
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 9, No. 4, August 2019, pp. 3262~3271

ISSN: 2088-8708, DOI: 10.11591/ijece.v9i4.pp3262-3271  3262

Journal homepage: http://iaescore.com/journals/index.php/IJECE

Predicting cognitive load in acquisition

of programming abilities

So Asai1, Dinh Thi Dong Phuong2, Fumiko Harada3, Hiromitsu Shimakawa4
1, 4Ritsumeikan University, Japan

2Paracel Technology Solutions Co., Ltd, Vietnam
3Connect Dot Ltd, Japan

Article Info ABSTRACT

Article history:

Received Mar 2, 2019

Revised Mar 29, 2019

Accepted Apr 8, 2019

 In this paper, we propose a method to predict cognitive load and its factors

affecting the learning efficiency in programming learning from the learning

behavior of learners. Generally, since the concepts of programming are

difficult for learners, some of them suffer inappropriate cognitive load to

understand them. Although teachers must keep cognitive load of such

learners appropriate, it is difficult for them to find learners who has

inappropriate cognitive load from a large number of learners. To find

learners with inappropriate cognitive load, we construct models with the

random forest algorithm, using learning behavior collected from learners

solving fill-in-the-blank tests. An experiment shows the models can detect

cognitive load for IL and GL along with their factors. Teachers must address

adjustment of cognitive load of learners. This result clarifies the learning

factors affecting cognitive load of learners, which enables teachers to address

the adjustment with small burdens.

Keywords:

Data mining

e-learning

Machine learning

Programming learning

Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

So Asai,

Ritsumeikan University,

National Chung Cheng University,

Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.

Email: asai@de.is.ritsumei.ac.jp

1. INTRODUCTION

Educational institutes to teach information technology provide programming exercise classes for

many novice learners. Novice learners must understand many abstract concepts to acquire programming

abilities. It is difficult for novice learners because they have never experienced how the concepts are realized

on computers. There are not a few learners to drop out [1].

The reason why learners cannot understand the specific concepts of programming is that

inappropriate cognitive load is imposed on them [2]. Cognitive load is one of the important elements to

consider in order to promote the learners to understand the specific concepts. Cognitive load is closely

involved in acquisition and fixing of their programming skills. Learners are more likely to acquire

programming abilities if they have appropriate cognitive load. It is necessary to pay attention so that learners

do not have inappropriate cognitive load. However, each learner has its own way to have cognitive load.

Usually, in a usual exercise class, one or a few education stuff teach more than decades of learners. It is

difficult for teachers to find learners who have inappropriate cognitive load.

To provide learners with a preferable learning environment, many methods have been proposed for

instructional design [3]. Keller [4] values motivation for such environments.The work in [5] lists motivations

and strategies in learning. Phuong [6] regards them as factors determining the learning behavior of each

learner. Phuong proposes a data analysis method to figure out the factors, to determine which students should

be supervised.However, almost all of the instructional design methods try to extract learner’s mental factors

Int J Elec & Comp Eng ISSN: 2088-8708 

Predicting cognitive load in acquisition of programming abilities (So Asai)

3263

such as motivation to establish successful environments [7]. Even highly motivated learners need support

from their teachers to overcome difficulties when they struggle with difficult learning tasks.A systematic

method is necessary for teachers to detect learners with high cognitive load.

This paper proposes a method to predict factors to impose cognitive load on learners through

analysis of learning behavior they show at solving programming assignments. There are several types of

cognitive load [8]. The method leverages fill-in-the-blank test to determine what type of cognitive load

learners have. To determine the type of cognitive load, the method generates a model of random forest

analyzing learning behavior they take at finding correct answers to fill blanks in the program. The output of

the model identifies the type of cognitive load on learners, while the importance of predictor variables

indicates its factors. This clarifies the state and factors of cognitive load of each learner. Teachers can address

adjustment of the excessive cognitive load of learners into an appropriate state with minimal effort.

2. COGNITIVE LOAD IN PROGRAMMING LEARNING

2.1. Requirements to obtain programming ability

In order to acquire the programming ability, it is essential to be able to read given programs and

write appropriate programs, utilizing concepts specific to programming to be understood. To achieve it,

learners are required to organize various kinds of knowledge on many concepts along with their usages.

Many learners cannot solve programming assignments because of difficulties of abstract concepts and ways

to utilize them [9]. Learners without enough understanding of the concepts and the ways do not know what

program they should write when they engage in assignments. Even if learners grasp programming concepts

and ways to utilize them, many of them cannot imagine actual behavior of given programs. Those learners

cannot understand why the programs behave in specified ways. Such learners may fail to learn programming,

which may cause them to escape from programming learning. Teachers must find learners who are likely to

have understanding failures to prevent them from escaping. It is indispensable to identify what impedes

learners to understand programming.

