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 In this paper, we propose a method to predict cognitive load and its factors 

affecting the learning efficiency in programming learning from the learning 

behavior of learners. Generally, since the concepts of programming are 

difficult for learners, some of them suffer inappropriate cognitive load to 

understand them. Although teachers must keep cognitive load of such 

learners appropriate, it is difficult for them to find learners who has 

inappropriate cognitive load from a large number of learners. To find 

learners with inappropriate cognitive load, we construct models with the 

random forest algorithm, using learning behavior collected from learners 

solving fill-in-the-blank tests. An experiment shows the models can detect 

cognitive load for IL and GL along with their factors. Teachers must address 

adjustment of cognitive load of learners. This result clarifies the learning 

factors affecting cognitive load of learners, which enables teachers to address 

the adjustment with small burdens. 
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1. INTRODUCTION  

Educational institutes to teach information technology provide programming exercise classes for 

many novice learners. Novice learners must understand many abstract concepts to acquire programming 

abilities. It is difficult for novice learners because they have never experienced how the concepts are realized 

on computers. There are not a few learners to drop out [1]. 

The reason why learners cannot understand the specific concepts of programming is that 

inappropriate cognitive load is imposed on them [2]. Cognitive load is one of the important elements to 

consider in order to promote the learners to understand the specific concepts. Cognitive load is closely 

involved in acquisition and fixing of their programming skills. Learners are more likely to acquire 

programming abilities if they have appropriate cognitive load. It is necessary to pay attention so that learners 

do not have inappropriate cognitive load. However, each learner has its own way to have cognitive load. 

Usually, in a usual exercise class, one or a few education stuff teach more than decades of learners. It is 

difficult for teachers to find learners who have inappropriate cognitive load. 

To provide learners with a preferable learning environment, many methods have been proposed for 

instructional design [3]. Keller [4] values motivation for such environments.The work in [5] lists motivations 

and strategies in learning. Phuong [6] regards them as factors determining the learning behavior of each 

learner. Phuong proposes a data analysis method to figure out the factors, to determine which students should 

be supervised.However, almost all of the instructional design methods try to extract learner’s mental factors 
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such as motivation to establish successful environments [7]. Even highly motivated learners need support 

from their teachers to overcome difficulties when they struggle with difficult learning tasks.A systematic 

method is necessary for teachers to detect learners with high cognitive load. 

This paper proposes a method to predict factors to impose cognitive load on learners through 

analysis of learning behavior they show at solving programming assignments. There are several types of 

cognitive load [8]. The method leverages fill-in-the-blank test to determine what type of cognitive load 

learners have. To determine the type of cognitive load, the method generates a model of random forest 

analyzing learning behavior they take at finding correct answers to fill blanks in the program. The output of 

the model identifies the type of cognitive load on learners, while the importance of predictor variables 

indicates its factors. This clarifies the state and factors of cognitive load of each learner. Teachers can address 

adjustment of the excessive cognitive load of learners into an appropriate state with minimal effort. 

 

 

2. COGNITIVE LOAD IN PROGRAMMING LEARNING 

2.1.   Requirements to obtain programming ability 

In order to acquire the programming ability, it is essential to be able to read given programs and 

write appropriate programs, utilizing concepts specific to programming to be understood. To achieve it, 

learners are required to organize various kinds of knowledge on many concepts along with their usages. 

Many learners cannot solve programming assignments because of difficulties of abstract concepts and ways 

to utilize them [9]. Learners without enough understanding of the concepts and the ways do not know what 

program they should write when they engage in assignments. Even if learners grasp programming concepts 

and ways to utilize them, many of them cannot imagine actual behavior of given programs. Those learners 

cannot understand why the programs behave in specified ways. Such learners may fail to learn programming, 

which may cause them to escape from programming learning. Teachers must find learners who are likely to 

have understanding failures to prevent them from escaping. It is indispensable to identify what impedes 

learners to understand programming. 

 

2.2.  Cognitive load affecting learning 

People use working memory when thinking something. The amount of working memory represents 

the capability for process abilities to think. People must put many elements on their working memories when 

they learn new things. Since there are individual differences in working memory, the allowable amount of 

learning varies. When the same elements are repeatedly processed in working memory, they are organized as 

a schema. Once elements become a schema, learners can utilize them without cognitive load, because the 

elements have been organized with its usage. The goal of learning is that learners get able to solve problems 

never seen before without effort by combining elements they have understood. In other words, learning 

means to construct a schema into which elements are organized along with their usage. 

