in term of rules-based, which is dicussed in FLC design. FLC is employed to 

decide the decision to move the robot based on the input from proximity sensors attached to the robot system. 
The rules-based decides the rotation angles of end-effector’s motor rotation (θ4) related to mechanical design 

in kinematics analysis. 

The 4 DOF arm robot manipulator considered in this study is shown in Figures 2 and 3, where each 

link is powered by a servo motor. Each servo motor rotation creates the angle or orientation of the robot, 

and the angles are named θ1, θ2, and θ3, respectively, as presented in Figure 3(a) and 3(b). 1, 2, and 3 are 
solved by kinematics analysis or widely known as inverse kinematics method. The kinematics analysis 

method consists of forward and inverse kinematics of a robot. This method is conducted to design the motion 

and pose of a robot based on the ideal mechanical condition of the applied robot such as the length of 

the links presented in Figure 3(c). The output of inverse kinematics gives the precise parameters to design 

the robot’s mechanics and motions. The physical meaning of inverse kinematics outputs is to regulate how 

much the servo motors must rotate to ensure the right position of the robot and the gripping angle (θ4) applied 

while holding the target. 

 
 

 
 

Figure 1. The schematic diagram of the proposed method 
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(a) 

 
 

(b) 
 

Figure 2. Detail robot and experimental setup, 

(a) Robot detail and target positions, (b) Target in Final Position 
 

 

 
 

(a) 

 
 

(b) 

 
 

(c) 

 
Figure 3. Four DOF arm robot applied in this study, (a) Robot in coordinate frames, 

(b) Robot in initial position, (c) Robot dimension 

 

 

2.1. Kinematics analysis method 

Kinematics is a method of modeling robot motion without considering the force applied to move 

the robot. Kinematics analysis is divided into forward and inverse kinematics. By applying kinematics 

modeling, the robot design can be efficient by considering how the robot moves in x, y, and z-axis. The arm 

robot considered in this study is shown in Figure 3. 1 is the angle between the first joint angle and the base, 

2 and 3 are the second and third angles, and 4 is the angle of end-effector or gripper. The initial position of 
the arm robot manipulator is shown in Figure 3(b). 

 

2.1.1. Forward kinematics modeling 

Kinematics analysis of arm robot manipulator starts from forward kinematics. Forward kinematics 
utilizes mechanical parameters to calculate robot configuration and inverse kinematics to reverse 

the derivation to acquire the desired configuration. The generic form of forward kinematics of an arm robot 

manipulator is given by 
 

𝑇3
0  =  𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 [𝑃], (1) 

 

While the inverse kinematics of an arm robot manipulator is given by 
 

[𝑃] =  𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑇3
0  (2) 

 

Where [P] is the desired position in x, y, and z-axis. 𝑇3
0 is the kinematics solution of the robot. Inverse 

kinematics results are the angle of robot’s motion links by modeling robot parameters based on the target 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Inverse kinematic analysis of 4 DOF pick and place arm robot manipulator using fuzzy … (Tresna Dewi) 

1379 

position, the length of the link, the angle between links and those parameters becomes the input to get 

the transformation matrices. Those matrices are the forward kinematics required to get inverse kinematics. 

The forward kinematics uses parameters to calculate the robot configuration, and the kinematic inverse 

reverses this calculation to determine the parameters in achieving the desired configuration. 

There are two ways to solve inverse kinematics of a robot that is using the inverse kinematic 

trigonometry method and Denavit Hartenberg (DH) shown in Table 1. In this study, the mechanical 

parameters are achieved by deriving DH analysis to get the transformation matrix. The robot parameters from 

Figure 3(a) are sorted in Table 1, and the transformation matrix is given by 

 

𝑇 = [

𝐶𝜃1 −𝑆𝜃1 0 0
𝑆𝜃1𝐶𝛼1 𝐶𝜃1𝐶𝛼1 −𝑆𝜃1 0
𝑆𝜃1𝑆𝛼1 𝐶𝜃1𝑆𝛼1 𝐶𝜃1 0

0 0 0 1

]1
0 , 𝑇 = [

𝐶𝜃2 −𝑆𝜃2 0 0
𝑆𝜃2 𝐶𝜃2 0 0

0 0 1 0
0 0 0 1

]1
2  (3) 