2.2. Cognitive load affecting learning

People use working memory when thinking something. The amount of working memory represents

the capability for process abilities to think. People must put many elements on their working memories when

they learn new things. Since there are individual differences in working memory, the allowable amount of

learning varies. When the same elements are repeatedly processed in working memory, they are organized as

a schema. Once elements become a schema, learners can utilize them without cognitive load, because the

elements have been organized with its usage. The goal of learning is that learners get able to solve problems

never seen before without effort by combining elements they have understood. In other words, learning

means to construct a schema into which elements are organized along with their usage.

Cognitive load affects understanding failure caused by difficulties in programming

concepts [2, 10]. Cognitive load indicates how much working memory is assigned to tasks to understand

unknown items and to utilize acquired knowledge in solving assignments [11]. The cognitive load theory

classifies usage of the working memory into the following three types [8, 12].

Intrinsic Load (IL): IL occurs due to the inherent difficulty of the assignment against abilities of

learners. IL is imposed when learners engage in problem solving under an unknown item and ways of

consideration using it. This load gets high, when learners feel excessive difficulty for the assignment, because

of the small amount of their working memory.

Extraneous Load (EL): EL is caused by surrounding learning environments and brought by the poor

quality of teaching materials and lectures provided for learners. Teachers are required to design the materials

and the lectures so as to reduce this load.

Germane Load (GL): GL is related to the schematization of contents to be learned. The imposition

of GL implies learners are in the process of organizing given learning contents as schemata. Learners are

encouraged to experience this load [13].

If it is an ideal learning situation that learners continue to acquire new knowledge, it is desirable that

cognitive load is high in GL, in which knowledge is being schematized, while it should be low in IL

and EL [8]. This work refers to it as an appropriate state of the cognitive load. Teachers must endeavor to

keep cognitive load of learners an appropriate state. However, every learner feels different difficulties for

each of the given learning content. There are various learners who have different effects of lesson design of

programming lectures/exercises conducted as mass classes. It is difficult to estimate the cognitive load for

each learner. Even more, it is nearly impossible to judge it from the appearance of learners on the spot during

the class.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3262 - 3271

3264

2.3. Estimation of cognitive load

A number of researchers have engaged in works to measure cognitive load [10, 14, 15]. Several

methods are proposed to measure cognitive load. Their usefulness is confirmed in various fields.

Morrison et al. [16] proposed a method to measure cognitive load of learners in the programming classes,

without sensors. He extended the method Leppink et al. [17] established for statistics classes to programming

learning. The method provides learners with several question items. Each of the question items is correlated

to figure out either of IL, EL or GL. For each question item, learners present their answers by 11-scale.

The Leppink’s method assesses cognitive load for the whole learning process in the class, not factors causing

it. The Morrison’s method does not clarify factors of cognitive load of each learner, either.

Dividing visual information and character information in a programming class, Yousoof et al. [18]

proposed a method to measure cognitive load from its accumulation, to reduce it. This method mainly

focuses on EL. It does not fully consider IL or GL, which come from the utilization of working memory by

learners. It is necessary to clarify essential factors of their understanding failures, considering learning

behavior which appears for each type of cognitive load. Fridman et al. [19] measured the cognitive load

during driving vehicle without wearing any sensors. This work investigates the cognitive load in real time,

feeding video data of eye movements to the deep learning. This study does not distinguish the three types of

the cognitive load.

In programming learning, it is essential to discriminate IL, EL, and GL. Since IL and EL decrease

learning efficiency, they should be low. Meanwhile, high GL is preferable, because it implies the learner is

working on the schematization of learning items. It should be avoided to attach physical sensors to learners,

to obtain cognitive load in programming learning. There are many learners in the class. It brings huge costs to

attach sensors to all of them. Sensors may also influence learning efficiency inappropriately. In addition to

the investigation of cognitive load without sensors, it is necessary to clarify what learning behavior

distinguishes the three types of cognitive load of learners. Furthermore, their factors should be identified for

teachers to make them appropriate. A contribution of our work is to identify factors of cognitive load, as well

as to investigate the three types of the cognitive load without specific sensors.