Cognitive load affects understanding failure caused by difficulties in programming  

concepts [2, 10]. Cognitive load indicates how much working memory is assigned to tasks to understand 

unknown items and to utilize acquired knowledge in solving assignments [11]. The cognitive load theory 

classifies usage of the working memory into the following three types [8, 12]. 

Intrinsic Load (IL): IL occurs due to the inherent difficulty of the assignment against abilities of 

learners. IL is imposed when learners engage in problem solving under an unknown item and ways of 

consideration using it. This load gets high, when learners feel excessive difficulty for the assignment, because 

of the small amount of their working memory. 

Extraneous Load (EL): EL is caused by surrounding learning environments and brought by the poor 

quality of teaching materials and lectures provided for learners. Teachers are required to design the materials 

and the lectures so as to reduce this load. 

Germane Load (GL): GL is related to the schematization of contents to be learned. The imposition 

of GL implies learners are in the process of organizing given learning contents as schemata. Learners are 

encouraged to experience this load [13]. 

If it is an ideal learning situation that learners continue to acquire new knowledge, it is desirable that 

cognitive load is high in GL, in which knowledge is being schematized, while it should be low in IL  

and EL [8]. This work refers to it as an appropriate state of the cognitive load. Teachers must endeavor to 

keep cognitive load of learners an appropriate state. However, every learner feels different difficulties for 

each of the given learning content. There are various learners who have different effects of lesson design of 

programming lectures/exercises conducted as mass classes. It is difficult to estimate the cognitive load for 

each learner. Even more, it is nearly impossible to judge it from the appearance of learners on the spot during 

the class. 
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2.3.  Estimation of cognitive load 

A number of researchers have engaged in works to measure cognitive load [10, 14, 15]. Several 

methods are proposed to measure cognitive load. Their usefulness is confirmed in various fields. 

Morrison et al. [16] proposed a method to measure cognitive load of learners in the programming classes, 

without sensors. He extended the method Leppink et al. [17] established for statistics classes to programming 

learning. The method provides learners with several question items. Each of the question items is correlated 

to figure out either of IL, EL or GL. For each question item, learners present their answers by 11-scale.  

The Leppink’s method assesses cognitive load for the whole learning process in the class, not factors causing 

it. The Morrison’s method does not clarify factors of cognitive load of each learner, either. 

Dividing visual information and character information in a programming class, Yousoof et al. [18] 

proposed a method to measure cognitive load from its accumulation, to reduce it. This method mainly 

focuses on EL. It does not fully consider IL or GL, which come from the utilization of working memory by 

learners. It is necessary to clarify essential factors of their understanding failures, considering learning 

behavior which appears for each type of cognitive load. Fridman et al. [19] measured the cognitive load 

during driving vehicle without wearing any sensors. This work investigates the cognitive load in real time, 

feeding video data of eye movements to the deep learning. This study does not distinguish the three types of 

the cognitive load. 

In programming learning, it is essential to discriminate IL, EL, and GL. Since IL and EL decrease 

learning efficiency, they should be low. Meanwhile, high GL is preferable, because it implies the learner is 

working on the schematization of learning items. It should be avoided to attach physical sensors to learners, 

to obtain cognitive load in programming learning. There are many learners in the class. It brings huge costs to 

attach sensors to all of them. Sensors may also influence learning efficiency inappropriately. In addition to 

the investigation of cognitive load without sensors, it is necessary to clarify what learning behavior 

distinguishes the three types of cognitive load of learners. Furthermore, their factors should be identified for 

teachers to make them appropriate. A contribution of our work is to identify factors of cognitive load, as well 

as to investigate the three types of the cognitive load without specific sensors. 