𝑇 = [

𝐶𝜃3 −𝑆𝜃3 0 𝛼2

𝑆𝜃3 𝐶𝜃3 0 0
0 0 1 0
0 0 0 1

]2
3 , and 𝑇 = [

𝐶𝜃4 −𝑆𝜃4 0 𝛼3

𝑆𝜃4 𝐶𝜃4 0 0
0 0 1 0
0 0 0 1

]3
4  

 

where Cθn is cos θn and Sθn is sin θn, and 

 

 

Table 1. Denavit hartenberg parameters 
NO θn dn−1 an−1 αn−1 

1 θ1 0 0 α1 

2 θ2 0 a2 0 

3 θ3 0 a3 0 

4 θ4 0 a3 0 

 

 

2.1.2. Inverse kinematics 

Inverse kinematics is the mathematical calculation for finding the parameters in forward kinematics, 

and by knowing the best value for each parameter in Table 1, the desired position and orientation of the robot 
is achieved. The derivation of inverse kinematics is a challenging mathematical task, especially when 

the angles are more than 2. In this study, the inverse kinematics is only to find 1 to 3. The parameter 4 is 

related to the end-effector, and FLC decides the end-effector motion based on the input from the proximity 

sensors attached to the robot system.  

Inverse kinematics in this paper is calculated by an algebraic method to find the reverse of (3) and 

achieve 1 to 3. 1 to 3 calculation are given by (4), (5), and (6). 
 

𝐶𝜃2 =
𝑝𝑥2+𝑝𝑦2 −𝑎1

2−𝑎2
2

2𝑎122
 (4) 

 
therefore, 

 

𝜃2 = 𝑎𝑡𝑎𝑛2 (±√1 − (
𝑝𝑥2+𝑝𝑦2−𝑎1

2−𝑎2
2

2𝑎122
)

2

,  
𝑝𝑥2+𝑝𝑦2−𝑎1

2−𝑎2
2

2𝑎122
) (5) 

 

The angle created by the motion link 1 relative to the base (1)  and  the third link (3) are 
 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑝𝑥
2 + 𝑝𝑦

2 − (𝑎2𝑐𝑜𝑠𝜃2 + 𝑎1)2𝑎2𝑐𝑜𝑠𝜃2 + 𝑎1) (6) 

𝜃3 = ±𝑎𝑡𝑎𝑛2(𝑝𝑥
2 + 𝑝𝑦

2 − (𝑎2𝑐𝑜𝑠𝜃12 + 𝑎1)2𝑎2𝑐𝑜𝑠𝜃12 + 𝑎1)  

 

2.2. Fuzzy logic controller design  

FLC was introduced by Lofti Zadeh as a controller for a plant. Fuzzy sets are the logic based on 

the input coming from sensors the fuzzy logic derived from the way human thinks instead of the exact 

mathematical modeling. The rules-based for FLC application is the probability of possible conditions that 

might occur in the system. In this study, the rules are set based on the position of a target relative to 

proximity sensors detection as the input for the system, and the rules-based govern the robot whether to grab 

the target, start to move, or stay in idle position. The rules-based set in study is shown in Table 2, where 
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inputs are the detection data from proximity sensors (sensors’ installation positions are shown in Figure 2) 

and the robot base angle (θ1) shown in Figure 3(a). The more rules set, the smoother gripper motion is. 

The membership function chosen in this study is given by 

 

𝜇 = {

0 𝑖𝑓 𝑥 ≤ 𝛼
(𝑥 − 𝛼)/(𝛽 − 𝛼) 𝑖𝑓 𝛼 ≤ 𝑥 ≤ 𝛽

1 𝑖𝑓 𝑥 ≥ 𝛽
 (7) 

 

where α and β is the upper and lower boundary indicating “Near” and “Far” distance between the tomato 

(target) and the gripper. α is between 0 to 5 cm, and β is in the range of 11 to 20 cm. 