3. PREDICTING FACTORS AFFECTING COGNITIVE LOAD

3.1. Method overview

Our work aims to estimate cognitive load from learning behaviors at solving programming

assignments, to predict each type of cognitive load along with factors causing it. A method is proposed to

predict the cognitive load along with its factors when learners study programming with a procedural language

like C. Figure 1 illustrates the method overview. To train classification models, learning behavior is collected

from learners answering fill-in-the-blank tests. The method lets the learners specify their cognitive load for

each assignment with the questionnaires explained in [16]. It trains models of random forest with the learning

behaviors and the cognitive load. The models of random forest extract correspondences between the learning

behavior and the cognitive load of the learners. When the learning behaviors of a new learner are provided,

the model predicts learner’s cognitive load along with its factors. The method helps teachers to confirm

whether the new learners in programming learning are under appropriate cognitive load. The teachers can

also address learners with inappropriate cognitive load. They can take measures to adjust their cognitive load,

taking its factors into account.

Figure 1. Overview of our method to predict factors affecting cognitive load

Int J Elec & Comp Eng ISSN: 2088-8708 

Predicting cognitive load in acquisition of programming abilities (So Asai)

3265

3.2. Collecting learning behavior

We focus on learning behavior when learners answer assignments of fill-in-the-blank test.

Fill-in-the-blank test is frequently used to measure learner’s understanding in programming classes [20].

Learners must fill code fragments suitable for blanks, considering coincidence with code fragments disclosed

in other parts than blanks. Fill-in-the-blank tests reveal the understanding of learners because learners are

requested to read the disclosed code fragment, understand them, and conceive code to fill the blanks.

In fill-in-the-blank tests, it is less likely to speculate answers than in multiple-choice tests [21].

Fill-in-the-blank tests can examine learning achievements. Any types of cognitive load are not

imposed on learners who have acquired programming abilities. Learners who are schematizing learning items

have high GL because they are in the process of acquiring programming ability. High IL is imposed on

learners when they engage assignments whose solution itself is hard to seek. Learners seem to have high EL

by the assignments which bring unnecessary burdens such as sentences hard to read. Fill-in-blank tests,

where the parts to be answered are limited, are useful for the measurement of the cognitive load as well as the

understanding level of learners.

When answers which learners have convinced correct are judged to be incorrect, they consider the

reasons, consuming their working memory. High IL occurs in this case. Recognizing their schema is wrong,

learners reconstruct another schema. GL gets high in the reconstruction. Proper cognitive load of learners is

collected, only if learners can receive the grading result on the spot when they solve fill-in-the-blank tests.

In general learning with fill-in-the-blank tests, learners submit their answers on the sheet, with their grading

results fed back after a few days. It is not expected proper cognitive load can be obtained with this learning

procedure.

The method provides an automatic grading system [22]. It is implemented as a web application, with

which learners can grade their answers interactively. The system grades an answer a learner gives for each

blank on demand. It notifies the correctness of the answer immediately. Learners using the system are

allowed to submit their answers many times until their answers become correct within the time limit.

In our method, one test corresponds to the code of a program, parts of which are blanked out.

More than one tests are provided for learners. As learning behavior, the method collects 3 data items:

the consuming time, change histories of answers, and the number of grading demands. More concretely,

the system records the elapsed time from the time point a learner starts a specific test, a chronological list of

answers the learner submits for each blank, and the number of grading demands transmitted to the system,

respectively. We focus on 3 types of predictors explained below, to detect each type of cognitive load along

with its factors. All of the predictors can be derived from the learning behavior the automatic grading system

for fill-in-the-blank tests collect.

 Grading requests

Learners can check whether their answers are correct many times for each blank. High IL means

learners have difficulties to fill blanks in the test because the test itself is hard to them. They have few

candidate code fragments to fill the blanks. When none of them works well, the learners have nothing to do.

Therefore, we assume that such learners demand to grade rarely. In the meantime, learners with high EL

might fail to understand what the test requests or even how they should use the system, which leads them to

do nothing. The system allows learners to demand to grade as many times as they want. It aims to cause

learners to reach right answers after careful consideration. The method counts the number of grading for each

blank. It does not count grading when the code fragment has not been modified from the previous demand,

even if the learner demands to grade.

 Page transitions

In fill-in-blank tests, teachers provide multiple assignments in one session in order to confirm their

understanding for various programming concepts. Learners can solve assignments in an order of their own

choice. They can also switch them halfway. The learners change assignments to other ones when they either

complete right answers for all blanks of an assignment or give up answering because they cannot imagine

any other answer. The more difficulty learners perceive for assignments, the more they transit assignments.