 

 

3. PREDICTING FACTORS AFFECTING COGNITIVE LOAD 

3.1.   Method overview 

Our work aims to estimate cognitive load from learning behaviors at solving programming 

assignments, to predict each type of cognitive load along with factors causing it. A method is proposed to 

predict the cognitive load along with its factors when learners study programming with a procedural language 

like C. Figure 1 illustrates the method overview. To train classification models, learning behavior is collected 

from learners answering fill-in-the-blank tests. The method lets the learners specify their cognitive load for 

each assignment with the questionnaires explained in [16]. It trains models of random forest with the learning 

behaviors and the cognitive load. The models of random forest extract correspondences between the learning 

behavior and the cognitive load of the learners. When the learning behaviors of a new learner are provided, 

the model predicts learner’s cognitive load along with its factors. The method helps teachers to confirm 

whether the new learners in programming learning are under appropriate cognitive load. The teachers can 

also address learners with inappropriate cognitive load. They can take measures to adjust their cognitive load, 

taking its factors into account. 

 

 

 
 

Figure 1. Overview of our method to predict factors affecting cognitive load 
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3.2.  Collecting learning behavior 

We focus on learning behavior when learners answer assignments of fill-in-the-blank test.  

Fill-in-the-blank test is frequently used to measure learner’s understanding in programming classes [20]. 

Learners must fill code fragments suitable for blanks, considering coincidence with code fragments disclosed 

in other parts than blanks. Fill-in-the-blank tests reveal the understanding of learners because learners are 

requested to read the disclosed code fragment, understand them, and conceive code to fill the blanks.  

In fill-in-the-blank tests, it is less likely to speculate answers than in multiple-choice tests [21]. 

Fill-in-the-blank tests can examine learning achievements. Any types of cognitive load are not 

imposed on learners who have acquired programming abilities. Learners who are schematizing learning items 

have high GL because they are in the process of acquiring programming ability. High IL is imposed on 

learners when they engage assignments whose solution itself is hard to seek. Learners seem to have high EL 

by the assignments which bring unnecessary burdens such as sentences hard to read. Fill-in-blank tests, 

where the parts to be answered are limited, are useful for the measurement of the cognitive load as well as the 

understanding level of learners. 

When answers which learners have convinced correct are judged to be incorrect, they consider the 

reasons, consuming their working memory. High IL occurs in this case. Recognizing their schema is wrong, 

learners reconstruct another schema. GL gets high in the reconstruction. Proper cognitive load of learners is 

collected, only if learners can receive the grading result on the spot when they solve fill-in-the-blank tests. 

In general learning with fill-in-the-blank tests, learners submit their answers on the sheet, with their grading 

results fed back after a few days. It is not expected proper cognitive load can be obtained with this learning 

procedure. 

The method provides an automatic grading system [22]. It is implemented as a web application, with 

which learners can grade their answers interactively. The system grades an answer a learner gives for each 

blank on demand. It notifies the correctness of the answer immediately. Learners using the system are 

allowed to submit their answers many times until their answers become correct within the time limit. 

In our method, one test corresponds to the code of a program, parts of which are blanked out. 

More than one tests are provided for learners. As learning behavior, the method collects 3 data items: 

the consuming time, change histories of answers, and the number of grading demands. More concretely, 

the system records the elapsed time from the time point a learner starts a specific test, a chronological list of 

answers the learner submits for each blank, and the number of grading demands transmitted to the system, 

respectively. We focus on 3 types of predictors explained below, to detect each type of cognitive load along 

with its factors. All of the predictors can be derived from the learning behavior the automatic grading system 

for fill-in-the-blank tests collect. 

 Grading requests 

Learners can check whether their answers are correct many times for each blank. High IL means 

learners have difficulties to fill blanks in the test because the test itself is hard to them. They have few 

candidate code fragments to fill the blanks. When none of them works well, the learners have nothing to do. 

Therefore, we assume that such learners demand to grade rarely. In the meantime, learners with high EL 

might fail to understand what the test requests or even how they should use the system, which leads them to 

do nothing. The system allows learners to demand to grade as many times as they want. It aims to cause 

learners to reach right answers after careful consideration. The method counts the number of grading for each 

blank. It does not count grading when the code fragment has not been modified from the previous demand, 

even if the learner demands to grade. 

 Page transitions 

In fill-in-blank tests, teachers provide multiple assignments in one session in order to confirm their 

understanding for various programming concepts. Learners can solve assignments in an order of their own 

choice. They can also switch them halfway. The learners change assignments to other ones when they either 

complete right answers for all blanks of an assignment or give up answering because they cannot imagine 

any other answer. The more difficulty learners perceive for assignments, the more they transit assignments. 