Based on the place of installation, the proximity sensors rules are divided into rules for proximity 

sensor 1 and sensor 2, as shown in Figure 2(a). The first proximity sensor is attached to the picking place to 

indicate the availability of tomato to be grabbed by the robot and placed on belt-conveyor. Proximity sensor 1 

rules are in “Near” or “Far”; “Near” is when the distance is ≤ 5 cm, and “Far” is > 5cm. Proximity sensor 1 

output data is related in robot motion in picking and placing a tomato. The rules for proximity sensor 2 are 

set to be “Near,” “Medium,” and “Far.” “Near” is set when the proximity sensor detects the target to be 0 to 5 

cm from the robot. “Medium” is set in the range 6 to 10 cm and “Far” is in 11 to 20 cm. The data from 

proximity sensor 2 is related to the servo motor rotation and gripper angle (4) whether it should be “Small”, 
“Medium”, and “Big”. 

The rules in Table 2 are converted into the membership function as shown in Figure 4. Membership 
inputs are shown in Figure 4(a) and output (gripper motion) is given in Figure 4(b). FLC outputs are 

the possibilities of gripper’s final motion in grabbing the tomato, and are in term of “Small,” “Medium,” and 

“Big.” These terms related to the degree (angle) of servo motors rotation and robot motions. “Small” means 

the servo motor’s degree in the range of 20o to 25o, and the robot is in the state of picking and placing 

the target or manipulated object. ”Medium” is when the servo rotation in a range of 25o to 25o, and the robot 

is in initial motion or starting to pick and place the target. ”Big” is when the servo rotation in the range of 

37o to 60o and the robot is in standby mode. The elaboration of how to relate the inputs to the output is by 

fuzzification shown in Figure 5, and how the input in Figure 5(a) can cause the motion in Figure 5(b). 

 

 

Table 2. Rules based fuzzy logic to controller 4DOF arm robot manipulator  

NO 
INPUT OUTPUT 

Proximity Sensor 1 Proximity Sensor 2 Base Angle (1) Gripper (4) 

1 Near Near Small Small 

2 Near Near Medium Small 

3 Near Near Far Small 

4 Near Medium Small Small 

5 Near Medium Medium Medium 

6 Near Medium Far Medium 

7 Near Far Small Medium 

8 Near Far Medium Medium 

9 Near Far Far Medium 

10 Medium Near Small Medium 

11 Medium Near Medium Medium 

12 Medium Near Far Medium 

13 Medium Medium Small Medium 

14 Medium Medium Medium Medium 

15 Medium Medium Far Medium 

16 Medium Far Small Medium 

17 Medium Far Medium Medium 

18 Medium Far Far Big 

19 Far Near Small Big 

20 Far Near Medium Big 

21 Far Near Far Big 

22 Far Medium Small Big 

23 Far Medium Medium Big 

24 Far Medium Far Big 

25 Far Far Small Big 

26 Far Far Medium Big 

27 Far Far Far Big 
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(a) 

 
 

(b) 

 

Figure 4. Membership function of input and output, 
(a) Input membership function, (b) Output membership function 
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Figure 5. Input and output fuzzification, (a) Input membership function, (b) Output membership function 

 

 

3. RESULTS AND ANALYSIS 

Data collecting method in this study is divided into two steps, arm robot motion data; taken using 

inverse kinematics to detect the precise position of tomato in Cartesian coordinates frames, and Gripper data; 

taken by calculating how much the servo rotation angles produced during picking and placing tomatoes. 
The arm-robot positions in Cartesian coordinates frames are converted into the angles of every robot joints 

(1, 2, and 3) in Figure 3a, and the calculation of 1, 2, and 3 is given in eq. 4 to 6. The initial position 
of the arm robot manipulator is shown in Figure 3(b). Table 3 presents the robot positions reference in 

Cartesian coordinates frame (x, y, and z-axis) as the input to kinematics analysis to calculate 1, 2, and 3, 

and the actual robot positions in x, y, and z-axis By inverse kinematics calculation, arm robot position 
relatives to the target and the angles of every joint are acquired by knowing the length of links and other 

mechanical parameters presented in Table 1. The inverse kinematics results are compared to the real data 

from experiments to show the effectiveness of the inverse kinematics analysis in this study. Tables 4 and 5 

show the error comparison between the data from inverse kinematics and the actual data taken from 

the experiment. The error is calculated by 

 

% Error =
Data from Inverse Kinematics

Actual Data from Experiment
× 100% (8) 
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Table 3. Input and output positions of arm robot manipulator 
No Input 

Cartesian (cm) 