Trying to reconsider previous assignments, learners move back to them. In other case, learners move forward

to new assignments. The method counts page transition, distinguishing the next assignment, the previous one,

and one ahead more than two.

 Time transitions for correct answer rate

When a learner engages in a test, the learner repeats to send a grading demand after specifying an

answer for each blank. Let the correct answer rate as the ratio of blanks they fill with correct answers against

all the blanks. As a whole, learners increase their correct answer rate, as the number of grading request

grows. Learners who have enough understanding of the tests can answer all of them easily. Their correct

answer rate quickly reaches to the full mark or one close to it. On the other hand, learners who lack

understanding need a long time to find correct answers or give up to find them. It is expected the time

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3262 - 3271

3266

transition of the correct answer rate plays a vital role in discriminating the cognitive load. In order to

represent the role in an integrated way, the method quantifies the time transition 𝑇𝑚 for assignment 𝑚 by the

following equation:

𝑇𝑚 =
1

2
∑(𝑝𝑘 + 𝑝𝑘−1)(𝑡𝑘 − 𝑡𝑘−1

𝑛

𝑘=1

) + 𝑝𝑛(𝑡𝑙 − 𝑡𝑛),

where 𝑛 is the number of grading demands of the learner, 𝑝𝑘 is the correct answer rate at the 𝑘th grading, 𝑡𝑘

is the elapsed time at the 𝑘th grading from 𝑡0, and 𝑡𝑙 is the deadline of answering. The time is excluded while

learners answer assignments other than assignment 𝑚. 𝑘 = 0 stands for the state at the start time of

answering, where 𝑡0 = 0 and 𝑝0 = 0. The quantification enables us to represent the accumulation of the

correct answer rate of a learner over the elapsed time, as Figure 2 shows. In the case that the correct answer

rate reaches high early, 𝑇𝑚 gets large as shown in Figure 2(a). On the other hand, when the correct answer

rate of a learner remains low for a long answering time, 𝑇𝑚 is small as shown in Figure 2(b).

Figure 2. Examples of time transitions for correct answer rate

3.3. Investigating cognitive load

The method uses the cognitive load measurement questionnaire [16] in order to investigate three

types of the cognitive load of learners. For the investigation, learners answer the questionnaire consisting of

10 questions. They are classified into 3, 3, and 4 questions corresponding to IL, EL, and GL, respectively.

To clarify the target of each question, qualifiers are added to each statement of the cognitive load

measurement questionnaire in the method. Figure 3 lists up the questions. Learners evaluate each of them by

11-scale. A larger number corresponds to a strong agreement for the question. When the sum of marks in

questions corresponding to a specific type of cognitive load is large, its degree of the learner is judged

to be high.

Figure 3. Questions of cognitive load measurement questionnaire

3.4. Identifying cognitive load with random forest
The method generates models to associate characteristics of learning behavior with factors of the

cognitive load evaluated by the questionnaire. The models found on the random forest algorithm. Predictor

variables and response variables of the models are the learning behaviors and a specific type of cognitive

load, respectively. Models based on the random forest algorithm present how important each predictor

The topics covered in the activity of solving fill-in-blank prob lems were very complex.

The activity of solving fill-in-blank problems covered program code that I perceived as very complex.

The activity of solving fill-in-blank problems covered concepts and definitions that I perceived as very complex.

The instructions and/or explanations of the website during the activity were very unclear.

The instructions and/or explanations of the website were, in terms of learning, very ineffective.

The instructions and/or explanations of the website were full of unclear language.

The activity of solving fill-in-blank problems really enhanced my understanding of the topics covered.

The activity of solving fill-in-blank problems really enhanced my knowledge and understanding of

computing/programming.

The activity of solving fill-in-blank problems really enhanced my understanding of the program code covered.

The activity of solving fill-in-blank problems really enhanced my understanding of the concepts and definitions.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Int J Elec & Comp Eng ISSN: 2088-8708 

Predicting cognitive load in acquisition of programming abilities (So Asai)

3267

variable is in detecting a target type of cognitive load, which contributes to identifying its factors.

An individual model is generated for each of three types of cognitive load because our work aims to clarify

factors for each of the three types of the cognitive load.

