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 The multimodel approach offers a very satisfactory results in modelling, 
diagnose and control of complex systems. In the modelling case, 

this approach passes by three steps: the determination of the model’s library, 
the validities computation and the establishment of the final model. In this 
context, this paper focuses on the elaboration of a comparative study between 
three recent methods of validities computation. Thus, it highlight the method 
that offers the best performances in term of precision. To achieve this goal, 
we apply, these three methods on two simulation examples in order to 
compare their performances. 
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1. INTRODUCTION 

The establishment of a mathematical model is the first concerns of researchers for application of  

the advanced techniques of analyses, monitoring, prediction, control and diagnose of complex systems [1, 2]. 

The multimodel approach has proved a very satisfactory results and a potential benefit in both modelling and 

identification of complex, nonlinear and/or ill-defined systems, compared to a ˝single model approach˝. 

Indeed, the ˝single model approach˝ consists in determining one model that describes the comportment of 

the system in all its operating regions. This mission is very difficult and can sometimes be impossible when 

the system includes set-point changes or/and the co-existence of multiple operating modes [3, 4]. Although, 

the multimodel approach consists on partitioning the global system’s full range operation into multiple 

smaller ranges. To each range is associated a local model that describes the system behavior in this specific 
range. The set of the local models forms the called models-library or models-base. A coefficient called 

validity is associated to each local model of the models-library. Validity estimates each library-model 

contribution in the reproduction of the real process behavior. Several validities' computation methods have 

been proposed in the literature [5-13]. These methods depend firstly on the way the library-models were 

determined and secondly, on the information available on the system. We distinguish two major classes of 

validities. Firstly the a priori validities which can be determined offline by exploiting the a priori knowledge 

available on the system. Secondly, the a posteriori validities which must be calculated online by considering 

the measures carried out at each instant. The present paper is interested by a postoriori validity. The majority 

of methods belonging to the last class are based on the residues computation and are established by 

measuring omline, at each instant, the distance between the process output and those of the variaous models 

of the base. These methods are suitable when there is overlapping between data of the different models of 
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the the models'base [14]. Besides, these methods are limited and cannot be useful with presence of complex 

and/or ill‐defined system. To overcome these problems, Ben Messaoud and all. Have proposed recently, three 

new methods of computation validities. In fact, the first method is based on a local criterion optimization 

LCO [15]. The second method uses a hierarchical structuring HS to compute validities [16]. In the third 

method, validities based on optimal computation OC, are obtained by optimizing a constrained least squares 

problem [6]. In the present paper, we focus our study to compare the last three methods and to determine 

the one leads to the best model that can describe perferctly the real process. In order to compare 

performances assumed by the three proposed methods of validities computation, we consider two numerical 
simulation examples. In the second part of the paper, we present the general structure of the multimodal 

approach. The third section discusses the three considered calculation validities methods. Two examples of 

numerical simulation are given in section four. We finish this work by a conclusion. 

 

 

2. GENERAL STRUCTURE OF MULTIMODEL APPROACH  

The general structure of the multimodel approach is presented in Figure 1. It is formed by three 

units: the models library unit, the decision unit and the output unit [12, 17, 18]. 

 

2.1. Models library unit 

This unit can contain different types of models (either input-output models or state space models). 

These models are distinguished with respect to four features: Partition strategy, submodel structural 
identification, transition between models and method of realization [19-21]. 

 

2.2. Decision unit 

This unit is responsible of computing models validities vi. It is a fundamental unit as it determines 

the degrees of contribution of each local model of the library in the composition of the output of the original 

system. It is assumed that the contribution of all local models’ sum is equal to 1 anywhere across 

the operating space [11, 21]. 

 

𝑣𝑖 ∈ [0,1] ;  𝑖 = 1,2,… , 𝐿 (1) 

 

∑ 𝑣𝑖 = 1
𝐿
𝑖=1   (2) 

 
Where L represent the number of library’ models 

 

 

 
 

Figure 1. General structure of system modelling by multimodel approach 

 

 

2.3. Output unit 

The output unit computes the multimodel output 𝑦𝑚𝑚 by exploiting outputs obtained by models-

library unit and the decision unit as follows: 

 

𝑦𝑚𝑚(𝑘) = ∑ 𝑣𝑖(𝑘)
𝐿
𝑖=1 𝑦𝑖(𝑘) (3) 