Trying to reconsider previous assignments, learners move back to them. In other case, learners move forward 

to new assignments. The method counts page transition, distinguishing the next assignment, the previous one, 

and one ahead more than two. 

 Time transitions for correct answer rate 

When a learner engages in a test, the learner repeats to send a grading demand after specifying an 

answer for each blank. Let the correct answer rate as the ratio of blanks they fill with correct answers against 

all the blanks. As a whole, learners increase their correct answer rate, as the number of grading request 

grows. Learners who have enough understanding of the tests can answer all of them easily. Their correct 

answer rate quickly reaches to the full mark or one close to it. On the other hand, learners who lack 

understanding need a long time to find correct answers or give up to find them. It is expected the time 
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transition of the correct answer rate plays a vital role in discriminating the cognitive load. In order to 

represent the role in an integrated way, the method quantifies the time transition 𝑇𝑚 for assignment 𝑚 by the 

following equation: 

 

𝑇𝑚 =
1

2
∑(𝑝𝑘 + 𝑝𝑘−1)(𝑡𝑘 − 𝑡𝑘−1

𝑛

𝑘=1

) + 𝑝𝑛(𝑡𝑙 − 𝑡𝑛), 

 

where 𝑛 is the number of grading demands of the learner, 𝑝𝑘 is the correct answer rate at the 𝑘th grading, 𝑡𝑘 

is the elapsed time at the 𝑘th grading from 𝑡0, and 𝑡𝑙 is the deadline of answering. The time is excluded while 

learners answer assignments other than assignment 𝑚. 𝑘 = 0 stands for the state at the start time of 

answering, where 𝑡0 = 0 and 𝑝0 = 0. The quantification enables us to represent the accumulation of the 

correct answer rate of a learner over the elapsed time, as Figure 2 shows. In the case that the correct answer 

rate reaches high early, 𝑇𝑚 gets large as shown in Figure 2(a). On the other hand, when the correct answer 

rate of a learner remains low for a long answering time, 𝑇𝑚 is small as shown in Figure 2(b). 

 

 

 
 

Figure 2. Examples of time transitions for correct answer rate 

 

 

3.3.  Investigating cognitive load 

The method uses the cognitive load measurement questionnaire [16] in order to investigate three 

types of the cognitive load of learners. For the investigation, learners answer the questionnaire consisting of 

10 questions. They are classified into 3, 3, and 4 questions corresponding to IL, EL, and GL, respectively.  

To clarify the target of each question, qualifiers are added to each statement of the cognitive load 

measurement questionnaire in the method. Figure 3 lists up the questions. Learners evaluate each of them by 

11-scale. A larger number corresponds to a strong agreement for the question. When the sum of marks in 

questions corresponding to a specific type of cognitive load is large, its degree of the learner is judged  

to be high. 

 

 

 
 

Figure 3. Questions of cognitive load measurement questionnaire 

 

 

3.4.  Identifying cognitive load with random forest 
The method generates models to associate characteristics of learning behavior with factors of the 

cognitive load evaluated by the questionnaire. The models found on the random forest algorithm. Predictor 

variables and response variables of the models are the learning behaviors and a specific type of cognitive 

load, respectively. Models based on the random forest algorithm present how important each predictor 

The topics covered in the activity of solving fill-in-blank prob lems were very complex.

The activity of solving fill-in-blank problems covered program code that I perceived as very complex.

The activity of solving fill-in-blank problems covered concepts and definitions that I perceived as very complex.

The instructions and/or explanations of the website during the activity were very unclear.

The instructions and/or explanations of the website were, in terms of learning, very ineffective.

The instructions and/or explanations of the website were full of unclear language.

The activity of solving fill-in-blank problems really enhanced my understanding of the topics covered.

The activity of solving fill-in-blank problems really enhanced my knowledge and understanding of 

computing/programming.

The activity of solving fill-in-blank problems really enhanced my understanding of the program code covered.

The activity of solving fill-in-blank problems really enhanced my understanding of the concepts and definitions.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
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variable is in detecting a target type of cognitive load, which contributes to identifying its factors. 

An individual model is generated for each of three types of cognitive load because our work aims to clarify 

factors for each of the three types of the cognitive load. 