The random forest algorithm constructs a multitude of decision trees from randomly chosen

predictor variables and produces a model classifying learners according to the degree of cognitive load by

majority voting of the outputs of those decision trees. Each node of a decision tree composing the model

bisects states of learners specified with the predictor variable, from the learning behavior in solving

fill-in-the-blank test. It is desirable that one of the divided nodes includes more learners of a target type of

cognitive load. Namely, the impurity in each node of the decision tree should be small. The impurity is

represented by entropy 𝐼𝐻(𝑡), which is calculated with the following equation:

𝐼𝐻(𝑡) = − ∑ 𝑃

2

𝑖=1

(𝑖 ∣ 𝑡) log
2

𝑃(𝑖 ∣ 𝑡)

The difference of the entropy after the branch from the one before the branch should be small, which

corresponds to maximizing the information gain. The information gain 𝐺(𝑡) at the node 𝑡 is obtained from

the following equation:

𝐺(𝑡) = 𝐼𝐻(𝑡) − ∑
|𝑡𝑖|

|𝑡|

2

𝑖=1

𝐼𝐻(𝑡𝑖)

Each node is divided so as to minimize the information gain. To prevent the decision trees from

overfitting, nodes whose information gain is less than a threshold value are not divided anymore, regarded as

leaves. Learners matching the branching condition in their cognitive load are classified in each node.

Eventually, learners with specific characteristics in learning behavior fall into each of leaf nodes.

The characteristics correspond to a response variable. Combination of branching conditions along a path

from the root to a leaf corresponding to high cognitive load reveals factors of learning behavior which affect

the cognitive load.

In the analysis using random forest, a lot of decision trees are used to judge whether cognitive load

is imposed on learners. In the determination of a specified type of the cognitive load, the more frequently a

specific predictor variable is used overall decision trees, the more important the predictor variable gets.

Models based on random forest present contributions of each predictor variable to the judgement of cognitive

load as the variable importance.

3.5. Predicting cognitive load of learners

A model is constructed through training data collected from many learners solving fill-in-the-blank

tests with the automatic grading system. New learners also solve fill-in-the-blank tests as the learners for the

training did. Their learning behavior is applied to the trained models. Each cognitive load of the new learners

is determined with majority votes by the models. Teachers are notified of detected type of the cognitive load

and learning behaviors of the learner. When IL or EL is high or GL is low, the teacher should follow up the

learners to lead their cognitive load to an appropriate state.

Under appropriate states of all types of cognitive load, learners can acquire programming skills

more effectively. It contributes to preventing learners from failing programming learning, suppressing

burdens of teachers. Teachers can utilize saved efforts to prepare better lectures to provide higher

educational effects.

4. EXPERIMENT

4.1. Overview

An experiment was conducted to confirm whether the method identifies factors of cognitive load.

The purpose of this experiment is the followings:

 Collecting datasets of learning behavior of learners answering fill-in-the-blank test

 Verifying models of random forest generated from the datasets

Subjects are Vietnamese college students who are learning programming in C and information

technology. They are the second year college students. A preliminary survey confirmed they have already

learned C programming for beginners. At the time of the experiment, there are various students in terms of

interests and abilities toward C programming. The materials in the experiment were provided in English

because the preliminary survey has confirmed most of them can understand English fairly well. In the

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3262 - 3271

3268

experiment, the subjects solved five assignments of fill-in-the-blank tests, where several code fragments are

blanked out. Table 1 shows these assignments and the number of their blanks. Concepts on the learning units

are generally difficult in programming learning [23, 24]. Assignments regarding the concepts are expected to

reveal the difference in understanding of learners. The assignments questioning the concepts were chosen so

that unbiased datasets can be obtained. The quality of the assignments is guaranteed because these

assignments are actually used in programming classes at Ritsumeikan University.

The subjects use a website implemented the automatic grading system for fill-in-the-blank test

described in Section 3.2. They access the experimental website with a browser that they usually use, and log

in with user ID and password given in advance to solve assignments. They can solve assignments in any

order. They can switch an assignment to another on the way within the time limit. Learning behavior of

subjects is stored on the server with asynchronous communication of Web beacon [25] immediately every

time learners take predefined actions such as pressing buttons and reloading Web pages. After the time limit

has elapsed, they finish solving the assignments. They subsequently answer the two kinds of questionnaires.

The one is for cognitive load measurement, and the other is for assessing the degree of difficulty for each

assignment. They evaluate cognitive load in 11-scale, while difficulties for each the assignments in 5-scale.

Table 1. Assignments of fill-in-the-blank test in the experiment
Assignment No. Learning units No. of blanks

F1 2-dimensional array 3

F2 2-dimensional array 7
F3 Structure, pointer, and linked list 7

F4 2-dimensional array, and function 9

F5 Sorting algorithm 8

4.2. Result

Datasets of learning behavior are obtained from 54 subjects. 3 subjects are excluded due to the

insufficient number of learning behavior. The proposed method constructed models of random forest [26] for

the 3 kinds of cognitive load using the datasets. The model construction reveals important variables to detect

IL, EL, and GL. The important variables [27] are determined based on Gini index [28]. Predictor and

response variables for training with random forest are followings.