 

Where yi is the output of the model 𝑀𝑖 of the models-library and L is the number of library’ models. 
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3. VALIDITIES COMPUTATION 

3.1. The first Method: Validities computation by local criterion optimization LCO 

This method is presented by Ben Messaoud and al in [15]. In this method, the validity 𝑣𝑖 can be 

estimated, at each instant by minimizing the criterion given by the (4), which represent an equality 

constrained optimization problem [16]: 

 

𝐽 =
1

2
∑ 𝑣𝑖

2(𝑘)(𝑦(𝑘) − 𝑦𝑖(𝑘))
2𝐿

𝑖=1

subject to: ∑ 𝑣𝑗(𝑘)
𝐿
𝑗=1 = 1 

 (4) 

 

Where: L is the number of library’ models. 

 𝑦𝑖(𝑘) is the output of 𝑖th local model, 

 𝑦(𝑘) is the measured output of the nonlinear system. 

The solution of the optimization criterion above is given by the following expression: 

 

𝑣𝑖(𝑘) =

1

𝑟𝑖
2(𝑘)

∑
1

𝑟𝑗
2(𝑘)

𝐿
𝑗=1

 ;  𝑖 = 1, … , 𝐿 (5) 

 

Where 𝑟𝑖(𝑘) represents the residue at the instant k and is based on the online computation of  

the difference between the process output and those of the various models 𝑀𝑖 of the base at the instant k  

as below: 

 

𝑟𝑖 = |𝑦 − 𝑦𝑖| ; 𝑖 = 1, … , 𝐿 (6) 

 

3.2. The Second Method: Validities computation based on an hirarchic structure HS 

This method is described by Ben Messaoud and al. in [16] and is summarized as follows: 

Let us assume that at instant 𝑘, the residues’ calculation using the (6) gives ascending values  

(𝑟1 ≤ 𝑟2 ≤ ⋯ ≤ 𝑟𝐿). The second method for validities computation is based on a quasi-hierarchical 
structuring whose validities are calculated by the following equation: 

 

𝑣𝑖
𝑠𝑖𝑚𝑝 =

𝑣𝑖

∑ 𝑣𝑗
𝐿
𝑗=1

 ; 𝑖 = 1, … , 𝐿 (7) 

 

Where: 

 

𝑣𝑖 = 1 −
𝑟𝑖

∑ 𝑟𝑗
𝐿

𝑗=1

 ; 𝑖 = 1, … , 𝐿 (8) 

 

In the general case and for each instant k, the base-models’ validities are computed by using 

the following algorithm: 

Step 1: Create a table containing all base-models’ outputs: 

 

𝑇𝑎𝑏𝑦 = [𝑦1 𝑦2…𝑦𝐿] 

 
Step 2: Calculate the corresponding residues by (6).  

Step 3: Create a table containing all the obtained residues: 

 

𝑇𝑎𝑏𝑟 = [𝑟1  𝑟2 …𝑟𝐿] 
 

Step 4: Arrange 𝑇𝑎𝑏𝑟in ascending order into 𝑇𝑎𝑏𝐶𝑟 and create a table 𝑇𝑎𝑏𝑖𝑛𝑑for the corresponding indices 

of 𝑇𝑎𝑏𝑟 
Step 5:  

for i =1 to 2  

𝑟𝑖
′ ← 𝑇𝑎𝑏𝐶𝑟[𝑖]        

Calculate 𝑣𝑖
′ by (7) 

End 
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𝑦𝑝𝑚𝑚1
= 𝑣1

′ . 𝑇𝑎𝑏𝑦[𝑇𝑎𝑏𝑖𝑛𝑑[1]] + 𝑣2
′ . 𝑇𝑎𝑏𝑦[𝑇𝑎𝑏𝑖𝑛𝑑[2]]    (9) 

𝑗 ← 1 

for i =3 to L 

𝑟𝑖
′ ← 𝑇𝑎𝑏𝐶𝑟[𝑖] ;  𝑟𝑝𝑚𝑚𝑗

= |𝑦 − 𝑦𝑝𝑚𝑚𝑗
| 

Calculate  𝑣𝑖
′  and 𝑣𝑝𝑚𝑚𝑗

by (7)  

if i ==L  

STOP! 

else  

 