The random forest algorithm constructs a multitude of decision trees from randomly chosen 

predictor variables and produces a model classifying learners according to the degree of cognitive load by 

majority voting of the outputs of those decision trees. Each node of a decision tree composing the model 

bisects states of learners specified with the predictor variable, from the learning behavior in solving 

fill-in-the-blank test. It is desirable that one of the divided nodes includes more learners of a target type of 

cognitive load. Namely, the impurity in each node of the decision tree should be small. The impurity is 

represented by entropy 𝐼𝐻(𝑡), which is calculated with the following equation: 
 

𝐼𝐻(𝑡) = − ∑ 𝑃

2

𝑖=1

(𝑖 ∣ 𝑡) log
2

𝑃(𝑖 ∣ 𝑡) 

 

The difference of the entropy after the branch from the one before the branch should be small, which 

corresponds to maximizing the information gain. The information gain 𝐺(𝑡) at the node 𝑡 is obtained from 

the following equation: 
 

𝐺(𝑡) = 𝐼𝐻(𝑡) − ∑
|𝑡𝑖|

|𝑡|

2

𝑖=1

𝐼𝐻(𝑡𝑖) 

 

Each node is divided so as to minimize the information gain. To prevent the decision trees from 

overfitting, nodes whose information gain is less than a threshold value are not divided anymore, regarded as 

leaves. Learners matching the branching condition in their cognitive load are classified in each node. 

Eventually, learners with specific characteristics in learning behavior fall into each of leaf nodes. 

The characteristics correspond to a response variable. Combination of branching conditions along a path 

from the root to a leaf corresponding to high cognitive load reveals factors of learning behavior which affect 

the cognitive load. 

In the analysis using random forest, a lot of decision trees are used to judge whether cognitive load 

is imposed on learners. In the determination of a specified type of the cognitive load, the more frequently a 

specific predictor variable is used overall decision trees, the more important the predictor variable gets. 

Models based on random forest present contributions of each predictor variable to the judgement of cognitive 

load as the variable importance. 

 

3.5.  Predicting cognitive load of learners 

A model is constructed through training data collected from many learners solving fill-in-the-blank 

tests with the automatic grading system. New learners also solve fill-in-the-blank tests as the learners for the 

training did. Their learning behavior is applied to the trained models. Each cognitive load of the new learners 

is determined with majority votes by the models. Teachers are notified of detected type of the cognitive load 

and learning behaviors of the learner. When IL or EL is high or GL is low, the teacher should follow up the 

learners to lead their cognitive load to an appropriate state. 

Under appropriate states of all types of cognitive load, learners can acquire programming skills 

more effectively. It contributes to preventing learners from failing programming learning, suppressing 

burdens of teachers. Teachers can utilize saved efforts to prepare better lectures to provide higher 

educational effects. 

 

 

4. EXPERIMENT 

4.1.  Overview 

An experiment was conducted to confirm whether the method identifies factors of cognitive load. 

The purpose of this experiment is the followings: 

 Collecting datasets of learning behavior of learners answering fill-in-the-blank test 

 Verifying models of random forest generated from the datasets 

Subjects are Vietnamese college students who are learning programming in C and information 

technology. They are the second year college students. A preliminary survey confirmed they have already 

learned C programming for beginners. At the time of the experiment, there are various students in terms of 

interests and abilities toward C programming. The materials in the experiment were provided in English 

because the preliminary survey has confirmed most of them can understand English fairly well. In the 
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experiment, the subjects solved five assignments of fill-in-the-blank tests, where several code fragments are 

blanked out. Table 1 shows these assignments and the number of their blanks. Concepts on the learning units 

are generally difficult in programming learning [23, 24]. Assignments regarding the concepts are expected to 

reveal the difference in understanding of learners. The assignments questioning the concepts were chosen so 

that unbiased datasets can be obtained. The quality of the assignments is guaranteed because these 

assignments are actually used in programming classes at Ritsumeikan University. 

The subjects use a website implemented the automatic grading system for fill-in-the-blank test 

described in Section 3.2. They access the experimental website with a browser that they usually use, and log 

in with user ID and password given in advance to solve assignments. They can solve assignments in any 

order. They can switch an assignment to another on the way within the time limit. Learning behavior of 

subjects is stored on the server with asynchronous communication of Web beacon [25] immediately every 

time learners take predefined actions such as pressing buttons and reloading Web pages. After the time limit 

has elapsed, they finish solving the assignments. They subsequently answer the two kinds of questionnaires. 

