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 lnAlAs/lnGaAs/InP high electron mobility transistor (HEMT) offers excellent 
high frequency operation.In this work, the DC and RF performance of a 20 nm 

gate length enhancement mode InAlAs/InGaAs/InP high electron mobility 
transistor (HEMT) on InP substrate are presented. The SILVACO-TCAD 
simulations performed at room temperature using the appropriate model 
sshowed that the studied device exhibit excellent pinch-off characteristics, 
with a maximum transconductance of 1100ms/mm, a threshold voltage of 
0,62V, and an Ion/Ioff ratio of 2.106. The cut-off frequency and maximum 
frequency of oscillation are 980 GHz and 1.3THz respectively. These 
promising results allow us to affirm that this device is intended to be used in 
high frequency applications. 
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1. INTRODUCTION 

High electron mobility transistors (HEMTs) technology is usually used for high frequency, high speed 

and low power applications [1] due to the enhanced electron mobility and velocity at high electron density in 

the channel. This provides an important drive current ID, an improved transconductance gm, an important cutoff 

frequency fT, and an important output gain, and also provided a low value of noise, low noise and high gain 

performances. Accordingly, HEMT devices became a significantly competitive candidate for various high-

speed circuits [2, 3] millimeter wave systems [4, 5] and even terahertz applications [6-8]. In another hand High 

electron mobility devices based in the InAlAs/InGaAs material system showed the best high frequency 

response obtained until now and have exhibited excellent performances in terms of noise parameters compared 

to MOSFET devices at RF and microwave fields [9]. Also, diverse research groups work hard to increase 
the maximum frequency fmax of InP and succeeded in bringing up its fmax up to 1 THz. Actually, several 

technologies are based todayon InGaAs/InAlAs quantum well HEMT devices [10]. InAlAs/InGaAs HEMTs 

play a leading role in the communication domain ranging from cell phones to electronic warfare systems such 

as radar and radio astronomy and amplificator application like LNA using an inductive drain feedback 

technique for wireless application at 5.8GHz and was used in LNA that designed using T-network as a matching 

technique was used at the input and output terminal, inductive generation to the source and an inductive drain 

feedback [11, 12]. The particular carrier transport properties of III–V materials are very attractive for THz 

applications, where outstanding high frequency characteristics have been reported [13-15]. InP-based electron 

mobility HEMTs are progressively becoming important for the fabrication of millimeter wave-MMICs 

(monolithic microwave integrated circuits) with high frequency and low noise applications and used for 
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extraction that was described and tested using the pHEMT measured dataset of I-V characteristics and related 

multi-bias s-parameters over 20GHz frequency range [16]. 

The [17-19] this potential is based on the high electron mobility, high electron saturation velocities, 

and high sheet electron densities provided by these materials. In fact, Compared to silicon compound 

semiconductors, III–V compound semiconductors have significantly higher electron mobility and can 

potentially play a major role in future high-speed, low power computing, higher mobility leading to a higher 

speed at low bias condition. III-V high-electron-mobility transistors (HEMTs) based on InGaAs/InAIAs has 

emerged as particularly promising for high-frequency applications. 

InP-based InAlAs/InGaAs HEMTs on InP substrate showed high operating frequency, low 

microwave and millimeter-wave noise, as well as high-gain performance. These excellent performances are 
very attractive for millimeter and also for sub-millimeter wave applications and this are mainly due to  

the high low-field electron mobility, the high sheet carrier density and the high peak drift velocity. Actually, 

different works have been achieved in order to enhancethe high-frequency characteristics of InAlAs/InGaAs 

HEMTs [20-21]. 

The epitaxial layers of thestudied InGaAs/InAlAs/InP structure consists from the bottom to the top of 

our structure of:300nm undoped InAlAs buffer layer grown on a 500nm semi-insulating InP substrate layer 

followed by a 10nm undoped channel layer, a 3nm undoped InAlAs spacer layer a 4-nm undoped InAlAs 

schottky barrier layera doped InGaAs cap layer. The Silicon doped plane isintroduced between the Schottky 

barrier and the spacer layers in order to provide electrons carriers for current conduction. The thick barrier 

layer allowed decreasing leakage current of the gate device, improving current density of the off-state drain-

gate breakdown voltage. The effect of low breakdown voltage, due to the tunnelling, can be lowered by 
the enhancement of the effective gate schottky barrier height. This can be obtained byusing an undoped InAlAs 

layer (schottky layer) directly beneath the gate [22] or by increasing the aluminum mole fraction in the insulator 

[23-24] or by moving a portion of the dopants from the top InAlAs layer to the buffer layer [25]. Introduction 

of schottky layer also enhances the device performance by increasing 2-DEG electron density, improving 

threshold voltage control [26, 27]. The phenomena dominate the formation of two-dimensional electron gas 

(2DEG) confined in the quantum well which take the role of the channel in the high electron density transistors 

(HEMT) based on AlGaN / GaN and InAlAs/InGaAs/InP heterojunction [28]. In this paper, we report the main 

characteristics of 20nm gate-length InAlAs/InGaAs on InP substrate HEMT. 