Output 

Cartesian (cm) Orientation Angle (o) 

x y z x y z 1 2 3 

1 9 2 0 8.9 2.1 0 0 74.6 53.4 

2 9 3 0 9.1 3.2 0 0 86.5 59.9 

3 9 4 0 9.1 3.8 0 0 100.4 67 

4 9 5 1 9 4.9 1.1 6.34 118.4 76 

5 9 6 1 8.9 6.1 1.1 6.34 121.5 80 

6 10 4 1 10.2 3.9 1.2 5.71 91.8 59.1 

7 10 4 5 10.1 3.9 5.1 26.6 91.8 59.1 

8 11 4 5 11 3.9 4.9 24.4 84.9 52,1 

9 12 4 5 12.1 4 5.2 22.7 79 45.5 

19 10 4 5 9.9 4 5 26.6 91.8 59.1 

 

 

Table 4. Arm robot error positions in Cartesian coordinates 
No Input Output Error Error Percentage 

x y z x y z x y z x y z 

1 9 2 0 8.9 2.1 0 0.1 0.1 0 1.1% 5% 0% 

2 9 3 0 9.1 3.2 0 0.1 0.2 0 1.1% 6.7 % 0% 

3 9 4 0 9.1 3.8 0 0.1 0.2 0 1.1% 5% 0% 

4 9 5 1 9 4.9 1.1 0 0.1 0.1 0% 2% 10% 

5 9 6 1 8.9 6.1 1.1 0.1 0.1 0.1 1.1% 1.6% 10% 

6 10 4 1 10.2 3.9 1.2 0.2 0.1 0.2 2% 2.5% 20% 

7 10 4 5 10.1 3.9 5.1 0.1 0.1 0.1 1% 2.5% 2% 

8 10 4 5 11 3.9 4.9 0 0.1 0,1 0% 2.5% 2% 

9 10 4 5 12.1 4 5.2 0.1 0 0.2 0,8% 0% 4% 

10 10 4 5 9.9 4 5 0.1 0 0 1% 0% 0% 

Error Average 0.1% 0.1% 0.04% 

 

 

Table 5. Error percentage between the angles achieved from inverse kinematics and experiment 
No Inverse Kinematics Prediction Output From Experiments Error Percentage 

Angle (
o

) Angle (
o

) Angle (
o

) 

1 2 3 1 2 3 1 2 3 

1 0 74.6 53.4 0 74.6 53.4 0 0 0 

2 0 86.5 59.9 0 86.5 59.9 0 0 0 

3 0 100.4 67 0 100.4 67 0 0 0 

4 6.34 120 76 6.34 118.4 76 0 1.4% 0 

5 6. 34 120 80 6.34 121.5 80 0 1.25% 0 

6 5.71 90 60 5.71 91.8 59.1 0 2% 1.5% 

7 26,6 90 60 26.6 91.8 59.1 0 2% 1.5% 

8 24.4 84.9 52.1 24.4 84,9 52.1 0 0 0 

9 22.7 79 45.5 22.7 79 45.5 0 0 0 

10 26,6 91.8 59.1 26.6 91.8 59.1 0 0 0 

 Error Average 0% 0.7% 0.3% 

 

 

The comparison of robot references and actual positions are shown in Figure 6(a) where Xi, Yi, and 

Zi are the positions input to inverse kinematics, and X0, Y0, and Z0 are the actual position. The errors between 
the references and actual positions are shown in Figure 6(b) where Error_Pos_X, Error_Pos_Y, 

and Error_Pos_Z are the error position in x, y, and z-axis respectively. Table 4 and Figure 6 indicate that 

the errors are very small (0.1%, 0.1%, and 0.04% in x, y, and z-axis respectively). 

The comparison of robot’s orientation between the predicted by inverse kinematics and actual 

orientation from the experiment is shown in Figure 7(a) where 𝑇1𝑖, 𝑇2𝑖, and 𝑇3𝑖 are 1, 2, and 3 reference 

inputs respectively, and 𝑇10, 𝑇20, and 𝑇30 are the actual 1, 2, and 3 achieved from the experiment. 
The error between the predicted and actual orientation is given in Figure 7 where %T1, %T2, and %T3 are 

the error in 1, 2, and 3, respectively. Table 5 and Figure 7 show that the errors are very small (0%, 0.7%, 

and 0.3% for 1, 2, and 3, respectively). The errors in robot positions and orientations occur due to 
the servo gears do not allow the motor to rotate precisely and the rounding calculation that unavoidable to 

the limited microprocessor memory. 
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(a) 

