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ABSTRACT

Mathematically, circles are represented by trigonometric parametric equations and im-
plicit equations. Both forms are not proper for computer applications and CAD sys-
tems. In this paper, a quintic polynomial approximation for a circular arc is presented.
This approximation is set so that the error function is of degree 10 rather than 6; the
Chebyshev error function equioscillates 11 times rather than 7; the approximation
order is 10 rather than 6. The method approximates more than the full circle with
Chebyshev uniform error of 1/29. The examples show the competence and simplicity
of the proposed approximation, and that it can not be improved.
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1. INTRODUCTION
Only NURBS (Non Uniform Rational B-Splines) are capable to properly symbolize circles. NURBS

have mathematical frame and harnessing them depends on mathematical knowledge and, in significant cases,
demands the potential of employing geometric and analytic concepts. However, circles are directed to be used
by people of limited and exclusive knowledge of mathematical notions and processes like computer graphics
designers, stylers, animators, computer aided designers, and engineers. Drawing a circle in any CAD system
is the primary alphabet in any software. So, it is very genuine to have the circle as a primitive and as a built-
in-function in the software. A circle can be represented using rational Bézier curves and can be approximated
by polynomial curves. Therefore, approximating a circular arc by polynomial curves with highest possible
accuracy is a very important matter [1].

We treat the circular arc c : t 7→ (cos(t), sin(t)) , −θ ≤ t ≤ θ, see Figure 1, to be approximated
by a polynomial curve with superior uniform approximation. To come to this consequence, the geometric
symmetries of the circle are used to fairly choose the Bézier points in order to symbolize the quintic Bézier
curve that has highest approximation order of 10.

The circle c is approximated in this paper using a quintic parametrically defined polynomial curve
p : t 7→ (x(t), y(t)) , 0 ≤ t ≤ 1, where x(t), y(t) are polynomials of degree 5, that approximates c with
least deviation. Many researchers have tackled this issue using different degrees, norms, and methods, see for
example [2, 3, 4, 5, 6, 7, 8, 9] and the references therein.

In [10], methods for approximating circular arcs using quintic polynomial curves with different bound-
ary conditions are considered. The results of our method in this paper outperform the results in [10],
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are optimal, and can not be improved.
The error function to measure the distance between p and c is the following radial basis distance:

E(t) :=
√
x2(t) + y2(t)− 1. (1)

The radial distance formula contains radicals and thus will be replaced by the following deviation measure:

e(t) := x2(t) + y2(t)− 1. (2)

Since the error function e(t) = 0 represents the implicit equation of the circle; thus it is the suitable measure
to test if x(t) and y(t) satisfy the equation of the circle and to measure the error.

Θ

-Θ

1

Figure 1. A circular arc

Among all possible kinds of approximations, the best uniform approximation yields the most accurate
approximation. Unfortunately, in the literature, there is no method to find the best uniform approximation of
degree five that approximates with order 6 [11]. In this paper, the quintic best uniform approximation is found
that approximates with order 10 rather that 6. This is a significant improvement over the order of the Chebyshev
and Borel theorems [11]. In particular, the approximation problem that is considered in this paper is to locate a
polynomial curve p : t 7→ (x(t), y(t)) , 0 ≤ t ≤ 1, where x(t), y(t) are quintic polynomials, that ”mimics” c
and minimizes maxt∈[0,1] |e(t)|. Moreover, the following conditions are fulfilled:

(a) e(t) equioscillates 11 times over [0, 1] rather than 7,

(b) p approximates c with order 10 rather than 6.

These conditions are used to locate the Bézier points and to get the values of the parameters that are
utilized to satisfy the geometric conditions of the circular arc. For more on these topics, see [1]. To achieve
the conditions of the issue of the approximation, the following feature of the Chebyshev polynomials is used.
Namely, the monic Chebyshev polynomial T̃10(u), u ∈ [−1, 1], given by

T̃10(u) =
−1
512

+
25

256
u2 − 25

32
u4 +

35

16
u6 − 5

2
u8 + u10, u ∈ [−1, 1] (3)

is the unique polynomial of degree 10 that equioscillates 11 times between ± 1
29 for all u ∈ [−1, 1] and has the

least deviation from the x-axis [11].
Since the uniform error (for e(t)) equals 2−9, so, we allow the angle θ to be as large as possible in

order to approximate the largest circular arc with this specified error. Thereafter, this angle θ has to be scaled by
a factor that also combined with a reduction in the uniform error, see the last conclusions and open problems’
section.
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2. RESEARCH METHOD
The curve p(t) is given in Bézier form in order to use the Bézier technique [13]. See Figure 2 for

possible Bézier points of a quintic Bézier curve. A Bézier curve p(t) of degree 5 is given by

p(t) =

5∑
i=0

piB
5
i (t) =:

(
x(t)
y(t)

)
, 0 ≤ t ≤ 1. (4)

The points p0, p1, p2, p3, p4 and p5 are called the Bézier points, and the polynomialsB5
0(t) = (1−t)5, B5