 Predictor variable: 43 features based on the 3 kinds of learning behavior described in Section 3.2

 Response variable: high or low of IL, EL, and GL obtained from the questionnaire

The datasets are divided into data for the model construction and the verification. In order to verify

the accuracy of the decision tree, we adopted 6-fold cross-validation [29]. Table 2 shows the results of the

accuracy which represents the correct rate of the verification data with the cross-validation. The predictor

variables are arranged in descending order of the average of the importance. We choose the top 10 variables

of them. The top 10 variables and their importance for each cognitive load are shown in Tables 3, 4 and 5.

Variable importance means how much contribution to the model of random forest. The sum of them is 1.

Table 6 indicates the difficulties for each assignment obtained by the questionnaire.

Table 2. Accuracies of the generated models
Cognitive Load Training data Test data

Intrinsic 0.907 0.740

Extraneous 0.870 0.537
Germane 0.944 0.870

Table 3. The top 10 important variables for IL
Variable Importance

Grading requests for blank 4 in F4 0.074

Grading requests for blank 1 in F3 0.065

Time transitions for F3 0.059
Time transitions for F4 0.046

Grading requests for blank 3 in F4 0.045

Time transitions for F5 0.043
Time transitions for F1 0.039

Grading requests for blank 5 in F5 0.038

Grading requests for blank 5 in F4 0.038
Grading requests for blank 5 in F2 0.037

Table 4. The top 10 important variables for EL
Variable Importance

Time transitions for F2 0.086

Page transitions to previous 0.077

Grading requests for blank 3 in F3 0.052
Time transitions for F3 0.050

Sum of page transitions 0.046

Grading requests for blank 5 in F5 0.042
Time transitions for F1 0.041

Grading requests for blank 1 in F3 0.037

Page transitions to next 0.037
Grading requests for blank 3 in F1 0.035

Int J Elec & Comp Eng ISSN: 2088-8708 

Predicting cognitive load in acquisition of programming abilities (So Asai)

3269

Table 5. The top 10 important variables for GL
Variable Importance

Page transitions to previous 0.116

Grading requests for blank 1 in F2 0.093

Time transitions for F4 0.076
Grading requests for blank 3 in F1 0.070

Time transitions for F1 0.066

Time transitions for F2 0.049
Time transitions for F3 0.045

Grading requests for blank 3 in F4 0.043

Grading requests for blank 3 in F2 0.036
Page transitions ahead more 0.035

Table 6. Evaluation of difficulty level for the assignments
Assignment No. Mean Variance

F1 2.63 0.74
F2 3.14 0.74

F3 4.10 0.42

F4 3.87 0.58
F5 3.30 0.97

5. IMPORTANT PREDICTORS

This section assesses the usefulness of the model of random forest for cognitive load along with the

influence of the important variables on the 3 types of cognitive load of the subjects. It also discusses

measures teachers should address against inappropriate states of cognitive load. It can be said that variables

important to distinguish subjects of high cognitive load from ones of low cognitive load take largely different

values for the two kinds of subjects.

 Intrinsic load

Many of the important variables for IL are variables related to assignment F3 and F4. As shown in

Table 6, the subjects evaluated F3 and F4 the most difficult among the five assignments. This result implies

the difficulty of assignments strongly influences to detect IL. Let us check the code fragments blanked out in

the assignments. The important variables are the number of grading requests for blanks, which should be

filled with multiple statements or variables in value settings. Subjects must seek a correct answer for the

blanks, considering the influence on other parts of the program. The top 10 variables include the time

transitions for correct answer rate, which is explained in Figure 2, for the assignments except for F2. Since

this learning behavior indicates how short subjects could have answered correctly, it is directly linked with

the difficulty of the assignment.

These facts suggest that learners with high IL excessively consume working memory to IL because

they engage in the assignments for a long time. On the other hand, learners with low IL can easily solve the

assignment in a short time. Teachers can predict IL of learners, focusing on the learning behavior against

assignments with high difficulty. Teachers can mitigate IL, providing assignments of low difficulty for

learners with high IL.

 Germane load

The most important variable is the page transitions to the previous assignment. Transitioning to the

previous assignment means that the subjects retry to solve the assignments. In our method, the subjects can

solve any assignments of fill-in-the-blank test many times within the time limit. Because subjects have solved

the assignments repeatedly, it seems they achieved to establish a schema related to the blank and the contents

of the assignment.