𝑦𝑝𝑚𝑚𝑗+1
= 𝑣𝑝𝑚𝑚𝑗

. 𝑦𝑝𝑚𝑚𝑗
+ 𝑣𝑖

′ . 𝑇𝑎𝑏𝑦[𝑇𝑎𝑏𝑖𝑛𝑑[𝑖]] (10) 

 

end 

𝑗 ← 𝑗 + 1 

end 
Step 6: Calculate the validities of the different models from the following loop:  

for i =1 to L 

for j=1 to L 

 if  𝑇𝑎𝑏𝑖𝑛𝑑[𝑗]== i 

if j == 1 

 

𝑣𝑖 = 𝑣𝑗
′ (∏ 𝑣𝑝𝑚𝑚𝑘

𝐿−2
𝑘=1 ) (11) 

 

else if j == L 

 

𝑣𝑖 = 𝑣𝐿
′  

 

else  
 

𝑣𝑖 = 𝑣𝑗
′ (∏ 𝑣𝑝𝑚𝑚𝑘

𝐿−2
𝑘=𝑗−1 )       (12) 

 

End if 

 End if 

End for 

End for 

 

3.3. The Third Method: validities' optimal computation OC 

The third proposed method of validities computation vi is based on the optimization of a constrained 

least squares problem [6]. The formulation of the quadratic programming is as follows: 
 

𝑚𝑖𝑛
v

1

2
v𝑇Gv+ c𝑇v

    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {
Dv = ℎ
Fv ≥ e

  (13) 

 

Where: D = (1 1 ⋯ 1) ∈ 1 × 𝐿, ℎ = 1, F = (
−I𝐿×𝐿
I𝐿×𝐿

) and e =

(

  
 

−1
⋮
−1
0
⋮
0 )

  
 
∈ 2𝐿 × 1;  

𝐺 = 𝐴𝑇𝐴 and 𝑐 = −𝐴𝑇𝑏. (14) 
 

The active-set method is chosen for solving the problem above [17]. The details of validities' 

computation by this method are given by the following algorithm: 

Step 1 Determine an initial feasible point 𝑣0 by solving the linear programming problem below (16), and 
by using the simplex method: 
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𝑚𝑖𝑛 
(𝑣,𝑧)

𝑤𝑇𝑧

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {
𝑑𝑖
𝑇𝑣 + 𝛾𝑖𝑧𝑖 = ℎ𝑖  ;  𝑖 = 1

𝑓𝑗
𝑇𝑣 + 𝛾𝑗+1𝑧𝑗+1 ≥ 𝑒𝑗  ;  𝑗 = 1, … ,2𝐿

𝑧 ≥ 0

                                                                     (15) 

 

where: 𝑤 = (1 1 ⋯ 1)𝑇 ∈ (2𝐿 + 1) × 1, 

𝛾𝑖 = −𝑠𝑖𝑔𝑛(𝑑𝑖
𝑇�̃� − ℎ𝑖) for 𝑖 = 1 

and  𝛾𝑗+1 = 1 for 𝑗 = 1, … , 2𝐿 with �̃� is an initial estimate of the vector 𝑣 . 

Step 2 Determine the working set 𝑊0which contains the indexes representing the equality and active 
inequality constraints: 

 

𝑊0 = {𝑖|d𝑖
𝑇v0 = ℎ𝑖} ∪ {𝑗|f𝑗

𝑇v0 = 𝑒𝑗}                                                                                    (16) 

 

for 𝑙 = 0,1,2,…  do 
 Find the search direction 𝑝𝑙 and the Lagrange multipliers λl and 𝜇𝑙 by solving KKT-equations 

(Karush-Kuhn-Tucker) of the quadratic subproblem: 
 

𝑚𝑖𝑛
𝑝

1

2
𝑝𝑇𝐺𝑝 + (𝐺𝑣𝑙 − 𝑐)𝑇𝑝

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {
𝑑𝑖
𝑇𝑝 = 0 ;  𝑖 ∈ 𝑊 𝑙

𝑓𝑗
𝑇𝑝 = 0 ; 𝑗 ∈ 𝑊 𝑙

                                                                                                (17) 

 

 if 𝑝𝑙 = 0 then 
  if μl ≥ 0 then 
   STOP! With 𝑣∗ = 𝑣𝑙 is the optimal solution; 

  else  

   Find the most negative component of 𝜇𝑙: 
 