 

 

2. THE HEMT STUDIED DEVICE DESCRIPTION 

In this work, the DC and RF performance of 20 nm gate length HEMT on InP substrate have been 
achieved. A cross-sectional view of the studied InP based HEMT is presented in Figure 1, where parameters 

and layers details are given. InGaAs contact layer enhance the contact performance below electrodes.  

The cap layer minimizes the source-drain resistance by forming ohmic contacts with the channel. Schottky 

layer forms the Schottky contact with the metal gate to guarantee the current flow in one direction and hence, 

prevent the gate leakage current. Spacer layer physically separates the free carriers from the immobile dopants 

to minimize the impurity scattering. Figure 2 shows the 3D view of the InAlAs/InGaAs/InP HEMT studied. 

 

 

 
 

Figure 1. Schematic cross section of the studied 

InAlAs/InGaAs HEMT on InP substrate 

 
 

Figure 2. 3D view of the InAlAs/InGaAs/InP 

HEMT studied 
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Channel layer is a low band gap material and it is active region in the device. In HEMT devices,  

the most important point about the channel layer is the 2DEG that results from the band-gap difference between 

InGaAs and InAlAs. A potential barrier then confines the electrons to a thin sheet of charge known as 

the 2DEG. This device has considerably less Coulomb scattering compared to MESFET devices, leading to 

a very high mobility device structure. Athick 300nm undoped InAlAs buffer layer are used to improve carrier 

confinement in the channel and to create a low leakage isolation floor. It also allows preventing the dislocations 

from substrate with InP material to the active channel layer. 

Creating a high-quality mesh is one of the most critical factors that must be considered since it plays 
a significant role in the accuracy and stability of the numerical computation that is why a refined meshing has 

been used in our device channel region as shown in Figure 3. A less refined meshing is used in the other 

regions, to optimize the time of simulation. Figure 4 shows the doping profile of our device. The cap layer and 

donor layer are heavily dopedallowing obtaining a good ohmic contact, and providing free electrons to 

the channel region, which is unintentionally doped. 

 

 

 
 
 

Figure 3. InAlAs/InGaAs/InP HEMT meshing 

 

 
 

Figure 4. Thedoping of 2D InAlAs/InGaAs/InP 

HEMT devices 

 

 

3. RESULTS AND DISCUSSION 

To determine the physical phenomenon and the electrical parameter we used the simulation tools is 

given a great help to determine our characteristics of semiconductors and devices. We used in our simulation 
blaze module under Atlas and DevEdit for the devices InAlAs/InGaAs /InP HEMT and in our simulation we 

work with SRH (Shockley-Read-Hall) and fldmob (Parallel Field Dependence: Required to model any type of 

velocity saturation effect) and lattice temperature models, the method using in our simulation are Newton and 

gummel. 

 

3.1.  DC characteristics 

Our device DC properties are simulated at room temperature. Figure 5 shows the simulated transfer 

characteristic where VGS is in the range from -1V to 0.2V at VDS=1.0V. Figure 6 shows the simulated output 

characteristics of our studied 20nm gate length InAlAs/InGaAs/InP HEMT where VDS is in the range from 0 

to 5V and VGS is in the range from -1.2V to 0V. The threshold voltage (Vth) that is defined by a linear 

extrapolation of the square root of drain current versus gate voltage to zero current was -0.4V. Our studied 
HEMT device exhibit good pinch-off characteristics. The drain saturation current obtained at Vgs=0 volt and 

Vds = 2 Volts is 620mA. A good Ion/Ioff ratio of 5104 was demonstrated.the same Vgs. Consequently, there is 

a 0.5.104 fold increase in the ION/IOFF ratio or figure of merit in the studied HEMT. The subthreshold slope is 

plotted in Figure 7. We can observe that our studied device provides a subthreshold voltage “SS” slope of 