The next important variables are related to assignment F1, F2, and F4. The contents of the

assignments are related to linear algebra. They should be solved using 2-dimensional array. All of the

subjects have obtained skills of linear algebra calculation before they learn programming. They have

achieved each skill of programming and linear algebra calculation. Because they need to solve the

assignments using both skills concurrently, the assignments seem to reveal the difference in schematization

of programming knowledge.

On the other hand, predictor variables related to assignment F5 are smaller. Assignment F5 is solved

with a sorting algorithm. Because the sorting algorithm is unknown for most of the subjects, they showed low

GL in the assignment F5. Therefore, in order to detect GL on learners, it is effective to solve assignments

utilizing knowledge learners have already obtained or assignments similar to the learning unit. In addition,

learning behaviors predicting GL is important to confirm how many learners have benefited from the

learning contents and supervision. In case that few learners have been benefited, teachers should review the

learning contents and supervision, so that the learners can establish schemata for programming abilities.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3262 - 3271

3270

 Extraneous load

The model of random forest in our experiment did not show sufficient accuracy for the testing data.

This means the model cannot predict learners’ EL from their learning behaviors in solving assignments of

fill-in-the-blank test. It is difficult to figure out variables of learning behavior to detect EL because there are

various kinds of variables in the 10 important variables. The cause of the result is considered that the subjects

were unfamiliar with the use of the experimental website which implements the automatic grading system.

The subjects have practiced with a simple assignment of fill-in-the-blank test to grasp usage of the website.

However, it might not be enough. As another cause, it is also conceivable that a language used in the

experiment was not the primary language for the subjects. Most of the subjects understand English. However,

it is not everyday languages. Answering in non-primary language seems to affect EL.

In order to improve the accuracy of the model to detect EL, it is necessary to provide an

environment where learners are familiar with learning environments. We should have the subjects to be

accustomed to the website, letting them try the automatic grading system more times. It is also required to

revise the website to be easy to use for the learners.

Our method detects cognitive load from learning behavior without attaching any sensors to learners.

It clarifies cognitive load of learners at an early stage, avoiding extra burdens not only on teachers but also on

learners. It is difficult to find out learners who have IL or GL inappropriately without our method. Teachers

can address to make each cognitive load of learners appropriate on a light burden.

6. CONCLUSION

In this paper, we propose models to detect cognitive load along with its factors, founding on

the random forest algorithm. We also discuss the usefulness of the models. The models are constructed with

predictor variables representing three kinds of learning behavior. They are effective to detect IL and GL.

The learning behavior during solving difficult assignments is useful to detect IL. It is effective in the

detection of GL to analyze learning behavior of learners engaging in assignments they have already learned.

On the other hand, EL can be detected if we improve the usability of the automatic grading system.

Teachers can find learners who have inappropriate cognitive load early because the proposed method clarifies

cognitive load of learners from learning behavior. In the future, we elaborately clarify the accuracy of

learners’ cognitive load and its factors, extending areas of learning contents.

REFERENCES
[1] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory programming,” SIGCSE Bull., vol. 39, no. 2,

pp. 32-36, Jun. 2007.

[2] M. Okamoto and H. Kita, “A study of novices missteps in shakyo-style learning of computer programming,”

in Memoirs of the center for educational research and training, shiga university 22, pp. 49-53, 2014.

[3] R. A. Reiser and J. V. Dempsey, “Trends and issues in instructional design and technology,” 3rd ed. New York:

Peason, 2012.

[4] J. M. Keller, “Motivational design for learning and performance, the arcs model approach,” New York:

Springer, 2010.

[5] P. Pintrich, “A manual for the use of the motivated strategies for learning questionnaire (mslq),” Ann Arbor:

National Center for Research to Improve Postsecondary Teaching; Learning, 1990.

[6] D. T. D. Phuong and H. Shimakawa, “Grasping motivation and strategy of current students referring to past

programming course,” IEEJ Transactions on Fundamentals and Materials (A), vol. 136, no. 12, pp. 787-796, 2016.

[7] R. Gagné, W. Wager, K. Golas, and J. Keller, “Principles of instructional design,” 5th ed. Belmont: Wadsworth

Pub., 2005.

[8] J. Sweller, “Element interactivity and intrinsic, extraneous, and germane cognitive load,” Educational Psychology

Review, vol. 22, no. 2, pp. 123-138, 2010.