𝜇𝑙
𝑗0
= 𝑚𝑖𝑛 {𝜇𝑙

𝑗
|𝜇𝑙

𝑗
< 0, 𝑗 ∈ 𝑊 𝑙}                                                                     (18) 

𝑣𝑙+1 = 𝑣𝑙 ;  
 

Remove constraint corresponding to the most negative component of 𝜇𝑙 from  

the working set: 𝑊 𝑙+1 ←𝑊 𝑙\{𝑗0} ; 
  end if 

 else {p𝑙 ≠ 0} 
  Compute the step-length 𝛼𝑙 that guarantees the satisfaction of all constraints from:  

 

𝛼𝑙 = 𝑚𝑖𝑛 (1,
𝑒𝑗−f𝑗

𝑇v𝑙

f𝑗
𝑇p𝑙

|𝑗 ∉ 𝑊 𝑙 and f𝑗
𝑇p𝑙 < 0)                                                                (19) 

 

Update: 𝑣𝑙+1 ← 𝑣𝑙 + 𝛼𝑙𝑝𝑙; 
Update 𝑊 𝑙: 
 if 𝛼𝑙 = 1 then 

 

  𝑊 𝑙+1 ←𝑊 𝑙; 
  

else  

  Add one constraint to the working set: Wl+1 ←Wl ∪ {j0} 
where  

 

𝛼𝑙 =
𝑒𝑗0−f𝑗0

𝑇v𝑙

f𝑗0
𝑇p𝑙

 for f𝑗0
𝑇p𝑙 < 0 ;  

 

 end if 
 end if 

end for 
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4. SIMULATION EXEMPLES  

To compare the performances offered by the three considered computation validities methods,  

we propose two numical simulation examples. 
 

4.1. Exemple 1 

This first example is a discrete system with time varying parameters 𝑎1(𝑘), 𝑎2(𝑘), 𝑏1(𝑘) and 𝑏2(𝑘) 
described by the (21) [11, 22, 23]. The variation laws of the process parameters are given by Figure 2. 

 

𝑦(𝑘) = −𝑎1(𝑘)𝑦(𝑘 − 1) − 𝑎2(𝑘)𝑦(𝑘 − 2) + 𝑏1(𝑘)𝑢(𝑘 − 1) + 𝑏2(𝑘)𝑢(𝑘 − 2)  (20) 
 

By applying the multimodel approach, Talmoudi et al. [18] has established the following models-library 

transfer functions: 
 

𝐻1(𝑧
−1) =

0.18104𝑧−1+0.071832𝑧−2

1−1.1657𝑧−1+0.2073𝑧−2
 (21) 

 

𝐻2(𝑧
−1) =

0.10423𝑧−1+0.1325𝑧−2

1−1.2806𝑧−1+0.3258𝑧−2
 (22) 

 

𝐻3(𝑧
−1) =

0.018301𝑧−1+0.20512𝑧−2

1−1.3801𝑧−1+0.42936𝑧−2
 (23) 

 
 

 
 

Figure 2. Evolution of parametres variation laws 
 
 

After determining the library-models, we compute the validities degrees of each model of the library 

by using the three methods described above. The evolutions of validities degrees obtained by using LCO, HS 

and OC methods are presented, respectively, in Figures 3, 4 and 5. These Figures show that OC method gives 

the best results in term of precision. Indeed, it is clear, from the considered system (20), that at each range of 

time, there is only one transfer function that is totally valid. Or, Only the OC method demonstrates this 

feature in Figure 5. LCO and HS methods give for each range of time one model having a validity degree 

near to 1 but not equal to 1. 

The multimodel output is, then, obtained by the fusion of the different models outputs 𝑦1(𝑘) , y2(k) 
and y3(k) weighted by their respective validity degrees computed by the different proposed methods: 

 

𝑦𝑚𝑚𝐿𝐶𝑂(𝑘) = 𝑣1LCO(𝑘)𝑦1(𝑘) + 𝑣2LCO(𝑘)𝑦2(𝑘) + 𝑣3LCO(𝑘)𝑦3(𝑘) (24) 
 

𝑦𝑚𝑚𝐻𝑆(𝑘) = 𝑣1𝐻𝑆(𝑘)𝑦1(𝑘) + 𝑣2𝐻𝑆(𝑘)𝑦2(𝑘) + 𝑣3𝐻𝑆(𝑘)𝑦3(𝑘) (25) 
 