The one is for cognitive load measurement, and the other is for assessing the degree of difficulty for each 

assignment. They evaluate cognitive load in 11-scale, while difficulties for each the assignments in 5-scale. 

 

 

Table 1. Assignments of fill-in-the-blank test in the experiment 
Assignment No. Learning units No. of blanks 

F1 2-dimensional array 3 

F2 2-dimensional array 7 
F3 Structure, pointer, and linked list 7 

F4 2-dimensional array, and function 9 

F5 Sorting algorithm 8 

 

 

4.2.  Result 

Datasets of learning behavior are obtained from 54 subjects. 3 subjects are excluded due to the 

insufficient number of learning behavior. The proposed method constructed models of random forest [26] for 

the 3 kinds of cognitive load using the datasets. The model construction reveals important variables to detect 

IL, EL, and GL. The important variables [27] are determined based on Gini index [28]. Predictor and 

response variables for training with random forest are followings. 

 Predictor variable: 43 features based on the 3 kinds of learning behavior described in Section 3.2 

 Response variable: high or low of IL, EL, and GL obtained from the questionnaire 

The datasets are divided into data for the model construction and the verification. In order to verify 

the accuracy of the decision tree, we adopted 6-fold cross-validation [29]. Table 2 shows the results of the 

accuracy which represents the correct rate of the verification data with the cross-validation. The predictor 

variables are arranged in descending order of the average of the importance. We choose the top 10 variables 

of them. The top 10 variables and their importance for each cognitive load are shown in Tables 3, 4 and 5. 

Variable importance means how much contribution to the model of random forest. The sum of them is 1. 

Table 6 indicates the difficulties for each assignment obtained by the questionnaire. 

 

 

Table 2. Accuracies of the generated models 
Cognitive Load Training data Test data 

Intrinsic 0.907 0.740 

Extraneous 0.870 0.537 
Germane 0.944 0.870 

 

 

Table 3. The top 10 important variables for IL 
Variable Importance 

Grading requests for blank 4 in F4 0.074 

Grading requests for blank 1 in F3 0.065 

Time transitions for F3 0.059 
Time transitions for F4 0.046 

Grading requests for blank 3 in F4 0.045 

Time transitions for F5 0.043 
Time transitions for F1 0.039 

Grading requests for blank 5 in F5 0.038 

Grading requests for blank 5 in F4 0.038 
Grading requests for blank 5 in F2 0.037 

 

Table 4. The top 10 important variables for EL 
Variable Importance 

Time transitions for F2 0.086 

Page transitions to previous 0.077 

Grading requests for blank 3 in F3 0.052 
Time transitions for F3 0.050 

Sum of page transitions 0.046 

Grading requests for blank 5 in F5 0.042 
Time transitions for F1 0.041 

Grading requests for blank 1 in F3 0.037 

Page transitions to next 0.037 
Grading requests for blank 3 in F1 0.035 
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Table 5. The top 10 important variables for GL 
Variable Importance 

Page transitions to previous 0.116 

Grading requests for blank 1 in F2 0.093 

Time transitions for F4 0.076 
Grading requests for blank 3 in F1 0.070 

Time transitions for F1 0.066 

Time transitions for F2 0.049 
Time transitions for F3 0.045 

Grading requests for blank 3 in F4 0.043 

Grading requests for blank 3 in F2 0.036 
Page transitions ahead more 0.035 

 

 

Table 6. Evaluation of difficulty level for the assignments 
Assignment No. Mean Variance 

F1 2.63 0.74 
F2 3.14 0.74 

F3 4.10 0.42 

F4 3.87 0.58 
F5 3.30 0.97 

 

 

5. IMPORTANT PREDICTORS 

This section assesses the usefulness of the model of random forest for cognitive load along with the 

influence of the important variables on the 3 types of cognitive load of the subjects. It also discusses 

measures teachers should address against inappropriate states of cognitive load. It can be said that variables 

important to distinguish subjects of high cognitive load from ones of low cognitive load take largely different 

values for the two kinds of subjects. 