1(t) =
5t(1 − t)4, B5

2(t) = 10t2(1 − t)3, B5
3(t) = 10t3(1 − t)2, B5

4(t) = 5t4(1 − t) and B5
5(t) = t5 are the well-

known quintic Bernstein polynomials.
Since our purpose is to represent the arc with a polynomial curve with the least possible error, it is not

substantial for the errors to take place at the endpoints or elsewhere; it is significant to ensure that this annoyance
is as low as conceivable no matter where the error occurs. Our approach considers lessen the wrongdoing over
all of the segment [0, 1]. To explore the Bézier form approximation of a circular arc, a careful selection of
locations of the Bézier points should be well-done. These locations are substantial to earn the convenient curve
that redeems the approximation conditions. Based on the symmetry property of the circle, the right choice for
the beginning control point p0 should obey the following form: p0 = (α0 cos(θ), β0 sin(θ)), where values of
α0 and β0 could but should not be the same. Similarly, for symmetry reasoning, the valid option for the end
control point p5 is p5 = (α0 cos(θ), −β0 sin(θ)). Set p1 = (a1, b1), then the point p4 has to be selected to
satisfy the form p4 = (a1, −b1). Set the point p2 = (a2, b2), then the point p3 has to be selected to satisfy the
form p3 = (a2, −b2). Using the substitutions a0 = α0 cos(θ), b0 = β0 sin(θ), then the convenient choices for
the Bézier points have to be, see Figure 2,

p0 =

(
a0
b0

)
, p1 =

(
a1
b1

)
, p2 =

(
a2
b2

)
, p3 =

(
a2
−b2

)
, p4 =

(
a1
−b1

)
, p5 =

(
a0
−b0

)
. (5)

It will be apparent that there are more than one solution; the consonant solution of best approximation begins in
the second quadrant and ends in the fourth quadrant counter clockwise. Therefore, in order to have the Bézier
curve p begin in the second quadrant, go counter clockwise through fourth, third, first, second, and ends in the
fourth quadrant as the circular arc c, the following stipulations should be satisfied:

a0, a1, b1, b2 < 0, a2, b0 > 0. (6)

Employ the Bézier points in (5) in the Bézier curve p(t) in (4) to obtain:

p(t) =

(
x(t)
y(t)

)
=

(
a0
(
B5

0(t) +B5
5(t)

)
+ a1

(
B5

1(t) +B5
4(t)

)
+ a2

(
B5

2(t) +B5
3

)
b0
(
B5

0(t)−B5
5(t)

)
+ b1

(
B5

1(t)−B5
4(t)

)
+ b2

(
B5

2(t)−B5
3(t)

) ) , 0 ≤ t ≤ 1. (7)

The Bézier curve is settled by the 6 parameters a0, a1, a2, b0, b1, b2 [12]. These parameters are hired to get the
best uniform approximation. We want to impose the conditions on the polynomial curve p; the polynomials
x(t) and y(t) are substituted into e(t). This leads to a polynomail of degree 10 that is solved using a computer
algebra system. These proceedings are demonstrated in the next section.

3. RESULTS AND ANALYSIS
The values of a0, a1, a2, b0, b1, b2 that satisfy the conditions of the approximation problem are speci-

fied numerically and rounded fittingly in the following theorem.
Theorem 1: The Bézier curve (7) together with the Bézier points in (5) and the values of the parameters
a0, a1, a2, b0, b1, and b2 given by

a0 = −0.978179455549407, a1 = −1.338058000836784, a2 = 2.365283682287911, (8)
b0 = 0.21241016393227463, b1 = −1.6287837424896061, b2 = −2.4356328876380307 (9)

achieves the following three conditions: p minimizes the uniform norm of the error function maxt∈[0,1] |e(t)|
and approximates c with order 10, and the error function e(t) equioscillates 11 times in [0, 1].
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The error functions fulfill:

− 1

29
≤ e(t) ≤ 1

29
, − 1

29(2− ε)
≤ E(t) ≤ 1

29(2 + ε)
, where ε = max

0≤t≤1
|E(t)| ≈ 2−10,∀t ∈ [0, 1]. (10)

Proof: We begin by considering the polynomials x(t) and y(t) in equation (7) and substituting them into the
error function e(t) in (2). Disposition the phrase and performing several simplifications gives the following
equation:

e(t) =
(
4b20 − 40b0b1 + 100b21 + 80b0b2 − 400b1b2 + 400b22

)
t10

+
(
−20b20 + 200b0b1 − 500b21 − 400b0b2 + 2000b1b2 − 2000b22

)
t9

+
(
25a20 + 150a0a1 + 225a21 − 100a0a2 − 300a1a2 + 100a22 + 65b20 − 570b0b1 + 1225b21

+ 1060b0b2 − 4500b1b2 + 4100b22
)
t8

+
(
−100a20 − 600a0a1 − 900a21 + 400a0a2 + 1200a1a2 − 400a22 − 140b20 + 1080b0b1

− 1900b21 − 1840b0b2 + 6000b1b2 − 4400b22
)
t7

+
(
200a20 + 1100a0a1 + 1500a21 − 700a0a2 − 1900a1a2 + 600a22 + 220b20 − 1420b0b1 + 2000b21