 
 

(b) 
 

Figure 6. The comparison of robot’s references and actual, 

(a) Comparison of robot position references and actual, (b) Comparison error 

 

 

 
 

(a) 

 
 

(b) 

 

Figure 7. The comparison of robot’s orientation between the predicted by inverse kinematics and 

actual orientation achieved by experiment, (a) Comparison of robot orientation references and actual, 

(b) Comparison error 

 

 

Ten experiments were conducted to compare the arm robot error position in Cartesian coordinates 
and angle of orientation achieved from inverse kinematics and experiments. In experiment 1, the Cartesian 

reference input in x, y, and z-axis are 9, 2, and 0, respectively. This coordinates position is the target to be 

achieved by arm robot manipulator. The real positions from experiments are 8.9, 2.1, and 0 for x, y, and 

z-axis and 0o, 74.6o, and 53.4o for 1, 2, and 3, respectively. The error found in this experiment is ≤ 0.1 cm. 

In experiment 5, the Cartesian reference input in x, y, and z-axis are 9, 6, and 1, respectively. 

This coordinates position is the target to be achieved by arm robot manipulator. The real positions from 

experiments are 8.9, 6.1, and 1.1 for x, y, and z-axis and 6.34o, 121.5o, and 80o for 1, 2, and 3, 
respectively. The error found in this experiment is 0.1 cm. In experiment 7, the Cartesian reference input in x, 

y, and z-axis are 10, 4, and 5, respectively. This coordinates position is the target to be achieved by arm robot 

manipulator. The real positions from experiments are 10.1, 3.9, and 5.1 for x, y, and z-axis and 26.6 o, 91.8 o, 

and 59.1o for 1, 2, and 3, respectively. The error found in this experiment is 0.1 cm. 
In experiment 9, the Cartesian reference input in x, y, and z-axis are 12, 4, and 5, respectively. 

This coordinates position is the target to be achieved by arm robot manipulator. The real positions from 

experiments are 12.1, 4, and 5.2 for x, y, and z-axis and 22.6o, 79o, and 45.5o for 1, 2, and 3, respectively. 
The error found in this experiment is ≤ 0.2 cm. In experiment 10, the Cartesian reference input in x, y, and 

z-axis are 10, 4, and 5, respectively. This coordinates position is the target to be achieved by arm robot 

manipulator. The real positions from experiments are 9.9, 4, and 5 for x, y, and z-axis and 26.5o, 91.8o, and 

59.1o for 1, 2, and 3, respectively. The error found in this experiment is ≤ 0.1 cm. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 2, April 2020 :  1376 - 1386 

1384 

As presented in Table 2, FLC is responsible for rotating the motor to move the gripper (end-

effector). The artificial intelligence is necessary to create robot motion in picking and placing tomato. 

The defined smoothness is including controlling the force applied to the robot to ensure the robot do not 

damage tomatoes as the targets in this study. Table 6 shows the comparison between FLC rules-based in 

Table 2 and the experimental results data. If the angle of the motor gripper is between 0o-25o is the angle, 

then the robot is gripping the tomato. If the angle of motor gripper is between 25o-33o is the angle, 

then the robot is starting to move or initial motion. If the angle of the motor gripper is between 37o-60o is 

the angle then the robot is in the standby position. 60o is the position when the gripper is in full open, and 0o 

is the angle when the gripper is completely closed.  

In sample 1; If Proximity sensor1: Near AND Proximity sensor2: Near AND Motor1 angle: Small 

then Gripper: Picking and Placing (Small). This condition is where the gripper is 20o open or in rules-based is 

Small. In sample 2; If Proximity sensor1: Near AND Proximity sensor2: Far AND Motor1 angle: Medium 

then Gripper: Initial Motion (Medium). This condition is where the gripper is 27o open or in rules-based is 

Medium. In the sample 3; If Proximity sensor1: Medium AND Proximity sensor2: Far AND Motor1 angle: 

Medium then Gripper: Initial Motion (Medium). This condition is where the gripper is 33o open or in rules-

based is Medium. In sample 4; If Proximity sensor1: Far AND Proximity sensor2: Far AND Motor1 angle: 