𝑦𝑚𝑚𝑂𝐶(𝑘) = 𝑣1𝑂𝐶(𝑘)𝑦1(𝑘) + 𝑣2𝑂𝐶(𝑘)𝑦2(𝑘) + 𝑣3𝑂𝐶(𝑘)𝑦3(𝑘) (26) 
 

Where: 

 𝑦𝑚𝑚𝐿𝐶𝑂 , 𝑦𝑚𝑚𝐻𝑆 , 𝑦𝑚𝑚𝑂𝐶  are multimodel ouputs using respectively LCO, HS and OC methods. 

  v1LCO(k) , v2LCO(k) and v3LCO(k) are validities for LCO method. 

 v1HS(k) , v2HS(k) and v3HS(k) are validities for HS method. 

 v1OC(k) , v2OC(k) and v3OC(k) are validities for OC method. 
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Figure 6 shows the evolutions of the relative errors obtained when we apply the three considered 

validities computation methods. It is clear that OC method offers the best precision by comparison to the two 

other methods. 

 

 

  
 

Figure 3. Validities evolution of LCO method 

 

Figure 4.  Validities evolution of HS method 

 

 

  
 

Figure 5.  Validities evolution of OC method 

 

Figure 6. Relative errors evolutions 

 

 

4.2. Exemple 2 

The second considered example is an uncertain complex system represented by the following 

equation [6, 20, 18]: 

 

𝑥(𝑡) + 𝜏(𝑥)�̇�(𝑡) = 𝑘(𝑥)𝑢(𝑡) ;  𝑥 ∈ [0,1] (27) 

 

Where: 𝑘(𝑥) = 36𝑥(𝑡)(𝑥(𝑡) − 1) + 10  
and 𝜏(𝑥) = 15 − 10𝑥(𝑡). 

It is clear that the considered system is nonlinear. Indeed, the gain and the time constant vary with 𝑥. 
This nonlinearity appears more in Figures 7 and 8. The last Figures shows the evolution of the time constant 

and the gain variations.  

The minimal and maximal values of respectively the gain and the time constant are:  

 

𝑘𝑚𝑖𝑛 = 1;  𝑘𝑚𝑎𝑥 = 10; 𝜏𝑚𝑖𝑛 = 5; 𝜏𝑚𝑎𝑥 = 15;  (28) 

 

By using the Kharitonov's algebraic approach [9], we obtain the following models' library: 
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𝐹1(𝑠) =
1

1+15𝑠
; 𝐹2(𝑠) =

1

1+5𝑠

𝐹3(𝑠) =
10

1+15𝑠
; 𝐹4(𝑠) =

10

1+5𝑠

 (29) 

 

The system (27) and the four transfer functions (29) are implanted in the Matlab Simulink environment. 

Matlab discretize these equations by using the Bogacki-Shampine method with sampling time  𝑇𝑠 equal 

to 0.1 𝑠. 
 

 

  
 

Figure 7. The constant time variation 

 

Figure 8. The gain variation 

 

 
The Figure 9 shows the evolutions of the process and the multimodel states obtained by using  

the three computation validities methods and by applying a unit step at the input. It is clear the multimodel 

state for OC method coincides perfectly with the process state. Although the two other states relative to LCO 

and HS methods follows the process state but with an error relatively important. These errors are represented 

in Figure 10 which shows that the relative error correspondent to OC method is equal to 0 at every instant. 

The other relative errors are relatively important. 

 

 

  
 

Figure 9. Process and multimodel states 

 

Figure 10.  Relative errors evolutions 

 

 

Where: x represents the process state 

𝑥𝐿𝐶𝑂 is the multimodel state obtained by using LCO method,  

𝑥𝐻𝑆 is the multimodel state obtained by using HS method, 

𝑥𝑂𝐶  is the multimodel state obtained by using OC method. 
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5. CONCLUSION 

On our research, we are interested by exploiting the multimodel approach for modelling complex, 

non-linear or/and uncertain systems. This paper presents a large comparative study of three validities 

computation methods. These methods are recently proposed by Ben Messaoud and al. We are succeeded to 

prove that the method based on resolving an optimization problem by using the active set method i.e OC 

method, gives the best results of modelling with a good precision. 
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