+ 2100b0b2 − 5100b1b2 + 2600b22
)
t6

+
(
−250a20 − 1200a0a1 − 1350a21 + 700a0a2 + 1500a1a2 − 400a22 − 254b20 + 1320b0b1

− 1450b21 − 1540b0b2 + 2700b1b2 − 800b22
)
t5

+
(
210a20 + 830a0a1 + 700a21 − 420a0a2 − 600a1a2 + 100a22 + 210b20 − 850b0b1 + 700b21

+ 700b0b2 − 800b1b2 + 100b22
)
t4

+
(
−120a20 − 360a0a1 − 200a21 + 140a0a2 + 100a1a2 − 120b20 + 360b0b1 − 200b21 − 180b0b2

+ 100b1b2) t
3

+
(
45a20 + 90a0a1 + 25a21 − 20a0a2 + 45b20 − 90b0b1 + 25b21 + 20b0b2

)
t2

+
(
−10a20 − 10a0a1 − 10b20 + 10b0b1

)
t+ (a20 + b20 − 1).

The approximation conditions are satisfied if the error function is equalized with the polynomial of
least deviation among all monic polynomials of degree 10. So, the last equation which exemplifies the error
function has to be equalized with the Chebyshev polynomial of first kind of degree 10, T̃10(2t − 1)/512. We
know that T̃10(u) = cos(10 arccos(u)), u ∈ [−1, 1] is the unique monic polynomial of degree 10 that has the
least deviation. It is given by equation (3), see [11]. Comparing the coefficients of equal powers of both sides
and using the utilities of the computer algebra system in Mathematica, the solution that fulfills the conditions in
(6) is established. Unfortunately, the solution is a collection of lengthy fractions and radicals that is impractical
to write down the values of the parameters in this paper, so, we write them in decimal forms in equations (8)
and (9). This shows that p fulfills the three conditions of the approximation problem. To prove the error formula
for E(t), the relation to e(t) is established. The error function e(t) minimized is linked to the radial error E(t)
by the formulation:

e(t) = x2(t) + y2(t)− 1 = (
√
x2(t) + y2(t) + 1) (

√
x2(t) + y2(t)− 1) = (2 + E(t)) E(t).

Thus

E(t) =
e(t)

2 + E(t)
.

Substituting the bounds for e(t) gives

− 1

29(2− ε)
≤ E(t) ≤ 1

29(2 + ε)
, where ε = max

0≤t≤1
|E(t)| ≈ 2−10, t ∈ [0, 1].

This completes the proof of Theorem 1. �

Int J Elec & Comp Eng, Vol. 9, No. 5, October 2019 : 3779 – 3785



Int J Elec & Comp Eng ISSN: 2088-8708 r 3783

The circular arc and the approximating Bézier curve are plotted in Figure 2. The resulting error
between the curve and the approximation is not identified by the human eye which is clear from figure of the
corresponding error plotted in Figure 3.
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Figure 2. Circular arc and its quintic Bézier curve in Theorem 1.
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Figure 3. Radial Error of the quintic Bézier curve in Theorem 1.

The resulting Bézier curve reveals a brilliant positioning of the Bézier points to embrace more than a
whole circle whilst possessing the Chebyshev error. We could not foresee a quintic polynomial to approximate
more than the full circle further accurately than this approximation.

4. CONCLUSION
In this article, quintic approximation of the circle is established. The approximation fulfills extremely

conclusive circumstances. Unlike the classical approximation that awards order of approximation of 6, this
approximation has order of approximation of 10; this is an superb acquisition. Moreover, in the significance of
the Chebyshev norm, this approximation is the best and can not be improved. The error function equioscillates
11 times rather than 7. The numerical examples reveal how efficient this method is. The approximation
intersects the circular arc 10 times with maximum error 2−9 and thus outperforming any other approximation.
Further research and investigations can be accomplished by considering the following issues:
(a) Finding the quintic best polynomial approximation for other curves that are widely used in the computer’s

applications like the hyperbolas and the spirals.

(b) Using the quintic best polynomial approximation in this paper to find the offset curve approximations of
the Bézier curves.

(c) Finding the quintic best polynomial approximation with geometric conditions, G1- and G2-conditions at
the end points.
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(d) Applying the method in this paper to approximate the bit error rate (BER) expressions of the differential
M-PSK modulation [14].

(e) Finding the quintic best polynomial approximation to shorter arcs of the circle that has an error reduced
according to the length of the arc relative to the given approximation to more than the whole circle.

(f) Using the results in this paper to obtain the optimal delays between consecutive requests (DCR) in LoW-
PAN border routers to limit request send rates [15].

(g) Making a valid conjecture similar to the conjecture in [16, 17] that improves the results of Chebyshev’s
and Borel’s theorems to approximate a curve with 2n + 1 equioscillations rather than for functions with
n + 2 equioscillations. This is a novel break through and treasure trove in the field of approximation
theory; however, this is a challenging issue and our today’s knowledge is not rich enough to tackle it.
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