52mv/dec. Figure 8 shows the transconductance (gm) as a function of gate voltage. The maximum 

transconductance gm obtained is 1100 mS/mm at Vgs =-0.3 V and Vds = 1.0 V. Our result is hopeful knowing 

that an important slope of gm means that we have a good control of the gate on the device channel 
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Figure 5. Drain current as a function of gate to 

source voltage VGS for the 20nm gate length 

InAlAs/InGaAs/InP HEMT studied 

 
 

Figure 6. Drain current as a function of source to 

drain voltage VDS for the 20nm gate length 

InAlAs/InGaAs/InP HEMT studied 
 

 

 
 

Figure 7. Subthreshold slope characteristicof our 

20nm gate lengthInAlAs/InGaAs/InP HEMT on 

InP 

 

 

 
 

Figure 8. Transconductance gmas a function of 

source to gate voltage VGS for the 20nm gate 

length InAlAs/InGaAs/InP HEMT studied 

 

 

The following study will help to highlight the dependence of the transconductance on VDS and VGS. 

The extrinsic transconductance gm as a function of source to gate voltage VGS for the 20nm gate length 

InAlAs/InGaAs /InP HEMT studied with different drain voltage Vds=1.0V,1.5V,2.0V,2.5V and 3.0V 

respectively is given in Figure 9. A maximum peaktransconductance equal to 1960mS/mm is obtained for Vds 

= 3.0 V at room temperature. This peak appearsin the curve of the transconductance as a dependence on 

the gate bias Vgs. This reflects the DC behavior of the simulated HEMT, which corresponds to the 2DEG 

channels modulated by differentgate voltages. Drain induced barrier lowering DIBL is caused by gate shrinking 
and reduction in the transistor threshold voltage at higher drain voltages. In Figure 10, we presentthe Drain-

induced barrier lowering (DIBL) of 2D InAlAs/InGaAs/InP HEMT transistor, a lower DIBL value of 120mV/V 

is obtained  
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Figure 9. Transconductance gmas a function of 
source to gate voltage VGS for the 20nm gate length 

InAlAs/InGaAs/InP HEMT studied with different 

drain voltage 

 
 

Figure 10. Drain-induced barrier lowering (DIBL) 
of the InAlAs/InGaAs/InP HEMT studied 

 

 

3.2.  RFcharacteristics 

HEMTs are usually characterized in dynamics by two important parameters that are the cut-off 

frequency FT and the maximum oscillation frequency Fmax. MTG, GMS, GMA and h21 are also very important 

parameters that can be taken into account in RF study. Figure 11 shows the simulated current gain (h21), 

the maximum transducer power gain (MTG), maximum stable gain (GMS), available maximum power gain 

(GMA) and unilateral power gain as a function of frequency, of the 20nm gate length devicefor Vds=5 V and 

Vgs= 0.0 V. Our results have been obtained over 1 kHz–1 THz frequencyrange. These results allow observing 
that a maximum gain shown for the current is 60dB, the maximum transducer power gain is 31 dB and 

the maximum stable power gain is 30 dB at 1 GHz. The electronic transfer in the channel is optimized due to 

the effect of CGScapacitance. This high value capacitance results from the extended effective gate length [29], 

the drops suddenly at low frequency in Unilateral power gains because capacity CGS can be ignored in this 

frequency band. The obtained cutoff frequency and maximum frequency fmax for the HEMTdevice studied 

were 980 GHZ and 1.3THz, respectively. 

 

 

 
 

Figure 11. Current gain, h21, and unilateral power 

gain as a function of frequency for our  

InAlAs/InGaAs/InP HEMT 

 
 

Figure 12. S-parameters S11 and S21 of 2D 

InAlAs/InGaAs/InP HEMT transistor 
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The RF characterization was performed on our device from 50MHz to 50 GHz under a bias voltages 

of Vds=5V and Vgs=-0.45V. The reflection coefficient (S11, S22) are shown in Figure 12. RF gain has  

a maximum value of S21=-0.9 at f=5THz, reflection coefficients (S11, S22) are less than 20dB at all frequencies 

of the simulation range. 

 

 

4. CONCLUSION 

In this work, DC and RF performances of HEMT transistor with InAlAs/InGaAs and InP substrate 

with 20 nm gate length were simulated using Atlas-SILVACO based on drift-diffusion carrier transport model. 

The results obtained show optimistic gm, DIBL, Ion/Ioff, fTand a cutoff frequency of 980GHZ with  
a high value of maximum frequency of 1.3THZ that it’s important in high frequency application. We can 

conclude that we can continue scaling with a reduced gate length and dimensions of this device, consuming 

less power energy. Our DC and RF results has been study and simulated, allow this device is expected to be  

a promising candidate that we can used in high speed, hight frequency and microwave applications. 
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