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 Graphene based top-gated Field effect transistor (GFET) is designed and 

simulated using the device simulator packages. The paper describes 

fabrication process and the device simulation aspects of the GFET device. 

Two devices with different gate lengths of 200nm and 350nm are simulated. 

Device simulations are carried out in open source TCAD software package. 

The results indicate a depletion FET type operation in which ON/OFF 

current ratio of 2.25 is obtained. 
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1. INTRODUCTION 

Graphene is a planar two-dimensional layered crystalline allotrope of Carbon consisting of  

sp2-hybridized carbon atoms connected in the form of extended benzene rings. Graphene is known to exhibit 

outstanding electronic properties [1] with exceptionally high electron mobility. Graphene also exhibits 

exceptional mechanical [2] and optical properties [3]. The another advantage of Graphene is that it requires 

only planar processing similar to once available/ existing in the CMOS industry. 

Pure graphene has a planar honeycomb structure with zero bandgap. The band structure for 

graphene consists of the conduction and valence bands forming conic shapes and intersecting at Dirac points. 

The electrons in the Dirac points behave as zero mass particles and can tunnel through potential barriers.  

As such the electrons in graphene do not display localization effects and hence are able to move long 

distances without undergoing scattering resulting in high values of mobility [4]. 

Graphene is fabricated by several methods [5] like the mechanical exfoliation, epitaxy,  

chemical vapor deposition (CVD) and chemical derivation. Other methods for large scale graphene synthesis 

are chemical systemization [6,7], ion implantation [6], unzipping carbon nanotubes to form graphene  

sheets [6] and crystal sonification [7].Graphene FET was invented due to the discovery of the ambipolar 

characteristics [8, 9]. The doping is induced due to the electric field which causes a change in the Fermi 

energy. Graphene does not normally need any doping due to its self-doping characteristics.Three topologies 

of graphene FETs are normally used (a) top gate [10, 11] (b) dual gate [12] and (c) back gate [12]. Figure 1 

shows a top gate GFET device. The top gate device can be fabricated by growing epitaxial graphene on SiO2 

layers. On top of the graphene layer a dielectric layer is deposited followed by gate contacts. 
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Graphene FET structure is shown in detail in the Figure 2. The absence of Graphene as a standard 

library material in the device simulator packages forces the authors to employ an indirect method of 

redefining the material properties of an existing semiconducting material from the standard device simulator. 

In the present wok, the authors use polysilicon as the semiconducting material. The properties of  

the polysilicon material are redefined to simulate the Graphene material. 

 

 

 
 

Figure 1. GFET model 

 
 

Figure 1. Fabricated GFET structure 

 

 

The fabrication of GFET starts with a p type <100> silicon wafer substrate with a doping 

concentration of NA=1015cm-3. The silicon substrate then undergoes a thermal oxidation process to deposit 

SiO2 of 300nm. The active layer that will be used for the device operation and carrier transport is deposited. 

This layer is made up of Graphene. In simulation, however due to the non-availability of graphene as  

a standard library material, polysilicon is used for this layer. Doped polysilicon layer of 5nm thick is 

deposited, the doping concentration being n type NA=1017cm-3. A thin layer of SiO2 is then deposited to 

provide the gate oxide. The oxide layer is patterned to make windows for gate, drain and source electrode. 

Aluminum is then deposited and patterned to obtain the three electrodes. 

 

 

2. SIMULATION AND RESULT 

The device structure simulated as per the process details described in Table 1 and Table 2 is shown 

in Figure 2. The active channel region and source drain junctions are highlighted in Figure 3. Meshing is  

an important step in the device simulation. The mesh density controls the number of simulation nodes and 

hence the fidelity of solution. At the same time number of simulation nodes directly impacts the simulation 

time and computational load. Fine meshing is used in the areas near the junctions while coarse meshing is 

used in other regions. This helps to reduce the computational load but still maintaining the required details at 

critical areas. The meshed structure is shown in Figure 4. 

The non-availability of graphene as a standard library material in device simulation packages calls 

for some modification in the material properties to be forced in the device simulation package. Polysilicon 

layer of 5nm deposited to form the active layer, is later redefined as Graphene by altering the material 

properties as given in Table 3. The command used for redefining the graphene material is as follows: 

#material graphene definition 

Material material=polysilicon eg300=0 mun=10000 mup=10000 permittivity=25 

 

 

Table 1. GFET fabrication process steps 
Step Description 

0 Starting material initial p-type substrate, <100> orientation 
1 Deposit thin oxide layer 

2 Deposit polysilicon layer 

3 Deposit gate oxide layer 
4 Pattern gate oxide for contact windows. 

5 Deposit metal electrodes for source drain and gate region 
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Table 2. Process parameters 
Step Process parameters 

Substrate Boron doped 1x1015cm-3<100> orientation 

1 Deposit Partial SiO2using dry oxidation, time = 530s, temp = 1000degC 
2 Deposit polysilicon layer 5nm thick arsenic doped 1x1020cm-3 