[9] S. Shuhidan, M. Hamilton, and D. D’Souza, “Understanding novice programmer difficulties via guided learning,”

in Proceedings of the 16th annual joint conference on innovation and technology in computer science education,

pp. 213-217, 2011.

[10] J. Sweller, P. Ayres, and S. Kalyuga, “Cognitive load theory,” Springer, 2011.

[11] W. Schnotz and C. Kürschner, “A reconsideration of cognitive load theory,” Educational Psychology Review,

vol. 19, no. 4, pp. 469-508, Dec. 2007.

[12] K. E. DeLeeuw and R. E. Mayer, “A comparison of three measures of cognitive load: Evidence for separable

measures of intrinsic, extraneous, and germane load,” Journal of Educational Psychology, vol. 100, pp. 223-234,

Feb. 2008.

[13] J. Sweller, J. van Merrienboer, and F. Paas, “Cognitive architecture and instructional design,” Educational

Psychology Review, vol. 10, no. 3, pp. 251-296, Sep. 1998.

[14] E. Haapalainen, S. Kim, J. F. Forlizzi, and A. K. Dey, “Psycho-physiological measures for assessing cognitive

load,” in Proceedings of the 12th acm international conference on ubiquitous computing, pp. 301-310, 2010.

Int J Elec & Comp Eng ISSN: 2088-8708 

Predicting cognitive load in acquisition of programming abilities (So Asai)

3271

[15] F. Paas, J. Tuovinen, H. Tabbers, and P. W. van Gerven, “Cognitive load measurement as a means to advance

cognitive load theory,” Educational Psychologist, vol. 38, no. 1, pp. 63-71, Jan. 2003.

[16] B. B. Morrison, B. Dorn, and M. Guzdial, “Measuring cognitive load in introductory cs: Adaptation of an

instrument,” in ICER ’14 proceedings of the tenth annual conference on international computing education

research, pp. 131-138, 2014.

[17] J. Leppink, F. Paas, C. P. M. Van der Vleuten, T. Van Gog, and J. J. G. Van Merriënboer, “Development of an

instrument for measuring different types of cognitive load,” Behavior Research Methods, vol. 45, no. 4,

pp. 1058-1072, Dec. 2013.

[18] M. Yousoof, M. Sapiyan, and and Khaja Kamaluddin, “Measuring cognitive load-a solution to ease learning of

programming,” World Academy of Science, Engineering and Technology International Journal of Computer and

Systems Engineering, vol. 1, no. 2, pp. 32-35, 2007.

[19] L. Fridman, B. Reimer, B. Mehler, and W. T. Freeman, “Cognitive load estimation in the wild,” in Proceedings of

the 2018 chi conference on human factors in computing systems, pp. 652:1-652:9, 2018.

[20] K. Chang, B. Chiao, S. Chen, and R. Hsiao, “A programming learning system for beginners – a completion strategy

approach,” IEEE Transactions on Education, vol. 43, no. 2, pp. 211-220, May 2000.

[21] R. Medawela, D. Ratnayake, W. Abeyasinghe, R. Jayasinghe, and K. Marambe, “Effectiveness of ‘fill in the

blanks’ over multiple choice questions in assessing final year dental undergraduates,” Educación Médica, vol. 19,

no. 2, pp. 72-76, 2018.

[22] S. Asai and H. Shimakawa, “Automatic scoring system of fill-in-the-blank tests to measure programming skills,”

in Proc. Of the 6th the international conference on information technology and its applications, pp. 23-29, 2017.

[23] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A study of the difficulties of novice programmers,”

in Proceedings of the 10th annual sigcse conference on innovation and technology in computer science education,

pp. 14-18, 2005.

[24] I. Milne and G. Rowe, “Difficulties in learning and teaching programming–Views of students and tutors,”

Education and Information Technologies, vol. 7, no. 1, pp. 55-66, Mar. 2002.

[25] J. C. Sipior, B. T. Ward, and R. A. Mendoza, “Online privacy concerns associated with cookies, flash cookies, and

web beacons,” Journal of Internet Commerce, vol. 10, no. 1, pp. 1-16, 2011.

[26] J. Han, M. Kamber, and J. Pei, Data mining, concept and techniques, 3rd ed. Waltham: Morgan Kaufmann, 2010.

[27] T. Hastie, R. Tibshirani, and J. Friedman, “The element of statistical learning: Data mining, inference, and

prediction,” 2nd ed. Springer, 2009.

[28] K. P. Murphy, “Machine learning, a probabilistic perspective,” Cambridge: MIT Press, 2010.

[29] T. M. Mitchell, “Machine learning,” New York: McGraw-Hill, 1997.