 Intrinsic load 

Many of the important variables for IL are variables related to assignment F3 and F4. As shown in 

Table 6, the subjects evaluated F3 and F4 the most difficult among the five assignments. This result implies 

the difficulty of assignments strongly influences to detect IL. Let us check the code fragments blanked out in 

the assignments. The important variables are the number of grading requests for blanks, which should be 

filled with multiple statements or variables in value settings. Subjects must seek a correct answer for the 

blanks, considering the influence on other parts of the program. The top 10 variables include the time 

transitions for correct answer rate, which is explained in Figure 2, for the assignments except for F2. Since 

this learning behavior indicates how short subjects could have answered correctly, it is directly linked with 

the difficulty of the assignment. 

These facts suggest that learners with high IL excessively consume working memory to IL because 

they engage in the assignments for a long time. On the other hand, learners with low IL can easily solve the 

assignment in a short time. Teachers can predict IL of learners, focusing on the learning behavior against 

assignments with high difficulty. Teachers can mitigate IL, providing assignments of low difficulty for 

learners with high IL. 

 Germane load 

The most important variable is the page transitions to the previous assignment. Transitioning to the 

previous assignment means that the subjects retry to solve the assignments. In our method, the subjects can 

solve any assignments of fill-in-the-blank test many times within the time limit. Because subjects have solved 

the assignments repeatedly, it seems they achieved to establish a schema related to the blank and the contents 

of the assignment. 

The next important variables are related to assignment F1, F2, and F4. The contents of the 

assignments are related to linear algebra. They should be solved using 2-dimensional array. All of the 

subjects have obtained skills of linear algebra calculation before they learn programming. They have 

achieved each skill of programming and linear algebra calculation. Because they need to solve the 

assignments using both skills concurrently, the assignments seem to reveal the difference in schematization 

of programming knowledge. 

On the other hand, predictor variables related to assignment F5 are smaller. Assignment F5 is solved 

with a sorting algorithm. Because the sorting algorithm is unknown for most of the subjects, they showed low 

GL in the assignment F5. Therefore, in order to detect GL on learners, it is effective to solve assignments 

utilizing knowledge learners have already obtained or assignments similar to the learning unit. In addition, 

learning behaviors predicting GL is important to confirm how many learners have benefited from the 

learning contents and supervision. In case that few learners have been benefited, teachers should review the 

learning contents and supervision, so that the learners can establish schemata for programming abilities. 
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 Extraneous load 

The model of random forest in our experiment did not show sufficient accuracy for the testing data. 

This means the model cannot predict learners’ EL from their learning behaviors in solving assignments of 

fill-in-the-blank test. It is difficult to figure out variables of learning behavior to detect EL because there are 

various kinds of variables in the 10 important variables. The cause of the result is considered that the subjects 

were unfamiliar with the use of the experimental website which implements the automatic grading system. 

The subjects have practiced with a simple assignment of fill-in-the-blank test to grasp usage of the website. 

However, it might not be enough. As another cause, it is also conceivable that a language used in the 

experiment was not the primary language for the subjects. Most of the subjects understand English. However, 

it is not everyday languages. Answering in non-primary language seems to affect EL. 

In order to improve the accuracy of the model to detect EL, it is necessary to provide an 

environment where learners are familiar with learning environments. We should have the subjects to be 

accustomed to the website, letting them try the automatic grading system more times. It is also required to 

revise the website to be easy to use for the learners. 

Our method detects cognitive load from learning behavior without attaching any sensors to learners. 

It clarifies cognitive load of learners at an early stage, avoiding extra burdens not only on teachers but also on 

learners. It is difficult to find out learners who have IL or GL inappropriately without our method. Teachers 

can address to make each cognitive load of learners appropriate on a light burden. 

 

 

6. CONCLUSION 

In this paper, we propose models to detect cognitive load along with its factors, founding on 

the random forest algorithm. We also discuss the usefulness of the models. The models are constructed with 

predictor variables representing three kinds of learning behavior. They are effective to detect IL and GL. 

The learning behavior during solving difficult assignments is useful to detect IL. It is effective in the 

detection of GL to analyze learning behavior of learners engaging in assignments they have already learned. 

On the other hand, EL can be detected if we improve the usability of the automatic grading system. 

Teachers can find learners who have inappropriate cognitive load early because the proposed method clarifies 

cognitive load of learners from learning behavior. In the future, we elaborately clarify the accuracy of 

learners’ cognitive load and its factors, extending areas of learning contents. 
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