Small then Gripper: Initial Motion (Medium). This condition is where the gripper is 60o open or in rules-

based is Medium. The input of FLC and the data taken from experiment in Table 6 show that the gripper 

angle (4) or output data is following the rules set in FLC input shown in Table 2. The difference is in data 
no 10 of Table 6, and this condition might occur due to the size of the tomato. Figure 8 shows the experiment 

of picking and placing tomatoes, from the tomatoes pool to the belt-conveyor shown in Figure 2. Figure 8(a) 
shows the robot in initial motion; where it is taking the green tomatoes, Figure 8(b)-(e) show the process of 

picking and placing tomatoes, and Figure 8(f) shows the robot in the standby position. The experimental 

results show that the proposed method to design arm robot manipulator is effective proven by the small errors 

in position and orientation of robot achieved by simulation design and real application. The designed robot is 

cost-effective and more accessible to apply by any farmer. 

 

 

Table 6. Comparison between the input FLC and the experiment results of 4 

o Input Proximity Sensor 1 Input Proximity Sensor 2 Input Rules Based End Effector Angle (4) in 
o

 

1 Detected 0-5 cm Small 20 
o 

− 25 
o 

(Small) 

2 Detected 0-5 cm Small 20 
o 

− 25 
o 

(Small) 

3 Detected 0-5 cm Small 20 
o 

− 25 
o 

(Small) 

4 Detected 6-10 cm Small 20 
o 

− 25 
o 

(Small) 

5 Detected 6-10 cm Medium 25
o 

− 33
o 

(Medium) 

6 Detected 6-10 cm Medium 25
o 

− 33
o 

(Medium) 

7 Detected 11-20 cm Medium 25
o 

− 33
o 

(Medium) 

8 Detected 11-20 cm Medium 25
o 

− 33
o 

(Medium) 

9 Detected 11-20 cm Medium 25
o 

− 33
o 

(Medium) 

10 No detection 0-5 cm Big 37
o 

− 60
o 

(Big) 

11 No detection 0-5 cm Big 37
o 

− 60
o 

(Big) 

12 No detection 0-5 cm Big 37
o 

− 60
o 

(Big) 

13 No detection 6-10 cm Big 37
o 

− 60
o 

(Big) 

14 No detection 6-10 cm Big 37
o 

− 60
o 

(Big) 

15 No detection 6-10 cm Big 37
o 

− 60
o 

(Big) 

16 No detection 11-20 cm Big 37
o 

− 60
o 

(Big) 

17 No detection 11-20 cm Big 37
o 

− 60
o 

(Big) 

18 No detection 11-20 cm Big 37
o 

− 60
o 

(Big) 
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(a) 

 

 
 

(b) 

 

 
 

(c) 

 

 
 

(d) 

 
 

(e) 

 
 

(f) 

 

Figure 8. Robot picking and placing green and red tomato from initial motion and standby, (a) Initial motion, 

(b) Picking and placing, (c) Picking and placing, (d) Picking and placing, (e) Picking and placing, (f) Standby 

 

 

4. CONCLUSION 

The digital farming application allows efficient and effective harvesting assisted by a robot. 

The current technology makes robot production cost cheaper, and easier for the farmer to apply it. 

Robot trajectory generation can be achieved by inverse kinematics analysis. Inverse kinematics analysis 

produces the position and orientation of a robot as the trajectory references. The end-effector in this study is 

a gripper that suitable to grab the harvested tomatoes (target). Gripper motion is designed by FLC to increase 
motion smoothness and the amount of force applied to the target to avoid excessive power in grabbing 

the target. Ten experiments were conducted to show the effectiveness of the proposed method. 

The experimental results show that the actual robot position achieved from experiments are similar to 

the reference inputs from inverse kinematics analysis. The position errors are 0.1%, 0.1%, and 0.04% in x, y, 

and z-axis respectively, and orientation errors are 0%, 0.7%, and 0.3% for 1, 2, and 3 respectively. 
The errors in robot positions and orientations occur due to the servo gears do not allow the motor to rotate 

precisely, and the rounding calculation that unavoidable to the limited microprocessor memory. 

By comparing the FLC rules and experiment data, it shows that the gripper motions also follow the rules 

from FLC. 
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