3 Deposit Gate oxide 5nm thickdry oxidation time = 30s, temp = 800degC 

4 Pattern Gate oxide to open windows for electrode deposition 
5 Deposit Aluminum 

6 Pattern Aluminum and deposit oxide 0.1um thick 

 

 

 
 

Figure 3. GFET device structure from process simulation 

 

 

 
 

Figure 4. GFET device structure (channel region) 
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Figure 5. GFET device meshed model 
 

 

Table 3. Graphene material properties 

Process Model 

Eg at 300K 0 

Mobility (n carrier) 10000 cm2/ V-s 

Mobility (p carrier) 10000 cm2/ V-s 

Permittivity 25 

 

 

The device simulation was carried out for different channel lengths. The simulation results are 

presented in the following paragraphs. The first simulation carried out for the device structure is to obtain 

the input characteristics. The Id-Vgs curve for the devices are shown in Figure 6 and Figure 7 for a channel 

length of 200nm and 350nm. 

 

 

 
 

Figure 6. Id-Vgs plot at Vd=1V (L: 200nm) 
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Figure 7. Id-Vgs curve at Vd=1V for L=200nm (Green) and 350nm (Red) 

 

 

The Id-Vgs plots for the two devices show a depletion MOSFET like performance. This is expected 

with the source of electrons, the graphene channel being already present underneath the gate. The ON/OFF 

current ratio is nearly 2.25 for both devices however, the drain current is slightly more for L=200nm device 

as shown in Figure 7. The threshold voltage for both devices is around 2V as can be deduced from the plots. 

The Id-Vds characteristics of the device are shown in Figure 8. The characteristics are obtained for different 

values of Gate voltages from Vgs=0 to -10V. The drain current shows saturation characteristics beyond 

Vds=2V. Similar characteristics for device with 350nm gate length is shown in Figure 9. 

Current densities in the graphene layer are simulated as shown in Figure 10 for 200nm and 

Figure 11 for 350nm device at Vds=1V and Vgs=5V. The same plots for Vgs=-5V is shown in and Figure 12 

and Figure 13. The plots demonstrate a weaker current flow at Vgs=5V as against Vgs=-5V as is also depicted 

from the Id-Vgs plots. 

 

 

 
 

Figure 8. Parametric Id-Vd curve for different Vgs (L=200nm) 
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Figure 9. Parametric Id-Vd curve for different Vgs (L=350nm) 
 
 

 
 

Figure 10. Current density in graphene layer (L: 200nm, Vd: 1V, Vg: 5V) 
 

 

 
 

Figure 11. Current density in graphene layer (L: 350nm, Vd: 1V, Vg: 5V) 
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Figure 12. Current density in graphene layer (L: 200nm, Vd: 1V, Vg: -5V) 

 

 

 
 

Figure 13. Current density in graphene layer (L: 350nm, Vd: 1V, Vg: -5V) 

 

 

Figure 14 and Figure 15 shows the Electric Field distribution in the graphene channel for 200nm and 

350nm channel length device. The drain source terminals were open and Gate Voltage was -5V. The electric 

field is concentrated in the channel region below the gate. Figure 16 and Figure 17 depict the electron 

concentration in the two devices at the mentioned bias voltages. These figures depict a continuous carrier 

concentration below the channel region from drain to source and hence the drain current. 

Figure 18 and Figure 19 shows the low frequency Gate-Source capacitance plot for different gate 

voltages for two devices of different channel length. The capacitance measurements were done at 1 kHz 

frequency. The capacitance curve is similar to those obtained for a MOSFET, hence demonstrating gate 

control on the device operation. 
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Figure 14. Electric field in graphene layer, (L: 200nm, Vd: open, Vg: -5V) 

 
 

 
 

Figure 15. Electric field in graphene layer, Emax = 8.44e+05 V/cm (L: 350nm, Vd: open, Vg: -5V) 

 

 

 
 

Figure 16. Electron Concentration in graphene channel (L: 200nm, Vd: 1V, Vg: -5V) 
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Figure 17. Electron Concentration in graphene channel (L: 200nm, Vd: 1V, Vg: -5V) 
 

 

 
 

Figure 18. Low frequency Cgs plot (L: 200nm, Vd: 5V) 
 

 

 

 

Figure 19. Low frequency Cgs plot (L: 350nm, Vd: 5V) 
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3. CONCLUSION 

The present work deals with the design and simulation of GFET devices using device simulator 

software ATHENA and ATLAS. Two GFET devices were modeled and simulated with different gate 

lengths. The simulated devices showed MOSFET like operation characteristics with threshold voltages, drain 

current saturation etc. The current ON/OFF ratios for the GFET was obtained to be around 2.25. The electric 

field and the carrier concentration curve demonstrate the channel formation below the gate and hence  

the current flow. The basic GFET device characteristics are simulated in the present work and the simulated 

device show a good promise for circuit implementation. 
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